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Abstract

This paper presents a novel evolvable hardware
framework for the automated design of digital
circuits for high performance applications. The
technique evolves circuits corresponding to each
specific output, under restricted functionality and
timing constraints. The individual circuits are
then processed to generate the completed cir-
cuit. Applications have focused on the design of
multi-output arithmetic circuits, such as a 3-bit
multiplier. Circuit evolution is performed within
a Virtual Chip environment, a fusion of C code,
VHDL and CAD tool for synthesis. As a result of
the tools used within the Virtual Chip, constraints
such as timing are taken into account during evol-
ution. Both primitive gates and functional macro
blocks are available to the framework providing a
flexible means for generating complex digital cir-
cuits. A 3-bit multiplier, evolved by our frame-
work, is compared to an equivalent circuit gen-
erated through standard design techniques, and
is found to be of comparable performance. An
additional comparison is made with a multiplier
evolved using a conventional evolvable hardware
framework which does not use the phased ap-
proach to circuit evolution.

1 Introduction

Although evolvable hardware (EHW) has demonstrated the
success of using evolutionary algorithms to generate digital
circuits, it has also raised a number of questions as to how
current EHW approaches to automated circuit design can
be further improved.

Evolvable hardware for automated digital design favours
software based, or extrinsic evaluation, due to the simpli-
city of its implementation and the ease in which evolved

circuits can be examined once a solution is found [1]. Us-
ing this approach only the final solution is downloaded
onto a reconfigurable device. The majority of frameworks
which employ extrinsic evaluation use a technology inde-
pendent net-list to model a digital circuit undergoing evol-
ution [1, 2], although representations which more closely
model the characteristics of a particular hardware platform
have also been presented [3].

Much attention in evolvable hardware research is given to
the design of arithmetic circuits as they provide the found-
ation blocks for larger DSP (Digital Signal Processing) ap-
plications. With the advent of faster and larger FPGAs, res-
ulting from advances in silicon technology, and the move
towards deep sub-micron technologies (DSM), designers
are under increasing pressure to provide high performance
DSP circuits which take advantage of these new platforms.
The result are circuits which must operate under critical
constraints imposed by high density, and the domination of
interconnect capacitance [4]. Inovative research into using
EHW for DSP design has resulted in the development of
arithmetic circuits from halfadder structures to more com-
plex 2-bit parallel multiplier designs.

The automated design of digital circuits is not trivial. Each
possible circuit solution for a given task lies within a search
space. The search space is defined by the number of dif-
ferent component building-blocks presented to the frame-
work, the number of logic cells used to generate the circuit,
and the application for which the circuit is being evolved.
Evolutionary algorithms (EAs) are employed within EHW
as they provide a non-heuristic investigation of what is po-
tentially a very large search space. Successful solutions
are often made more difficult to find as the output response
must be exact, for instance as part of a sequence of oper-
ations such as memory mapping. This differs from other
types of circuit which instead approximate a specified ana-
logue transfer function.

It is a combination of these factors which has resulted in
the difficulties experienced by researchers to evolve circuits



larger than those detailed. In addition, one draw-back of
extrinsic evaluation is that little information is processed
in terms of how accurately a system is modelled, as in
most cases the additional detail required has not been in-
tegrated into the software. This inhibits the development
of high performance digital circuits where timing and area
constraints are of great importance, and therefore must be
accounted for by evolvable hardware applications.

The phased approach to EHW demonstrated in this paper,
along with the use of both gate primitives and functional
building blocks, implemented within the Virtual Chip en-
vironment, provide a means to both increasing the com-
plexity of arithmetic circuits currently evolved, and the per-
formance constraints under which these circuits must oper-
ate.

This paper therefore details the theory behind the phased
approach to circuit evolution, and the Virtual Chip envir-
onment. The merit of the new phased technique is then
demonstrated through comparison of an example ‘evolved’
circuit, with that of a functionally equivalent circuit de-
veloped through conventional design techniques. A final
comparison is then made between the phased technique and
our same algorithm but with phased evolution removed.
This is to emphasise the difficulty of evolving complex
arithmetic circuits using standard EHW frameworks.

The evolvable hardware framework presented in this pa-
per therefore establishes a number of possible solutions to
many of the problems associated with extrinsic circuit eval-
uation, and the generation of more complex circuits using
EHW. A novel genetic algorithm is presented which ap-
proaches circuit design at an hierarchical level, using a flex-
ible chromosome encoding.

2 Description of Evolvable Hardware
Framework

The Virtual Chip has been designed to provide an auto-
mated digital design procedure which, after successful
evolution of a digital system, is then able to synthesise a
circuit solution to generate a technology specific net-list
ready for transfer onto silicon. Within this framework a
novel genetic algorithm is used to evolve non-sequential
digital circuits.

2.1 Encoding a circuit within a chromosome

Evolvable hardware frameworks develop chromosomes
which then encode the functional description of a given
circuit. As with many applications which utilise GAs, the
resulting circuit is termed a phenotype as it comprises nu-
merous smaller logic cells or genotypes. The terminolo-
gies used are designed to reflect the conceptual similarity

between EHW, natural evolution, and genetics.

The evolvable hardware framework presented here uses a
permutation-based encoding of fixed-length. As such only
a specified number of logic elements are presented to the
framework. From this, the desired circuit functionality
must be generated. Using a fixed-length encoding is stand-
ard practice and is one of the main restrictions within which
a genetic algorithm operates [5].

Specific sections of each chromosome are reserved for de-
scribing the inputs and outputs required for the desired cir-
cuit. Logic elements are referenced by position within the
chromosome. Figure 1 displays the relative location of
each encoded section. Circuit inputs are encoded in the
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Figure 1: Chromosome Structure Defining Sections for
Specific Circuit Description

first section of chromosome. If a circuit has I inputs, then
the first I elements in the chromosome will describe these
inputs. This description includes the input pin number in
addition to which logic element the input pin is connected.
Outputs are similarly defined at the end of the chromosome,
where position relates to the identification of an output pin
connected to a logic element. Total chromosome length, N,
is then defined as the number of logic elements summed
with the number of circuit inputs. Therefore, if a circuit
has two outputs, what ever logic elements are at N and N-1
are connected to output pin one and output pin two respect-
ively.

The encoding ensures that the number of inputs and out-
puts described by a chromosome remains consistent after
operations such as crossover.

The EHW framework presented in this paper utilises a
range of functional elements or macro blocks, along with
simple gate primitives with which to generate various cir-
cuit structures. Macro blocks particularly suited to more
complex arithmetic circuits were chosen such as a halfad-
der and fulladder. Other macro elements include small
combinational logic blocks, in addition to simple through-
connects. Figure 2 displays samples of the types of ad-
ditional logic elements present in the component library.
Each element is connected within a flexible chromosome
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Figure 2: Generic Style of Macro and Other Logic Cells
Provided to Library of Components For The Evolution of
Complex Arithmetic Circuits.

encoding which allows placement of any logic element
(macro or primitive) into any position within the string.
This provides the EHW framework both the flexibility of
standard gate level encodings, and the potential of build-
ing more complex systems afforded by less flexible func-
tional architectures. For example, both circuits presented
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Figure 3: Comparison of a Standard Gate-level Encoding
With The Novel Macro-based Encoding to Describe a Ful-
ladder with Additional Logic.

in Figure 3 are functionally identical. However, the gate-
level encoding would require a seven element description
to represent the circuit, while the macro-based encoding
would require only three. Although more cell connectiv-
ity information is required to encode the fulladder cell de-
scribed using the macro approach, the overall reduction in
chromosome length justifies this.

Connecting Cells Within the Chromosome
Each genotype (logic element) in a circuit is allocated a
specific position within the corresponding chromosome.
The type of logic element at any given position is initially
determined randomly, however elements can be allocated
different positions after initialisation through manipulation
by genetic operators. Figure 4 demonstrates the technique
used to encode the connectivity of the fulladder element
depicted in Figure 3.

It is important to note that an elements connectivity is not
restricted to its nearest positional neighbour. Rather, logic
elements are free to connect to any element of higher pos-
ition within the chromosome. This form of ‘over-the-cell’
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Figure 4: Example of Macro-based Encoding Used to De-
scribe a Macro Cell (Fulladder) and its Connectivity.

connectivity provides a much wider range of possible cir-
cuit configurations. Feedback connections, however, are
not permitted as there effects are not desirable for most
DSP applications.

A summary of the parameters applied to our genetic al-
gorithm are as follows:

� Generational genetic algorithm

� Two-way tournament selection implemented (Two
chromosomes are selected randomly and the fittest be-
comes a member of the next generation)

� One-point crossover at 0.7; chromosome repair ap-
plied;

� Mutation using Mulenbein derivation P(m) = 1 / l [6];
with application specific operators;

� Population size fifty.

A chromosomes repair algorithm is used to reconnect
broken interconnects resulting from crossover and muta-
tion. Once invoked, the repair algorithm attempts recon-
nection by focusing on the logic element whose output
has been severed. The nearest positional neighbour to the
severed logic element is then examined for connection. If
no free connection is available, subsequent logic elements
are examined, until the end of the chromosome is reached.
In the event that no logic elements are available for con-
nection, the current logic element is assigned as floating
and further.

Fitness is represented as a percentage of circuit functional-
ity. Correctness is calculated by summing the total number
of correct bits produced by the circuit solution under eval-
uation and comparing this to the desired output response.
This is achieved through interaction with a HDL (Hardware
Description Language), described in the following section.

2.2 The Virtual Chip Environment

The Virtual Chip has been designed to provide an auto-
mated digital design procedure. Within this framework a
novel genetic algorithm is used to evolve digital circuits. Its



Simulation Output Vectors:

Synthesis:

Component Library:

Virtual Chip

VHDL Testbench:

Input Vectors:

CLK

CLK

C0_3

C0_2

C0_1

C0_0

Bin 1

Bin 0

Ain 1

Ain 0

N-1
Circuit

Circuit
2

Circuit
1

In0  0 0 1 0 0 1 1 0 0 1 1 0
In2 1 1 0 0 1 0 0 1 1 0 0 1

In1

In2

Circuit
0

C0_3

C0_2

C0_1

C0_0

C1_3

C1_2

C1_1

Fulladder

Entity NOT is
PORT(SIGNAL....
End NOT;

ARCHITECTURE

PACKAGE library

COMPONENT....
...........
...........

C1_0

C2_3

C2_2

C2_1

   ’1’ AFTER 50ns,

C2_0

C3_3

C3_2

C3_1

C3_0

Ino

In1

Out0

Out1

VHDL/VERILOG Circuit Netlist

Out0 1 1 1 0 0 1 0 1 0 1 1 0
Out1 0 1 0 1 0 1 1 0 0 0 1 0

Out0

Out1

vector0: In0 <=

   ’0’ AFTER 50 ns,

   ’1’ AFTER 150 ns,

   ......

   ......

LIBRARY ieee; USE ieee.sed_logic_1164.ALL;

USE WORK Package.ALL;

ENTITY testbench IS

END testbench;

ARCHITECTURE Virtual_Chip OF testbench IS

  SIGNAL ..............

 

BEGIN

  cell_0: NOT

     PORT MAP (........);

  cell_1 NAND_gate

     PORT MAP (........);

vector1: In1 <=

  ....................

  ....................

Evolve 2-bit Multiplier

Figure 5: Graphical Representation of The Virtual Chip Environment Within a VHDL Framework. Evolution of a 2-bit
Multiplier With a Population Size of N.

simulated environment evolves the structure of a circuit dir-
ectly within the VHDL language. This is performed within
a specially designed testbench. It is this testbench which in-
stantiates and interconnects all logic elements within each
chromosome, used to describe a specific circuit solution.
Evaluation is performed by instantiating and simulating all
circuits described within a population of chromosomes, as
if they were being implemented within a single reconfig-
urable chip. Figure 5 illustrates a 2-bit multiplier evolving
within the Virtual Chip environment.

As can be seen in Figure 5, each 2-bit multiplier has 4 in-
puts and 4 outputs. All inputs and outputs are synchronised
with flip-flops to account for propagation delays and ensure
that all output signals have reached a steady state. It is these
flip-flops which, governed by a global clock, set the timing
constraints within which the evolving circuit must operate.
A circuit with incorrect timing will produce output signals

offset with those desired and will therefore incur low fit-
ness.

Each 4-bit output grouping represents an individual circuit
evolving within the virtual environment. Each grouping is
tagged according to the circuits ID within the evolving pop-
ulation.

Due to the implicit parallelisation of the Virtual Chip envir-
onment, the entire population is compiled, and simulated
as one entity. This differs from most standard approaches
which evaluate each individual solution sequentially.

The Virtual chip is a fusion of C code and VHDL. The ge-
netic algorithm itself is executed in C and generates the
VHDL required to instantiate each circuit encoded within a
chromosome. After a circuit has been successfully evolved
it is then passed through a CAD tool for synthesis. Fig-
ure 6 displays the execution flow and coding format of the
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Figure 7: Example of Phased Evolution For The Automated Design of a 3-bit Multiplier.
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Figure 6: Execution Flow and Coding Format of Virtual
Chip EHW Framework.

2.3 Phased Evolution

As highlighted in the introduction, the shear size of the
search space involved in the automated design of digital
circuits can often result in the failure of an evolvable hard-
ware framework in finding a suitable solution. In addition
to the number of logic elements required, and the desired
circuit functionality, such complexity is well represented in
the fitness evaluation of such circuits. In most cases evalu-

ation consists of matching the output vectors of the circuit
under analysis with actual output vectors, required by the
desired functionality. By reducing the number of possible
output vectors, and thus the required complexity of a cir-
cuit, it becomes possible to develop circuits of complex-
ity that were previously difficult, or unattainable. Figure 7
visualises this approach for the example of a 3-bit parallel
multiplier.

If the 3-bit multiplier were evolved as one unit the number
of correct output bits required to correctly describe the
entire circuit would be;

Output bits required =
���

* O.

Where I is the number of inputs, and O the number
of output bits required to encode the vector. However,
stage one of the example circuit shown in Figure 7
demonstrates that, through phased evolution, the number
of correct output bits required for each sub-circuit is;

Output bits required =
���

This represents a marked difference in circuit complexity.

Stage two in Figure 7 denotes the removal of redundant lo-
gic between the evolved sub-circuit structures as they are
combined to generate the required circuit. A benefit of
evolving partitioned circuits through phased evolution is to
reduce the negative effects of the high degree of epistasis,
inherent in design-based EHW applications. Epistasis de-



scribes the degree of inter dependency each element in the
chromosome has on the other. It has been shown that a
very high degree of epistasis, as can be found in high per-
formance digital circuits, begins to favour random search
over genetic algorithm techniques [8]. It might be assumed
that simply combining each sub-circuits would result in an
overall circuit much larger than that developed by either a
design engineer, or an alternative EHW framework. Res-
ults in section 3 will show however that the high degree
of common functionality between each of the sub-circuits
generated, results in large amounts of cell reuse between
circuits and thus impressive minimisation.

Stage three in Figure 7 represents circuit synthesis enabling
the designer to investigate the evolved circuit for both dif-
ferent technologies, and confirm timing constraints are ad-
hered to.

3 Implementation and Results

The following section details an example circuit evolved
using our EHW framework and phased evolution. The ex-
ample presented is that of an unsigned, 3-bit parallel multi-
plier. The multiplier is compared with a functionally equi-
valent design, generated using a standard behavioural level
HDL-to-synthesis procedure.

So as to verify reproducibility, each of the phased outputs
(six sub-circuits representing each of the six circuit out-
puts) were evolved ten times. After evolution, specific sub-
circuit solutions were chosen at random, and combined to
form the final multiplier. The circuit was constrained to run
no slower than 10 MHz, and the area of each sub-circuit
was restricted by a chromosome length of 15 logic ele-
ments. A total of 90 logic elements were therefore used
to encode the multiplier. However, many of these elements
will be simple through-connects and many will become re-
dundant.

The completed circuit was then synthesised to remove re-
dundancies and calculate cell area. Table 1 displays tim-
ing and area information about the 3bit multiplier evolved,
along with the CAD-based equivalent. Timing slack is
defined to be the duration for which the slowest output of
the circuit remained stable before the next data pulse ar-
rives.

To further test the performance of both multiplier circuits,
each was synthesised to run at 100 MHz. The results are
also displayed in Table 1. It should be noted that +INF de-
notes that timing constraints are well within specified lim-
its. The results therefore indicate that, for a negligible in-
crease in gate area, the evolved 3-bit multiplier operates
equally as well at 100MHz as the hand designed, CAD
based circuit. It should be noted that equivilant perform-
ance was obtained at this higher frequency, despite begin

evolved to operate at only 10MHz.

The following compares the phased evolution technique
with that of the same framework without phased evolution.
Through this, the difficulty faced by single-step EHW tech-
niques when evolving complex digital circuits becomes ap-
parent. Figure 8 demonstrates the unsuccessful evolution
of a 3-bit multiplier under the same constraints as previ-
ously detailed. In this case the total chromosome length
was extended to 100 logic elements (both gate primitives
and macro blocks), greater than the total number of ele-
ments used for the phased approach. Ten attempts were
made to evolve a 3-bit multiplier in this way. In all cases
the trend is typical of that shown in Figure 8, indicating that
many more than 10,000 generations would be required to
evolve a successful circuit. Although not substantiated, a
figure of 30,000 to 40,000 generations is estimated at the
current rate of progress observed.
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Figure 8: Example of Unsuccessful Evolution of 3-bit Mul-
tiplier Using Single-step EHW Techniques.

In stark contrast to the single-step approach, phased evol-
ution provides the GA with numerous smaller complex-
ity issues, and thus shorter evolution times. Table 2 dis-
plays the average number of generations taken to evolve
each successful sub-circuit (a maximum of ten sub-circuits
per output) for the 3-bit multiplier presented. It is clear
that if each sub-circuit were evolved in serial approxim-
ately 20,000 generations would be required to generate the
multiplier circuit. However, modern networking and effi-
cient processors provide simple methods for executing the
phased algorithm in parallel. In any case, by using phased
evolution the number of generations required to evolve a
3-bit multiplier in either serial or parallel is considerably
smaller than a standard one-step procedure.

Many of the sub-circuits evolved where compared to the
average number of generations taken. Table 2 therefore re-
veals a good indicator of the circuit complexity required to
produce the desired output. Figure 9 displays the synthes-
ised 3-bit multiplier evolved through the phased technique,



Method of Circuit Generation Circuit Area in NAND gates Timing Slack at
10 MHz

Timing Slack at
100 MHz (ns)

Phased Evolution EHW framework 60.0 +INF 1.7266 - 1.8151
Standard CAD synthesis tool 59.0 +INF 1.7395 - 1.7926

Table 1: Comparing a 3bit Multiplier Evolved Using Our EHW Framework With That of a Functionally Equivalent Circuit
Generated Using Standard CAD Techniques

Average Number of Generations to Evolve Sub-circuit
Output0 Output1 Output2 Output3 Output4 Output5

3838 3930 7734 3508 827 55

Table 2: Average Number of Generations Taken by Phased Evolution to Evolve Sub-circuits For Each Output of 3-bit
Multiplier

and analysed in this paper. Examination of the schematic
demonstrates that the most complex logic path results in
the output of pin two. Figure 10 presents the section of
digital logic relating to the sub-circuit evolved for output
two, after logic minimisation.
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Figure 10: Schematic of Sub-circuit Relating to Function-
ality of Output 2 of 3-bit Multiplier.

Comparison with Figure 9 shows that sub-circuit 2 contains
the most complex logic required to achieve correct func-
tionality. This is confirmed by the number of generations
taken on average to evolve the sub-circuit.

Figure 11 illustrates the simplification of the sub-circuit re-
lating to output five. The resulting circuit demonstrates the

in0
out5

i_4i_0

in3

Figure 11: Schematic of Sub-circuit Relating to Function-
ality of Output 5 of 3-bit Multiplier.

effectiveness of both logic optimisation, and the availability
of through-connect elements within the evolving compon-
ent library (recall that each sub-circuit had a fixed length

encoding of fifteen logic elements). Although not shown,
the original sub-circuit representation of output five utilised
a large number of through-connect and floating input ele-
ments (shown in Figure 2), before the removal of redund-
ancies.

4 Conclusion

A phased approach to the evolution of high performance,
multi-output, digital arithmetic circuits has been presen-
ted. The technique incorporates an EHW framework de-
veloped within a Virtual Chip environment for automated
circuit design. The implementation of the Virtual chip en-
vironment is such that timing issues, critical to the devel-
opment of high performance circuits, are taken into ac-
count during evolution. Analysis reveals that logic element
reuse between sub-circuits is high, such that after the re-
moval of redundant logic through synthesis, surface areas
are comparable to functionally equivalent circuits gener-
ated through standard design techniques. This is attributed
to a high degree of common functionality between each
sub-circuit. Phased evolution partitions circuit complexity
and in doing so reduces the associated degree of epistasis,
making it possible to evolve complex circuits more effect-
ively than standard EHW techniques. Results demonstrate
the non-uniformityof the circuit complexity required by in-
dividual output paths. A 3-bit multiplier has been presen-
ted to exemplify the issues discussed. The evolved circuit
was constrained to run at a minimum of 10 MHz, but also
synthesised successfully at 100 MHz. In both cases, the
circuit performed equally as well as a functionally equi-
valent multiplier generated through standard design tech-
niques. Research is continuing using both phased evolu-
tion and the Virtual Chip, for the automated design of more
complex DSP circuits evolved with inherent performance
constraints.
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Figure 9: Example of Synthesised 3-bit Multiplier Generated Using Phased Evolution Technique Within The Virtual Chip
Environment.
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