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Abstract

In this paper we present an evolutionary
algorithm for constrained optimization. The
algorithm is based on nondominance of solutions
separately in the objective and constraint space
and uses effective mating strategies to improve
solutions that are weak in either. Since the
methodology is based on nondominance, scaling
and aggregation affecting conventional penalty
function methods for constraint handling does
not arise. The algorithm incorporates intelligent
partner selection for cooperative mating. The
diversification strategy is based on niching that
result in a wide spread of solutions in the
parametric space. Preliminary results of the
algorithm for constrained single and
multiobjective test problems are presented and
compared to illustrate the efficiency of the
algorithm in solving constrained optimization
problems.

1 INTRODUCTION

Evolutionary computation (EC) methods have received
considerable attention over the years as optimization
methods for complex functions. EC methods are
essentially unconstrained search techniques that require a
scalar measure of quality or fitness. The presence of
constraints significantly affects the performance of an
optimization algorithm, including evolutionary search
methods. There have been a number of approaches to
handle constraints including rejection of infeasible
solutions, penalty functions and their variants, repair
methods, use of decoders, separate treatment of
constraints and objectives and hybrid methods
incorporating knowledge of constraint satisfaction. A
comprehensive review on constraint handling methods is
provided by Michalewicz [1]. All the methods have
limited success as they are problem dependent and require

a number of additional inputs. Penalty functions using
static, dynamic or adaptive concepts have been developed
over the years. All of them still suffer from common
problems of aggregation and scaling. Repair methods are
based on additional function evaluations, while the
decoders and special operators or constraint satisfaction
methods are problem specific and cannot be used to
model a generic constraint. Separate treatment of
constraints and objectives is an interesting concept that
eliminates the problem of scaling and aggregation.

Constraint handling using a pareto ranking scheme is a
relatively new concept having its origin in multiobjective
optimization. Fonseca and Flemming [2] proposed a
pareto ranking scheme to handle multiple objectives.
Jimenez and Verdegay [3] used a nondominated sorting
genetic algorithm (NSGA) ranking scheme to deal with
multiple objectives while a separate evaluation function
was used for infeasible solutions. The NSGA used by
Jimenez and Verdegay [3] was introduced by Srinivas and
Deb [4].  Surry et al. [5] applied a pareto ranking scheme
among constraints while fitness was used in the objective
function space for the optimization of gas supply
networks. Fonseca and Flemming [6] proposed a unified
formulation to handle multiple constraints and objectives
based on pareto ranking scheme. All the above attempts
successfully eliminate the drawbacks of aggregation and
scaling that exist with the penalty function methods. In
addition, they do not require any additional input and are
problem independent. However, none of the above
methods incorporate concepts of cooperative learning
through parent matching which is expected to improve the
efficiency of the algorithm. An interesting attempt to
incorporate the knowledge of constraint satisfaction
during mating was proposed by Hinterding and
Michalewicz [7]. In an attempt to match the beauty with
the brains, constraint matching was employed during
partner selection. A single measure (sum of squares of
violation) was used to compute a solution’s infeasibility.
The algorithm does not include any niching or
diversification mechanism to ensure a uniform spread of
points along the pareto frontier for multiobjective



problems. Moreover, a single aggregate measure of
infeasibility fails to incorporate the knowledge of
individual constraint satisfaction/violation and in addition
leads to scalability and aggregation problems.

The proposed evolutionary algorithm eliminates all the
drawbacks as discussed above. Solutions are ranked
separately based on objectives, constraints and combined
matrices (described in Section 2). This process eliminates
the problems of scaling and aggregation. Moreover, since
the constraints are handled separately, the true objective
function is optimized rather than some transformed
evaluation function. The rank of a solution in the
objective, constraint or the combined matrix is used for
intelligent mating between solutions to improve those that
are weak in either constraint satisfaction or objective
performance. The mating process within the proposed
evolutionary algorithm incorporates the knowledge of
every individual constraint satisfaction/violation and
objective performance. Strategies to handle highly
constrained and moderately constrained problems are
outlined. Section 2 provides a detailed description of the
algorithm. Four examples comprising of three constrained
single objective and one multiobjective constrained
optimization problem are presented to illustrate the
performance of the algorithm, identifying a faster
convergence through cooperative learning.

2 PROPOSED ALGORITHM

The proposed evolutionary algorithm is described in the
context of multiobjective optimization. A single objective
problem is handled in the same formulation by assigning
k=1. A general constrained multiobjective optimization
problem (in minimization sense) is presented as:

Minimize ])()()([ xxxf k21 fff �=
subject to qiag ii ,1,2,,)( �=≥x

rjbh jj ,1,2,,)( �==x

where f  is a vector of k objectives to be minimized
subject to q inequality and r equality constraints.

][ n21 xxx �=x  is the vector of n design variables.

The OBJECTIVE matrix for a population of M solutions
assumes the form

It is common practice to transform the equality constraints
(with a tolerance δ) to a set of inequalities and use a
unified formulation for all constraints:

δ+≤ jj bh )(x  which is same as δ−−≥− jj bh )(x  and

δ−≥ jj bh )(x

Thus r equality constraints will give rise to 2r
inequalities, and the total number of inequalities for the
problem is denoted by s, where s=q+2r.

For each solution, c denotes the constraint satisfaction
vector given by c = [ ]s21 ccc � where

For the above ic ’s, ic  = 0 indicates the ith constraint is
satisfied, whereas ic > 0 indicates the violation of the
constraint.

The CONSTRAINT matrix for a population of M
solutions assumes the form

A COMBINED matrix that is a combination of objective
and constraint matrix assumes the form

2.1 PARETO RANKING

From a population of M solutions, all nondominated
solutions are assigned a rank of 1. The rank 1 individuals
are removed from the population and the new set of
nondominated solutions is assigned a rank of 2. The
process is continued until every solution in the population
is assigned a rank. Rank=1 in any of the objective,
constraint or combined matrices indicate that the solution
is nondominated.

The pareto rank of each solution in the population is
computed individually in the OBJECTIVE,
CONSTRAINT and COMBINED matrix and are stored
in vectors RankObj, RankCon and RankCom
respectively.

Having described the general formulation of the
constraint and the objective function matrices and the
concept of pareto ranking, the pseudo code of the
algorithm is introduced.
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Algorithm

Initialize M solutions to form a population

Do {

Compute Pareto Ranking based on
OBJECTIVE matrix to yield a vector RankObj

Compute Pareto Ranking based on
CONSTRAINT matrix to yield a vector
RankCon

Compute Pareto Ranking based on COMBINED
matrix to yield a vector RankCom

Multiobjective Optimization: Select individuals
from the population in this generation if
(RankCom = 1) & (Feasible) and put them into
the population for the next generation.

Single Objective Optimization: Select individuals
from the population in this generation if
(RankCom is better than allowable rank) &
(Feasible) and put them into the population for
the next generation (Allowable rank=maximum
rank of an individual in the population/2).

To generate the remaining members of the
population for the next generation

Do {

Select an individual A and its partner
from the population at this generation.

Mate A with its partner.

Put parents and children into the
population for the next generation.

} while the population is not full.

Remove duplicate points in parametric space and
shrink population

} while the maximum number of generations is not
attained.

2.2 INITIALIZATION

The initialization is based on a random generation of M
starting solutions using uniform random number generator
and the variable bounds (side constraints). A solution

][ n21 xxx �=x is generated as follows:

boundloweri,boundloweri,boundupperi,i xR*)x-(xx +=

where xi,lower bound and xi,upper bound are the lower and upper
bounds of the ith variable and R is a random number
between 0 and 1.

2.3       SELECTION PROBABILITY

The probability of selection of an individual is based on
the vectors RankObj, RankCon or RankCom and

denoted as ProbObj, ProbCon and ProbCom
respectively.

As an example, the vector ProbObj is computed as
follows:

The vector RankObj with element values varying from 1
to Pmax is transformed to a fitness vector FitObj with
elements varying from Pmax to 1 using a linear scaling
(Pmax denotes the rank of the worst solution).

The probability of selection ProbObj of an individual is
then computed based on this fitness vector FitObj using
the roulette wheel selection scheme. The process ensures
that solutions that are fitter have a higher probability of
being selected.

2.4  CHOOSING A PARTNER FOR MATING

A mating is performed between a solution A and its
partner (B or C). The process of partner selection is
dependent on the type of the constrained problem.
Problems are classified into the following:

1. Unconstrained problem (Objective-
Objective Mating)

2. Moderately constrained problem (Objective-
Constraint Mating)

3. Highly constrained problem (Constraint-
Constraint Mating)

For an unconstrained problem, the selection of A, B and C
is based on ProbObj.

For a moderately constrained problem, selection of A is
based on ProbObj while the selection of B and C is based
on ProbCon. Such a mating between solutions that are
good in objective function with that of solutions that are
good in constraint satisfaction is analogous to mating
between the beauty and the brains.

For a highly constrained problem, selection of A, B and C
is based on ProbCon. Since finding a feasible solution is
quite difficult for highly constrained problems, the
selection of mating partners is based on the solution’s
ability towards constraint satisfaction.

The process of partner selection for a moderately-
constrained problem is outlined below for a greater
understanding of the selection process.

2.4.1   Moderately Constrained: Partner selection

Select first individual A based on ProbObj

Select potential mating candidate B based on ProbCon

Select potential mating candidate C based on ProbCon

Partner of A is either B or C, depending upon Condition
1, 2 or 3.



Condition 1 : If B and C are both feasible

If RankObj_B < RankObj_C

then : Partner is  B

else : Partner is C.

If RankObj_B = RankObj_C

then : Choose the one with the minimum
adaptive niche count (to be explained in Section
2.6).

where, RankObj_B denotes the rank of solution B in the
vector RankObj.

Condition 2 : If B and C are both infeasible

If RankCon_B < RankCon_C

then : Partner is B

else : Partner is C.

If RankCon_B = RankCon_C

then : Choose the one with minimum overlapping
constraint satisfaction with A (to be explained in
Section 2.7).

Condition 3: If one is feasible and the other is not.

If B is feasible while C is not

then : Partner is B

else : Partner is C.

2.5   MATING

Every mating generates 3 additional solutions unlike
conventional process of crossover generating two
children. Out of the three solutions, one is generated by
uniform crossover between A and its partner while the
other two are generated using random mix and move.
Every mating will place 2 parents and 3 additional
solutions to the population for the next generation. The
process of random mix and move is as follows:

For i=1: n

Action 1 : Randomly pick A or its partner and denote
it as base.

Action 2 : Randomly pick a number Q for direction
(<0.5 is negative,  positive otherwise)

Action 3 : Randomly pick a number R between 0 and
1.

Condition 1: partneriAi xx ,, <
A is base and Q <0.5:

New var. = )( ,,, boundloweriAiAi xxRx −−
A is base and Q ≥0.5:

New var. = )( ,,, AipartneriAi xxRx −+
Partner is base and Q <0.5:

New var. = )( ,,, Aipartneripartneri xxRx −−
Partner is base and Q ≥0.5:

New var. = )( ,,, partneriboundupperipartneri xxRx −+

Condition 2: partneriAi xx ,, >
A is base and Q <0.5: 

New var. = )( ,,, partneriAiAi xxRx −−
A is base and Q ≥0.5:

New var. = )( ,,, AiboundupperiAi xxRx −+
Partner is base and Q <0.5:

New var. = )( ,,, boundloweripartneripartneri xxRx −−
Partner is base and Q ≥0.5:

New var. = )( ,,, partneriAipartneri xxRx −+

Condition 3: partneriAi xx ,, =
Q <0.9:

New var. = Aix ,

Q ≥0.9:

New var. = )( ,,, boundloweriboundupperiAi xxRx −+
End

The process of random mix and move will ensure that any
feasible variable value can be generated even if it does not
exist in either A or its partner. Generation of a large
number of initial solutions to maintain all possible
variable values is not considered favorable as those
solutions are generated without any knowledge of the
search process and adds on to a computational overhead.
The proposed method as illustrated can be used with
relatively small population size as the process of
generating solutions comes along with random mix and
move.

2.6   ADAPTIVE NICHE COUNT

Adaptive niche count of a solution is the number of
solutions in that population which are within the average
distance metric and is computed as follows:

For i=1: M

Compute the Euclidean distances between it and
all other M-1 solutions

Compute the average Euclidean distance



Count the number of solutions that are within the
average distance

End

A solution with a small niche count as compared to
another physically means that there are few solutions in
its neighborhood. Such solutions are preferred over others
and is the diversification strategy used in the algorithm.

2.7   NON-OVERLAPPING CONSTRAINT

       SATISFACTION

The strategy is based on the philosophy that a solution is
allowed to mate with another if one complements the
other towards constraint satisfaction. Such a mating
between the beauty and the brains is incorporated with a
hope to generate solutions with better constraint
satisfaction.  The concept of non-overlapping constraint
satisfaction is incorporated as follows:

With reference to the CONSTRAINT matrix discussed
earlier, each of the solutions A, B and C has an associated
constraint satisfaction vector cA, cB and cC respectively.

The sets {SA},{SB} and {SC} denote the set of constraints
satisfied by solution A, B and C respectively.

The selection of either B or C is based on the following
condition:

If ( {SA} ∩ {SB} ) > ( {SA} ∩ {SC} )

then : the partner is C.

If ( {SA} ∩ {SB} ) < ( {SA} ∩ {SC} )

then : the partner is B.

If { {SA} ∩ {SB} ) = ( {SA} ∩ {SC} )

then : the partner is randomly chosen between B and C.

2.8   POPULATION SHRINKING

After each new population is full, a screening is done to
remove identical points in the parametric (variable) space
to give room for new and different solutions.

3       RESULTS AND DISCUSSION
The performance of the algorithm is reported for four
constrained optimization problems. Examples 1, 2 and 3
are single objective problems while Example 4 is a
multiobjective problem.

Example 1: The first example is a constrained single
objective optimization problem. It has five variables, a
single quadratic objective function and is subjected to six
nonlinear inequalities [8]. The ratio of feasible points to
sampled number of points for a 1,000,000 point random
sampling was reported to be 0.52123 [8]. The above ratio
indicates that the problem is moderately constrained and

hence an objective-constraint-mating scheme was
employed for the solution.

The optimum solution is (78.0, 33.0, 29.995, 45.0,
36.776) with an objective function value of -30665.5.
Two constraints (upper bound of the first inequality and
the lower bound of the third inequality) are active at the
optimum.

Table 1 : Comparison of Results

Number of
Function
Evaluations

Function Value

Reported [8] 350,000 -30617.0 (worst)

-30643.8 (avg.)

-30662.5 (best)

Present 13,370

13,364

13,139

-30626.123

-30640.969

-30615.689

Reported [8] 1,400,000 -30645.9 (worst)

-30655.3 (avg.)

-30664.5 (best)

Present 35,207

35,348

35,669

-30647.105

-30619.047

-30651.662

The objective function values as obtained from 3
successive trials using the present algorithm are compared
with the best, worst and the average of 20 trials reported
in Reference [8]. It can be observed from Table 1 that the
proposed algorithm obtained comparable objective
function values using a significantly smaller number of
function evaluations.

Example 2: The second example is a constrained single
objective optimization problem. It has two variables, a
single cubic objective function and is subjected to two
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nonlinear inequalities [8]. The ratio of feasible points to
sampled number of points for a 1,000,000 point random
sampling was reported to be 0.000066 [8].

The above ratio indicates that the problem is highly
constrained and hence a constraint-constraint-mating
scheme was employed for the solution. It is also
interesting to note that an objective-constraint mating
scheme fails to identify any feasible solution after 75245
function evaluations.

The optimum solution is (14.095, 0.84296) with an
objective function value of -6961.81381. The first two
constraints are active at the optimum. The objective
function values as obtained from 3 successive trials using
the present algorithm are compared with the best, worst
and the average of 20 trials reported in Reference [8].
Table 2 provides a comparison of results for the above
example.

Table 2 : Comparison of Results

Number of
Function
Evaluations

Function Value

Reported [8] 350,000 -4236.7 (worst)

-6191.2 (avg.)

-6901.5 (best)

Present 38,231

38,234

39,164

-6773.0078

-6525.8374

-6819.0391

Reported [8] 1,400,000 -5473.9 (worst)

-6342.6 (avg.)

-6952.1 (best)

Present 75,245

73,445

74,987

-6744.0864

-6852.5630

-6737.0479

Example 3: The third example is a constrained single
objective problem [8] with three variables. The feasible
region of the search space consists of 125 disjoint spheres
(all of them having a radius of 0.5). The global maximum
is located at (5, 5, 5) with the objective function value of
1.00.

The objective function values as obtained from 3
successive trials using the present algorithm are compared

with the best, worst and the average of 20 trials reported
in Reference [8]. It can be seen from Table 3, that the
algorithm arrived at a solution (4.9702, 5.0193, 5.0082)
with an objective value of 1.00 in 3958 function
evaluations using the objective-constraint mating scheme.

It also reached (4.9828, 5.000, 4.9977) with an objective
value of 1.00 in 3910 function evaluations using the
constraint-constraint mating scheme.

Table 3 : Comparison of Results

Number of
Function
Evaluations

Function Value

Reported [8] 35,000 0.999694591 (worst)

0.99993476 (avg.)

1.000 (best)

Present

(Obj-Con)

3958

3961

3963

1.00

1.00

1.00

Present

(Con-Con)

3910

3922

3914

1.00

1.00

1.00

 Example 4: This is a two-variable constrained bi-
objective problem [9].
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objective-constraint mating scheme with a initial
population size of 200.

Figure 1: Initial population

Figure 2: Final pareto front

4 SUMMARY AND CONCLUSIONS
This paper presents an evolutionary algorithm for
constrained optimization. The method is problem
independent and can handle any computable constraint
and in addition optimizes the true objective function and
not some transformed function. The performance of the
algorithm on both constrained single and multiobjective
problems show a significant decrease in the number of
function evaluations for comparable objective function
values. It can be seen from Example 2 that a constraint-
constraint mating is effective for highly constrained
problems where finding even a single feasible solution
might be difficult. In the same example an objective-
constraint mating fails to locate a solution. On the other
hand, for problems where the feasible space is large, an
objective-constraint mating results in comparable
solutions in a significantly less number of function
evaluations. The presence of cooperative learning through
objective-constraint or constraint-constraint mating results
is a faster convergence while the presence of niching
allows the solution to be evenly distributed on the pareto

front (Figure 2.) The algorithm is currently being tested
on a wide range of single and multiobjective constrained
test problems to establish its suitability as a generic
constrained optimization methodology.

Acknowledgment

The authors would like to acknowledge the support for
this work received from the Institute of High Performance
Computing and the National Science and Technology
Board (RICURF research fund EMT/98/013).

References

1. Michalewicz, Z. (1995). A Survey of Constraint
Handling Techniques in Evolutionary Computation
Methods, Proceedings of the 4th Annual Conference
on Evolutionary Programming, MIT Press,
Cambridge, MA, pp. 135-155.

2. Fonseca, C.M. and Flemming, P.J. (1995). An
Overview of Evolutionary Algorithms in
Multiobjective Optimization, Evolutionary
Computation, 3(1), pp. 1-16.

3. Jimenez, F. and Verdegay, J.L. (1998). Constrained
Multiobjective Optimization by Evolutionary
Algorithms, Procs. Of the International ICSC
Symposium on Engineering of Intelligent Systems
(EIS’98), Spain, pp. 266-271.

4. Srinivas, N. and Deb, K. (1994). Multiobjective
Optimization Using Nondominated Sorting in
Genetic Algorithms, Evolutionary Computation, 2(3),
pp. 221-248.

5. Surry, P., Radcliffe, N.J. and Boyd, I. (1995). A
multiobjective approach to constrained optimization
of gas supply networks, Procs. of the AISB-95
Workshop on Evolutionary Computing, Springer
Verlag, Vol. 993, pp. 166-180.

6. Fonseca, C.M. and Flemming, P.J. (1998).
Multiobjective Optimization and Multiple Constraint
Handling with Evolutionary Algorithms--Part I: A
Unified Formulation. IEEE Transactions on Systems,
Man, and Cybernetics, Part A: Systems and Humans,
28(1), pp. 26-37.

7. Hinterding, R. and Michalewicz, Z. (1998). Your
Brains and My Beauty: Parent Matching for
Constrained Optimisation, Procs. of the 5th
International Conference on Evolutionary
Computation,  Alaska, pp.810-815.

8. Koziel, S. and Michalewicz, Z. (1999). Evolutionary
Algorithms, Homomorphous Mappings, and
Constrained Parameter Optimization, Evolutionary
Computation, Vol.7, No.1, pp.19-44.

9. Deb, K. (1999). Evolutionary Algorithms for Multi-
Criterion Optimization in Engineering Design, Procs.
of Evolutionary Algorithms in Engineering and
Computer Science (EUROGEN-99),Finland.


