
Evolutionary Synthesis of Multiplexor Circuits under Hardware

Constraints

Rolf Drechsler Wolfgang G�unther

Institute of Computer Science, Chair of Computer Architecture (Prof. Dr. Bernd Becker)

Am Flughafen 17, Albert-Ludwigs-University, 79110 Freiburg im Breisgau, Germany

email: fdrechsle,guentherg@informatik.uni-freiburg.de

Abstract

Multiplexor based Field Programmable Gate

Arrays (FPGAs) are a very popular design

style. However, during circuit design only

limited hardware resources are available. In

this paper we present an approach to multi-

plexor (MUX) based circuit evolution under

hardware constraints. Binary Decision Di-

agrams (BDDs) are used as the underlying

data structure. An evolutionary technique

is proposed that allows to stay within given

hardware resources while minimizing the er-

ror in parallel. Starting from a correct cir-

cuit, i.e. a BDD representing the complete

function, some parts are removed, based on

evolutionary principles, until all constraints

are met. The experimental results presented

demonstrate the possibility to handle for the

�rst time instances composed of several thou-

sand gates.

1 Introduction

Field Programmable Gate Arrays (FPGAs) have been

widely used in implementations of integrated circuits

due to several reasons, like short turnaround time and

time-to-market aspects. FPGAs are mainly based on

a basic cell that consists e.g. of a Look-Up Table (LUT)

or a Multiplexor (MUX) structure (Brown et al., 1992;

Murgai et al., 1995).

Binary Decision Diagrams (BDDs) are the state-of-

the-art data structure in VLSI CAD and have been

used in many applications (Drechsler & Becker, 1998).

In the meantime they have also been integrated in in-

dustrial tools. BDDs are graph based representations

of Boolean functions where in each node a Shannon

decomposition is carried out. Furthermore, many op-

erations can be carried out e�ciently, like satis�abil-

ity and Boolean AND. BDDs can easily be mapped to

MUX based FPGAs due to the close relation between

BDD nodes and MUXs. Several logic synthesis ap-

proaches based on BDDs have been developed (Buch

et al., 1997; Chaudhry et al., 1998; G�unther & Drech-

sler, 1999).

Also in the �eld of Evolvable Hardware (EHW) BDDs

have gained large attention, since they are easy to ma-

nipulate (Droste, 1997). They are also well-suited for

theoretical analysis (Droste et al., 1999). One main

problem in circuit design is the limited availability of

hardware resources. This especially becomes a prob-

lem in EHW where the circuits tend to grow over time

for realizing a given target function.

In this paper we present a method for circuit evolution

under hardware constraints based on BDDs. The re-

sulting netlists are mapped to MUX based FPGAs.

In contrast to previously published approaches (see

e.g. (Kalganova & Miller, 1999)) we start with a com-

plete description of the function given as a BDD. As-

suming that the complete graph does not �t on the

FPGA we set an upper limit on the number of MUX

cells. This means that the BDD has to be modi�ed to

�t on the FPGA. We propose an algorithm based on

evolutionary techniques that minimizes the error in-

troduced by this modi�cation. Nodes from the BDD

are removed until the hardware requirements are met.

Due to this technique the algorithm runs very fast,

i.e. for the �rst time functions with more than 200

variables can be handled, while other approaches fail

for functions with more than 10 variables (Thompson,

1997; Kalganova & Miller, 1999).

Experimental results are given that demonstrate the

trade-o� between area of the circuit and error intro-

duced. It is shown that our algorithm results in an

error of less than 1% on average, if the area is reduced

by 20%.



2 Preliminaries

2.1 Binary Decision Diagrams

Boolean variables can assume values from B := f0; 1g.
In the following, we consider Boolean functions f :

Bn ! Bm over the variable set Xn = fx1; : : : ; xng.

It is well-known that each Boolean function f : Bn !
B can be represented by a Binary Decision Diagram

(BDD) i.e. a directed acyclic graph where a Shannon

decomposition

f = xifxi=0
+ xifxi=1

(1 � i � n)

is carried out in each node.

A BDD is called ordered if each variable is encountered

at most once on each path from the root to a terminal

node and if the variables are encountered in the same

order on all such paths. A BDD is called reduced if

it contains neither isomorphic sub-graphs nor vertices

with both edges pointing to the same node.

BDDs are de�ned analogously for multi-output func-

tions f : Bn ! Bm as for the case of single-output

functions: A BDD Gj for each component function fj

(1 � j � m) is used for the shared BDD representa-

tion G for f . The order of the variables is �xed over

all Gjs.

For functions represented by reduced, ordered BDDs

e�cient manipulations are possible (Bryant, 1986). In

the following, only reduced, ordered BDDs are consid-

ered and for briefness these graphs are called BDDs.

2.2 Multiplexor Circuits

In general, a Combinational Logic Circuit (CLC) is

de�ned over a �xed library and modeled as a directed

acyclic graph C = (V;E) with some additional prop-

erties: each vertex v 2 V is labeled with the name of

a basic cell or with the name of a Primary Input (PI)

or Primary Output (PO). The collection of basic cells

available is given by a �xed library. Of course, ba-

sic cells with arbitrary complexity, especially with an

arbitrary number of inputs and outputs, are possible.

There is an edge (u; v) in E from vertex u to v, i� an

output pin of the cell associated to u is connected to an

input pin of the cell associated to v, i.e., edges contain

additional information to specify the pins of the source

and sink node they are connected to. Vertices have ex-

actly one incoming edge per input pin. Nodes labeled

as PI (PO) have no incoming (outcoming) edges.

Very often a standard library (STD) consisting of the

2-input, 1-output AND, OR gate and the 1-input, 1-

output inverter NOT is used. The circuits, as they

OR

AND AND

e

r
a

b c

Figure 1: Multiplexer cell MUX

are de�ned in this paper, are CLCs over the library

MUXLIB. MUXLIB consists of the library STD sup-

plemented by amultiplexer cell MUX. We use the stan-

dard AND-, OR-, INVERTER-based realization of a

MUX as it is shown in Figure 1. The input a is called

control input, the input b (c) is called 0-input (1-input).

The 0-input and the 1-input are called data inputs of

the multiplexer.

A multiplexer-circuit C1 over MUXLIB can easily be

interpreted as a circuit C2 over STD just by replacing

each basic cell by its standard cell realization. C2 is

then called an expansion of C1.

2.3 Relation between BDDs and MUX

Circuits

It is well-known, that BDDs directly correspond to

multiplexer based circuits called BDD-circuits in this

paper. They are de�ned over the library MUXLIB.

A BDD-circuit can easily be obtained from a BDD by

traversing the BDD in topological order and replacing

all nodes by the corresponding multiplexers from the

library MUXLIB. For a more detailed description of

the algorithm see (Becker, 1992).

In the following we present an example from (Becker,

1992), which shows the transformation from the initial

BDD to a circuit.

Example 1 Let f(x1; ::; x4) = x1x3 + x2x4 + x3x4.

The BDD for f is shown in Figure 2, where each label i

in a node corresponds to the variable xi. The resulting

circuit is shown in Figure 3.

3 Problem Formulation

On FPGAs only a limited number of cells is available.

For this, in EHW approaches it happens that the com-

plete function does not �t on the chip. In these cases

a larger device has to be chosen, what usually results



x1

x4

x2

x3 x3

0 1

0

0

1

0

1

1

10

10

Figure 2: BDD for function f

OR

AND AND

e

r

OR

AND AND

e

r

AND

e

OR

r

rr

x1

x2

x3

x4

Figure 3: Circuit for function f

in higher costs, or the function to be realized has to

be modi�ed. In the second case the interest is to keep

the amount of changes as small as possible.

We now consider the following problem that will be

solved using evolutionary synthesis:

How can the number of nodes in a BDD be

reduced (by a given factor) such that the re-

sulting function is as similar to the original

one as possible?

Here similarity is measured in the number of common

minterm values, i.e. the number of assignments for

which both functions have the same value. To avoid

huge numbers, the number of minterms is normalized

to be in the range of [0:0; 1:0] by dividing the minterm

x1

x4

x3

0 1

0 1

0 1

10

(a)

x1

x4

x2

x3

0 1

0

0

1

0

1

1

10

(b)

Figure 4: Substituting nodes with constants

count by 2n. Nevertheless we will refer to this relative

number of minterms as \the minterms" in the follow-

ing.

Example 2 Consider again the function from Exam-

ple 1. The minterms of f can be computed using the

minterms of the two successor nodes by

minterms(f) = 1

2
(minterms(fxi=0

)

+minterms(fxi=1
)):

For the nodes of the BDD from Figure 2 the minterms

are given by

const 0 0

const 1 1

x4 1/2

x3 (left) 1/4

x3 (right) 3/4

x2 3/8

x1 9/16

To reduce the size of the BDD, we substitute nodes by

constants. For example, substituting the node labeled

by x2 by the constant 0 results in the BDD given in

Figure 4 (a). The resulting function has a minterm

count of 6=16; 3=16 of the minterms are di�erent from

the original function. However, if the right node la-

beled with x3 is substituted by the constant 1, then the

resulting number of minterms is 11=16 (see Figure 4

(b)), and only 2=16 of the minterms are di�erent.

Remark 1 The di�erence of two functions is com-

puted by building the EXOR of both BDDs and count-

ing the number of satisfying assignments of the result-

ing BDD. This computation can be done e�ciently on

BDDs. For multi-output functions, the maximum er-

ror of each pair of outputs is used.



It can be seen that selecting nodes has a large impact

on the quality of the resulting BDD. In the following,

methods are presented that are based on this observa-

tion.

4 Evolutionary Synthesis

4.1 Random Approach

A straightforward approach is to randomly select a

node of the BDD and replace it by a constant. This

process can be iterated until the maximum size that

is allowed is reached. However, the quality of this ap-

proach is not satisfying in most cases. Therefore, in

the following two more sophisticated methods are pre-

sented. The �rst one is a greedy approach, while the

second one is based on evolutionary techniques.

4.2 Minterm Approach

Instead of selecting a random node of the BDD, a

\good" node is chosen: if a node has only very few

minterms, then it can be replaced by the constant zero

without introducing much error. If, on the other hand,

its onset nearly covers the complete space, then this

node can be replaced by the constant one. This mo-

tivates the following approach, as given in Figure 5:

First, the minterm count is computed for each node

of the BDD (this is possible in linear time in terms of

the number of nodes (Bryant, 1986)). Then the node

having the most extreme minterm number (i.e. close

to 0:0 or close to 1:0) is selected and replaced by the

according constant. This is repeated as long as the

BDD size exceeds the given limit.

4.3 Evolutionary Approach

To further improve the quality of the results, an evo-

lutionary approach is presented in the following. It

is based on one crossover operator and two di�erent

mutation operators:

MUT1: One randomly chosen node is replaced by a

constant value (in the same way as done in the

straightforward approach).

MUT2: The best node (in terms of minterm count,

see Section 4.2) is replaced by a constant value.

CROSSOVER: The algorithm of Figure 6 is used

to combine two functions f and g. Basically, it

combines substitutions that are made by either

of the two given functions. The algorithm recur-

sively traverses the BDDs for f and g. If either of

the operands is constant, then a constant value

minterm algorithm(BDD f , int maximum size) f
while (size(f) > maximum size) f

compute minterm of each node(f);

min =1;

foreach node g of f f
if (minterms(g) � 0:5 and

minterms(g) < min) f
min = minterms(g);

gmin = g;

g
if (minterms(g) � 0:5 and

1�minterms(g) < min) f
min = 1� minterms(g);

gmin = g;

g
g
if (min � 0:5)

replace node(f , g, 0);

else replace node(f , g, 1);

g
return f ;

g

Figure 5: Minterm approach

is returned. Otherwise the left and right sons

are computed recursively and a node represent-

ing both sub-functions is returned. Intermediate

results are stored in a computed table to ensure

that the algorithm has linear runtime (in terms of

the graph size). Note that in case the functions

are equal, no modi�cation takes place.

The initial population is generated using the original

BDD as �rst individuum and by applying mutation

operator MUT1 to create further elements. Evalua-

tion is done using a combination of the BDD size and

the percentage of wrong minterms compared to the

original function, i.e. the following code is used:

evaluate(element e) f
cost = error weight � error(e, original func);
size = BDD size(e) � maximum size;

if (size > 0)

total cost = cost + size;

else total cost = cost;

return total cost;

g

Initially, error weight is set to 65536. It is divided by

2 if no improvement has been observed for the last

100 iterations while the BDD size of the best element

is still too large. A sketch of the overall algorithm is

given in Figure 7.



evolutionary algorithm(BDD f , int maximum size) f
generate initial population();

do f
for (each child i) f

j = linear ranking selection();

randomly select method:

case MUT1: child(i) = MUT1(element j);

case MUT2: child(i) = MUT2(element j);

case CROSSOVER: k = linear ranking selection();

child(i) = CROSS(element j and k);

g
update population();

if (age of best element � 100 and size of best element > maximum size) f
error weight = error weight / 2;

evaluate all elements again;

set age of best element to 0;

g until (age of best element � 100 and size of best element � maximum size);

return best element;

g

Figure 7: Sketch of evolutionary algorithm

crossover(BDD f , BDD g) f
if (result is in computed table)

return result;

if (f is constant) f
if (g is constant)

return either f or g (at random);

else

return f ;

g
if (g is constant)

return g; /* f is non-constant here */

/* now f and g are non-constant */

x = top variable of f and g;

t = crossover(fx=1, gx=1);

e = crossover(fx=0, gx=0);

return node(x; t; e);

g

Figure 6: Crossover operator

5 Experimental Results

In this section we describe our experimental results.

All experiments are carried out on a SUN Ultra 4 work-

station. The CUDD package (Somenzi, 1998) is used

as underlying BDD package.

We consider functions from (Brglez & Fujiwara, 1985).

Some statistics are given in Table 1 to give an im-

pression on the complexity of the benchmarks consid-

Table 1: Statistics of the benchmark set

name in out gates BDD nodes

c1355 41 32 514 29561

c1908 33 25 880 6252

c2670 233 140 1161 3980

c3540 50 22 1667 23828

c432 36 7 160 1209

c499 41 32 202 26407

c5315 178 123 2290 1777

c7552 207 108 3466 8407

c880 60 26 357 8411

i10 257 224 2497 52616

ered. The name of the circuit is given in column name.

The number of inputs (outputs) is shown in column in

(out). The size of the function in number of gates and

number of BDD nodes is given in the last two columns,

respectively. As can be seen, the benchmarks have up

to 250 inputs and more than 100 outputs and may

contain several thousand gates. Due to the sizes of the

instances considered high demands on the e�ciency of

the algorithms are set. The runtime of our evolution-

ary algorithm described in the previous section varies

from 100 to 14000 CPU seconds.

In Table 2 the results of our approach is given. Again,

in the �rst column the name of the benchmark is

shown. The next two columns (rand) show the result-

ing error in percent, if 50% and 20% of the BDD nodes



Table 2: Experimental results

rand greedy evolutionary algorithm

name 50% 20% 50% 20% 50% 20%

c1355 50.0000 50.0000 0.3906 0.3906 1.0281 0.4688

c1908 50.0000 50.0000 0.1587 0.1587 0.2476 0.1476

c2670 37.5000 25.0000 3.3073 0.0004 0.9552 0.0004

c3540 50.0000 23.0774 17.4372 0.9691 3.5583 1.4491

c432 50.9952 21.7765 29.3719 13.0580 12.0272 3.7693

c499 50.0000 50.0000 0.3906 0.3906 0.4730 0.3906

c5315 50.0000 50.0000 37.5000 2.0428 7.0312 0.2197

c7552 50.0000 50.0000 50.0000 6.2500 11.9003 0.7706

c880 50.0000 26.2762 12.5000 6.2500 1.0373 0.3890

i10 50.0000 50.0000 3.1774 1.9039 1.7584 0.8685

are randomly removed, respectively (see Section 4.1).

The columns minterm give the same information, if

instead of random deletion a clever greedy algorithm

based on the number of minterms is used (see Sec-

tion 4.2). The results for our evolutionary synthesis

approach are given in the last two columns. The best

numbers are given in bold.

As can be seen, the evolutionary approach clearly

outperforms not only random deletion, but also the

minterm based algorithm. For the �rst time, instances

of several thousand gates can be handled. If 20% of

the nodes are removed, in most cases the error is less

than 1%. In some cases the error is less than 10�5 (see

c2670). Even if 50% are deleted, the error is below 10%

in many cases using the evolutionary algorithm, while

it often exceeds this limit using the minterm approach.

6 Conclusion

We presented an approach to hardware design based

on evolutionary synthesis. The technique considers

hardware constraints and trades o� area versus erro-

neous behavior. Experimental results have shown that

in most cases the area can be signi�cantly reduced,

i.e. by more than 20%, while the error never exceeds

4%.

References

Becker, B. 1992. Synthesis for Testability: Binary Decision
Diagrams. Pages 501{512 of: STACS. LNCS, vol.
577. Springer Verlag.

Brglez, F., & Fujiwara, H. 1985. A Neutral Netlist of 10
Combinational Circuits and a Target Translator in
Fortran. Pages 663{698 of: Int'l Symp. Circ. and
Systems, Special Sess. on ATPG and Fault Simula-
tion.

Brown, S.D., Francis, R.J., Rose, J., & Vranesic, Z.G. 1992.
Field-Programmable Gate Arrays. Kluwer Academic
Publisher.

Bryant, R.E. 1986. Graph - Based Algorithms for Boolean
Function Manipulation. IEEE Trans. on Comp.,
35(8), 677{691.

Buch, P., Narayan, A., Newton, A.R., & Sangiovanni-
Vincentelli, A.L. 1997. Logic Synthesis for Large Pass
Transistor Circuits. Pages 663{670 of: Int'l Conf. on
CAD.

Chaudhry, R., Liu, T.-H., Aziz, A., & Burns, J.L. 1998.
Area-Oriented Synthesis for Pass-Transistor Logic.
Pages 160{167 of: Int'l Conf. on Comp. Design.

Drechsler, R., & Becker, B. 1998. Binary Decision Dia-
grams { Theory and Implementation. Kluwer Aca-
demic Publishers.

Droste, S. 1997. E�cient genetic programming for �nding
good generalizing Boolean functions. Pages 82{87 of:
Genetic Programming Conference.

Droste, S., Janssen, T., & Wegener, I. 1999. Perhaps Not
a Free Lunch But At Least a Free Appetizer. Pages
833{839 of: Genetic and Evolutionary Computation
Conference.

G�unther, W., & Drechsler, R. 1999. ACTion: Combining
Technology Mapping and Logic Synthesis for MUX
based FPGAs. Pages 125{132 of: E.I.S.-Workshop.

Kalganova, T., & Miller, J. 1999. Evolving more e�-
cient digital circuits by allowing circuit layout evo-
lution and multiobjective �tness. Pages 54{63 of:
NASA/DoD Workshop on Evolvable Hardware.

Murgai, R., Brayton, R.K., & Sangiovanni-Vincentelli,
A.L. 1995. Logic Synthesis for Field-Programmable
Gate Arrays. Kluwer Academic Publisher.

Somenzi, F. 1998. CUDD: CU Decision Diagram Package
Release 2.3.0. University of Colorado at Boulder.

Thompson, A. 1997. Hardware Evolution: Automativ De-
sign of Electronic Circuits in Recon�gurable Hardware
by Arti�cial Evolution. Springer Verlag.


