Improving Sequence Design for DNA Computing

Masanori Arita
arita@etl.go.jp
Supermolecular Science Division
Electrotechnical Laboratory
1-1-4 Umezono, Tsukuba-shi
305-8568 Ibaraki, Japan

Akio Nishikawa and Masami Hagiya
{nisikawa,hagiya}@is.s.u-tokyo.ac.jp
Department of Infomation Science
Graduate School of Science
University of Tokyo
7-3-1 Hongo, Bunkyo-ku
113-0033 Tokyo, Japan

Ken Komiya, Hidetaka Gouzu and Kensaku Sakamoto
Department of Biochemistry
Graduate School of Science
University of Tokyo
7-3-1 Hongo, Bunkyo-ku
113-0033 Tokyo, Japan

Abstract

Good design of sequences is a necessity
for successful DNA computing, but how to
achieve this ‘goodness’ is unknown. We point
out the importance of adjusting the compo-
sition of sequences to fit each computational
model, and introduce two new sequence gen-
erators. The first, which uses genetic algo-
rithm (GA), exhibits several limitations in
its ability to keep specified constraints on se-
quences. For this reason, we designed the
second generator using a random generate-
and-test algorithm. We discuss why the use
of the latter generator, with its easy-to-use
user interface, was necessary to optimize the
multiple set of encoding constraints required
in DNA computing.

1 Introduction

Currently, no multi-purpose library of sequences has
been established for DNA computing. This absence
may be explained by noting the large diversity of DNA-
based computational architectures. Given the differing
enzymatic and experimental requirements of each ar-
chitecture, it seems indeed unlikely that we can find
a single set of DNA sequences which effectively caters
to the fidelity requirements of every architecture. As a
result, the need to design and synthesize a new set of
sequences for each new laboratory experiment appears
to be unavoidable. In order to ease this design process,

what is needed is a DNA sequence design tool which
can adapt to the changing needs of the various DNA
architectures.

Many rules of thumb have been used in sequence de-
sign. One particularly common method of preventing
unwanted modes of hybridization is to minimize the
similarity of the various sequences, by using a conve-
nient similarity measure. The use of sequences with
uniform melting temperatures has also been suggested
to be useful in establishing uniformity among the re-
action rates of the various planned hybridizations. If
restriction enzymes are to be used, it is also important
to prevent the unplanned formation of double stranded
DNAs containing the corresponding restriction site.
Additional constraints may also be necessary, depend-
ing on the computational architecture employed.

There is no well established method for designing se-
quences which satisfy such multiple sets of encoding
constraints. The development of a general method is
again complicated by the different needs of the various
DNA-based computational architectures.

Moreover, a design heuristic which is well established
in biotechnology may cause problems when applied
to DNA computing. For example, the GC content is
known to be a good indicator of the melting temper-
ature of double stranded DNAs. As a result, PCR
primers are typically selected to have the same GC
content, in order to allow for the control of fidelity by
using a stringent reaction temperature. In DNA com-
puting, on the other hand, the requirement that se-
quences be of uniform GC content drastically narrows

the combinatorial variety of the sequences which may
be used. As a result, there is a clear trade-off between
the ability to enforce computational fidelity by means
of experimental stringency and the size of the problem
instance which can be solved. The quantitative nature
of this trade-off, however, is unknown.

At minimum, a good sequence generator should sat-
isfy the following constraints. First of all, it must
be flexible enough to handle the various multiple con-
straints imposed by existing DNA architectures. Sec-
ondly, it must be able to accept partially-determined
input sequences, so that a user can set restriction sites
at planned positions. Thirdly, its limitations must be
well-defined, in order to prevent futile searches for bet-
ter sequences.

In this paper, we stress the importance of adjusting
the constraints for sequence-design to fit the compu-
tational model. In addition, we introduce two se-
quence generators which are flexible enough for gen-
eral sequence design. Finally, this paper compares two
strategies for the design of sequences: the use of a GA
and the use of a random algorithm.

The GA is probably the most popular method of pa-
rameter optimization for a problem which is difficult
to mathematically formalize. Therefore, we first im-
plemented a generator which uses a GA for sequence
design, and then tested the output sequences exper-
imentally. As the number of design constraints in-
creased, however, we encountered difficulties in setting
the fitness evaluation function. Defining an appropri-
ate fitness function was particularly complicated by
the fact that the relative importance of each constraint
was unknown. For this reason, we designed the second
generator which utilized a random generate and test
algorithm, allowing users to set an explicit, indepen-
dent threshold value for each constraint. This paper
suggests that the GA-based generator is not appropri-
ate for optimizing multiple parameters, and that the
random generator is more practical for the design of
good sequences.

The paper is organized as follows. In Section 2, we
briefly describe related work and introduce the back-
ground of this research. In Section 3, we introduce the
two programs implemented for the design of sequences
for whiplash computation model. Laboratory results
are presented in Section 4. Both a discussion of the
results and suggestions for future work are presented
in Section 5.

2 Background

In the selection of primers for a PCR experiment, the
most important considerations are the use of sequences
with uniform GC content and the avoidance of se-
quences which are substantially self-complementary.
Sequence design for DNA computing has more free-
dom than PCR primer design, since DNA computing
does not use natural DNA. On the other hand, the
sequences used in DNA computing will often be ex-
tended by polymerase or by ligase, and additional de-
sign constraints will often arise due to these modifica-
tions.

In a normal primer-design tool, the secondary struc-
ture of candidate primers is not computed in detail.
Instead, all primers which satisfy a particular set of
design criteria are output. A laboratory expert then
selects one or more primers from amongst the many
candidates suggested by the computer program. This
methodology is also typical in DNA computing. Since
it is difficult to precisely estimate the exact molecular
interactions which each strand will experience during
the computation, the expert must intuitively pick one
set of ‘good-looking’ sequences from among many can-
didates. In this section, we shall summarize the basic
constraints used to select sequences, and describe how
an expert selects a good set of sequences for DNA com-
puting.

2.1 DNA code-oriented Constraints

Marathe et al. interpreted the constraints on DNA se-
quences from the perspective of combinatorial code de-
sign, and proposed to use the following set of design
constraints [7]:

e Hamming constraint --- A large Hamming dis-
tance should be kept between any two sequences.

e Reverse-complement constraint --- A sequence
should not hybridize with the reverse-complement
of other sequences.

e Reverse constraint - -- A sequence should not hy-
bridize with the reverse of itself and of other se-
quences.

Deaton et al. experimentally demonstrated the good-
ness of Hamming constraint [1, 2], and they further
proposed the following more elaborate measure.

2.2 H-measure

Garzon et al. introduced the H-measure, which is es-
sentially the minimum of the Hamming distances cal-

culated by shifting one sequence against the other [4].
The advantage is that this measure considers the
frame-shift of sequences. The definition of H-measure
is as follows. Readers are referred to their original
paper for detail.

The H-measure between two n-mer oligos
T,y 1S

where p (p~') is the right (left) shift and
H(x,%) is the ordinary Hamming distance.

In this paper, however, we use the Hamming con-
straint, not H-measure, since the Hamming constraint
was reported to be effective in laboratory experi-
ments [1].

Marathe et al. also proposed the melting-temperature
and free-energy constraints, which are obtained as the
sum of weights associated with DNA 2-mers (16 pat-
terns in total). These constraints are intended to re-
flect the physico-chemical characteristics of DNAs, and
are different from the combinatorial methodologies. In
fact, such physico-chemical aspects are more essential
(and therefore important) in the design of sequences.
In the following, we shall list such important aspects,
which tend to be overlooked by theoretical scientists.

2.3 GC content

In the selection of PCR primers, sequences are chosen
to have similar GC content, because it is a good in-
dicator of the melting temperature of double stranded
DNAs. According to the isothermal model [11], it is
therefore best to set the GC content of all sequences
to be exactly same.

Generally in the design of sequences, if we are allowed
to use either G or C, it is better to choose C. Since the
base-pair G-T is almost as stable as A-T pair, and since
G-T pair does not skew the double-helical structure of
DNAs [10], G can form a base-pair with T in the same
way as A does. If we put many Gs in the sequences,
therefore, the likelihood of unplanned hybridization
will increase. On the other hand, G is necessary for
increasing the combinatorial variety of sequences.

2.4 Hybridization at Termini

One of the most important constraints is the avoid-
ance of unwanted extension by polymerase or by lig-
ase. When the 3’-end of a sequence hybridizes with
a ‘false’ site and forms a double stranded region, un-
wanted extension of DNA may start from the 3’-end

in the presence of DNA polymerase. The longer the
length of the double stranded region, the more effi-
ciently the ‘priming’ of DNA synthesis becomes.

Therefore, one design criterion is to avoid complete
hybridizations of a certain length, especially at the 3’-
end. From a combinatorial perspective, this constraint
is interpreted as avoiding the occurrence of terminal n
bases in the midst of other sequences. In our work, we
consider n = 6 to be a critical case by the following
reasoning. Note that the terminal subsequence should
not appear in the enzymatically extended or connected
parts of sequences.

Consider a DNA sequence S of length n = size(S5),
where n is an even number (i.e. n = 2m), for conve-
nience. Given with 50% GC content, m positions in S
will be either G or C, with the remaining m positions ei-
ther A or T. The number of possible sequences of length
n and of 50% GC content is N,, = 2,,C;n 2™ x 2™. The
number N, is an upper bound of the longest possible
size of a circular sequence, which contains no duplicate
occurrence of any subsequence of length n.! Let us
suppose that we use oligomers of length [in DNA com-
puting. We call these short oligomers as units. If these
units are to be circularly ligated, under the condition
that no duplicate n-mers appear in the total circular
sequence, then N, /I bounds the maximum number of
units which can be ligated. Let us suppose that we
need k units for our experiment. If & > N, /I, then
even when all units are optimally designed, k xl — N,
duplications of n-mers will occur, if all £ units are cir-
cularly concatenated. Since each unit has two termini,
2k patterns of m-mers represent terminal sequences.
The probability of matching a duplicate n-mer with a
terminal sequence is roughly 1—(2xk/N,,). This value
is not so trivial when n is a small number.

Table 1 shows some results of this estimation. The
probability of the complete match of a n-mer becomes
smaller as n gets larger. On the other hand, a com-
pletely hybridized sequence of length 6 can initiate the
priming in PCR, and may induce erroneous polymer-
ization from the 3’-end. Considering this trade-off and
our problem size, we consider n = 6 to be the critical
number for the size of our sequence design. Hereafter,
the complete hybridization of length n is denoted n-
complete hybridization.

n fact, this circular sequence does not exist if we re-
strict the GC content to be exactly 50%. However, we
assume its existence only to give an upper bound of the
number of units. Note that however, its inexistence is not
proven if some range in the GC content is allowed. When
an arbitrary GC content is allowed, the circular sequence
is called a De Bruijn sequence, and the algorithm for its
generation is studied extensively [3, 8].

Table 1: Table of n and corresponding Ny,

n |2 4 6 8
N, | 8 96 1280 26880

2.5 Summary of Constraints

In summary, the constraints to be considered in se-
quence design are as follows.

Constraints from Problem Design
Restriction sites should appear only at planned
positions.

Constraints for Reaction Efficiency
The GC content of sequences should be uniform,
minimizing the amount of G. In addition, a large
Hamming distance should be kept among units.

Constraints for Error Avoidance No hybridiza-
tion of length 6 should occur at the termini of
units. This constraint should be checked for all
the sequences (and their reverse-complementary
sequences if the units become double stranded)
to be designed, and for their possible enzymatic
extensions.

3 Design Strategies

The sequences we designed are intended to be used for
solving NP-complete problems with the whiplash PCR
model, in which each single stranded DNA reacts in-
tramolecularly to simulate a state-machine [6]. In this
model, one single stranded DNA can simulate one ma-
chine, by polymerizing its 3’-end in each hybridization
step (Figure 1).

Details regarding the implementation of NP-complete
problems using the whiplash PCR model have been
omitted from this paper. Interested readers are re-
ferred to our other works [6, 11]. Figure 2 shows the
DNA sequence for an experiment using the whiplash
model. The units to be designed are defined as in Ta-
ble 2.

3.1 Design with GA

In order to process DNA using a GA, each nucleotide
is represented by two bits. The DNA sequences are
then translated into binary sequences. Each set of 12
sequences in Table 2 is considered one gene by the GA,
and each set of genes is passed to GENESIS library [5].
Important parameters for GENESIS are shown in Ta-
ble 3. The score w for a given gene is computed as fol-

oz

Figure 1: Whiplash Model. The 3’-end (unit A) hy-
bridizes with its complementary sequence and poly-
merizes its terminus by one unit (unit B). After sep-
aration, the 3’-end (unit B) hybridizes to a different
position, and polymerizes the terminus by another one
unit (unit C). Each extension is terminated by a spe-
cial ‘stopper’ sequence shown as black units.

Figure 2: Overview of the target DNA. Each number
corresponds to one unit, and the bar ‘-’ indicates a
reverse-complementary sequence. A black part is the
‘stopper’ sequence, which is AAA in our implementa-
tion.

Table 2: Definition of DNA Units. Units with a dagger
(t) are designed with only three bases (C, G, and T).

no. size | no. size | no. size
of 15 | 47 15 8t 15
1t 15 | 57 15 9 20
2t 15 6t 15 10 20
3t 15 | 7t 15 |11t 20

lows. A smaller w indicates a better set of sequences.
The set of sequences in a gene is denoted S. The sym-
bols k; ~ k4 denote user-defined variables.

Score for GA

1. If the sequence contains restriction sites at a ‘false’
site, w = +0o0.

2. Compute the distribution of the GC content of
units.

S
w = k?l * Z(GC - chser_defined)2

3. Reward larger Hamming distance.

w=w— ko * Z Hamming distance(s, t)
s,tesS

4. Penalize repetition of the same base.

w = w + k3 * (occurrence of TTT or AAA)

5. Penalize complete hybridization at the 3’-end.

w = w + k4 * (maxsize of complete hybridization)

Table 3: Parameters for GA
population size 100
crossover rate 0.6
mutation rate 0.001

The advantage of using the GA is that fitness scores
are continuously rated. Even when we do not know
the exact threshold values for each parameter, the GA
is expected to output better sequences on average. For
example, it is usually difficult to estimate the largest
possible Hamming distance between the units to be
designed. The GA can find, however, the nearly op-
timized sequences automatically. On the other hand,
the following disadvantages of the GA were observed.

The trade-off between parameters is hard to
control using a GA. In Section 2 it was mentioned
that G should be avoided in sequence design. Since
most sequences must be designed with only three bases
in the whiplash model, sequences tend to evolve us-
ing only two bases (T and C). This tendency makes it
difficult to increase the Hamming distances between
sequences. If G is included, however, the possibility of
self-hybridization increases, because the possibility of
forming a G-C pair increases.

How to regulate this trade-off inside GA depends on
the relative scaling of parameters. Although four vari-
ables k1 ~ k4 in our GA fitness evaluation function
heavily affect GA results, there is no good indicator
for adjusting these parameters.

In a general GA, all parameters must be calculated
into a single ‘fitness’ score. Therefore, if the relative
importance of the parameters is not known, control of
the GA output will be very hard. We tentatively set
the four parameters to be ky = 1,ky = 5, k3 = 10, and
k4 = 10, but these values were empirically determined
and are not based on any theoretical basis.

The polymerization (or ligation) pattern of
units is laborious to represent using a GA. When
units are polymerized or ligated, all their connected
parts should be checked for the possibility of hybridiza-
tion, of short Hamming distance, and of restriction
sites. Since each experiment uses a different exten-
sion pattern between units, much effort is required to
correctly implement these constraints in a GA fitness
function. It is also laborious to define a new function
for each polymerization pattern.

3.2 Design with Generate-and-test
Algorithm

To overcome the difficulties of sequence design with a
GA, we designed another generator in which threshold
values for each parameter can be explicitly defined.
The inputs to the generator are as follows.

e Definition of units’ size to be designed.
e The pattern of units’ extensions.

e Subsequences which should not appear.

A wuser can pre-define and specify a portion of the
unit sequences, allowing restriction sites to be set at
planned positions. (These pre-defined sequences are
excluded from the check for forbidden subsequences.)
In this generator, the sequence design is iterative: each
unit is assigned a randomly generated sequence until

Table 4: Algorithm for the iterative generation

1. Pick up one unit whose sequence is not yet fully
designed. If all units are designed, end this pro-
gram.

2. Fill the unit with random bases. (See below for
detail.)

3. Discard the sequence if the filled unit or its con-
nection with other units does not satisfy the fol-
lowing restrictions. Parameters r, n, and h are
user-defined.

e The same base should not repeat more than
r times.

e The unit should not n-completely hybridize
with itself.

e The Hamming distance between the unit and
itself should be more than h.

e The unit should not n-completely hybridize
with previously generated sequences or with
connected parts of generated sequences.

4. Go to Step 1.

the sequence passes the test for its appropriateness.
The algorithm is shown in Table 4.

Let us assume that the generator is acting to design a
unit S in Step 2. The generator first determines po-
sitions of either G or C inside S randomly, according
to the GC content given by the user. (The remain-
ing part will be assigned with either A or T.) Next,
the generator randomly chooses one of two bases for
each position. In this way, the generator can precisely
regulate the GC content while retaining randomness.

In this method, the first unit is the easiest to generate.
The design then becomes increasingly difficult as the
number of generated units increases. Although it is
difficult to estimate the running time of the generator,
it has the following advantages.

e parameters can explicitly be set for each sequence.

e sequences can easily be (separately) designed.

The disadvantage is that parameters should be appro-
priately set before the execution of the generator, oth-
erwise the generator cannot find sequences satisfying
the given constraints. Moreover, the generator cannot
suggest the possibility of a better set of sequences sat-
isfying the same constraints. However, if we know the

parameters to be satisfied beforehand, this method is
efficient and useful.

All the operations from setting parameters to re-
designing, checking, and printing of the units under
design are executed through a command-line user in-
terface.

4 Experimental Results

The sequences shown in Table 5 were designed using
the GA generator. In our laboratory experiment, one
additional T is attached at the end of each sequence
in order to use Taq polymerase, because this enzyme
tends to attach an additional A after the polymeriza-
tion.

Figure 3 shows the experimental result of the transi-
tion steps. The initial five extensions were observed
to be successful, but the final two steps failed. The
efficiency in the extension appeared to decrease as the
whiplash reaction proceeded (from lane 1 to 6). In
addition, we observed many bands that were shorter
than the expected length. Although the decrease in
efficiency may be due to the nature of the reaction
itself, the unwanted bands were assumed to be gener-
ated by mishybridization between the designed DNA
sequences.

In order to investigate this failure, we picked up three
sequences from the unsuccessful bands, and sequenced
them.

Table 5: DNA Units output by GA generator

sequence
CCGTCTTCTTCTGCT
TTCCCTCCCTCTCTT
CGTCCTCCTCTTGTT
CCCCTTCTTGTCCTT
TGCCCCTCTTGTTCT
CTCCTCTTCCTTGCT
CTTCTCCCTTCCTCT
CCTTCCTTCCCTCTT
TCCCCTTGTGTGTGT
GAGAGAGAGGCCCCCTATCC
GAAGAGAAGGGCACCCCTCC
GTGGTGTTGCGTCCCTTCCC

=
©

© 00U k=W~ O

— =
O

The three sequenced fragments contained sequence 5,
6, 2, 1, and 0. By analyzing their sequences, we ob-
tained the following observations.

Sequence Design with only two bases (C,T) is
dangerous. In our design, sequences 1, 6, and 7 are

6

1 2 3 4 5

Figure 3: Amplified products from the stepwise poly-
merization reactions. The ladder-forming bands from
1 to 5 show the successful extensions for five steps.
The sixth and the seventh extensions were unsuccess-
ful with these sequences.

designed without G. Although this design has the ad-
vantage that self-hybridization is unlikely to occur, it
seems to have increased failure. Probably, the 3’-ends
of units make ‘false’ hybridization during the extension
steps due to their sequence similarity.

A large Hamming distance is important. Al-
though complete hybridization of length 7 or larger is
avoided by our design, the Hamming distance between
units is sometimes small (around 5). The Hamming
distance affects the efficiency of reactions as described
in Section 1. Short Hamming distance may be the
cause of the two failing transitions, following the ini-
tial successful ones.

These indicate that the sequences, evolved using the
GA, were probably not good enough to avoid acciden-
tal mishybridization. Although we know the points to
be improved, as described above, our GA generator is
not convenient for this purpose. For example, when
we want to increase the ratio of base G in the designed
sequences, it is difficult to know which parameters to
weight more heavily, or which are to weight less. In or-
der to utilize experimental results for future sequence
design, our random generator may be useful. We are
presently testing its validity in ongoing experiments.

5 Concluding Remark

Two sequence generators were implemented, one using
a GA and the other using a random algorithm.

The GA generator is useful, when the appropriate
threshold values for parameters are not clear. How-
ever, it is difficult to reflect user preference by fol-
lowing the explicit setting of parameters, because all

parameters must be calculated into a single score for
evaluating the set of generated sequences.

The random generator, on the other hand, is flexible
and good at designing sequences, when thresholds of
parameters are pre-defined, and when a part of se-
quences are pre-defined. However, if appropriate pa-
rameters are unknown, the generator cannot find good
sequences.

Given the advantages of both generators, our current
design strategy is as follows.

1. Using the GA generator, estimate how critical
each constraint is for the planned sequence de-
sign.

2. Using the random generator, design sequences
which satisfy the user’s preference, such as pre-
setting restriction sites or terminal sequences.

The current problem with the random generator is
that there is no theoretical guarantee that the random
generator can find a set of sequences as good as the one
found by a GA, in about the same running time. The
theoretical analysis and the efficient implementation
of the generator is the main ongoing work.

Also important is the consideration of thermodynam-
ics of reaction [9]. The constraints from thermody-
namics are more essential for evaluating the goodness
of sequences, but the best way to integrate the physico-
chemical parameters into the methodology for design-
ing new sequences is not well known. Its integration
represents additional future work.

Acknowledgment

The authors thank Dr. John Rose for helpful com-
ments and for corrections of our manuscript. This
work is supported by the Japan Society for the Pro-
motion of Science “Research for the Future” Program
(JSPS-RFTF 96100101). The work is also supported
by Grant-in-Aid for Scientific Research on Priority
Area “Genome Informatics,” from Ministry of Edu-
cation, Science, Sports and Culture, Japan.

Appendix

The sample specification file for our Random genera-
tor. The random generator will be publicly available
at our FTP site soon.

/* Definition of sequences */
/* 5’ => 3’ from left to right */
/* Seq length by the number of space. */

/* # number uses CGT only. */
/* $ number uses all ACGT. */

set
set
set
set
set
set
set
set
set
set
set
set

#0 " " ;

#1 " ",

#2 " " ;

#3 " ",

#4 "GCTTT "

#5 " ",

#6 " " ;

#7 " ",

#8 " " ;

$9 n " 3
$10 " " ;
#11 " ",

forbid GAATCC;
forbid GCGGCCGC;
forbid AAGCTT;
forbid GGATCC;

/* Definition of sequence connection */
/* The number should appear in the above. */
/* ~ is the complementary sequence. */

connect $9 AAA #1 #4 AAA #2 #1 AAA #3 #2 AAA #4 #3

AAA

#5 #4 AAA #6 #5 AAA #7 #6 AAA #8 #7 AAA GGATCC $10;

GAATCC AAA #13 #4~ GGCCGC #0 #8 AAA GCTT AAA

References

[1]

3]

Deaton, R., Garzon, M., Murphy, RC., Rose, JA.,
Franceschetti, DR., and Stevens Jr, SE. “Reliabil-
ity and Efficiency of a DNA-Based Computation,”
Physical Review Letters, 80:417-420, 1998.

Deaton, RJ. and Garzon, M. ”Thermodynamic
Constraints on DNA-based Computing,” Com-
puting with Bio-Molecules: Theory and Experi-
ments, ed. G. Paun, Springer-Verlag:Singapore,
pp. 138-152, 1998.

Fredricksen, H. “A Survey of Full Length Nonlin-
ear Shift Register Cycle Algorithms”, SIAM Re-
view 24(2):195-221, 1982.

Garzon, M., Neathery, P., Deaton, R., Murphy,
RC., Franceschetti, DR., and Stevens Jr, SE. “A
New Metric for DNA Computing”, Proc 2nd Ann
Genetic Programming Conf, 472-478.

Grefenstette, JJ.: genesis 5.0 source code. URL
http://www.aic.nrl.navy.mil:80/galist/src/, 1994.

Hagiya, M., Arita, M., Kiga, D., Sakamoto,
K., and Yokoyama, S. “Towards Parallel Evalu-
ation and Learning of Boolean mu-formulas with
Molecules”. DIMACS Series in Discret Math and
Theor Comput Sci, 48:57-72, 1999.

[7]

(8]

[10]

[11]

Marathe, A., Condon, AE., Robert, MC. “On
Combinatorial DNA Word Design”, DIMACS Se-
ries in Discret Math and Theor Comput Sci,
44:75-87, 1999.

Ralston, A. “De Bruijn Sequences — A Model Ex-
ample of the Interaction of Discrete Mathematics

and Computer Science”, Mathematics Magazine
55(3):131-143, 1982.

Rose, JA., Deaton, RJ., Franceschetti, DR., Gar-
zon, M. and Stevens, Jr. SE. “A Statistical Me-
chanical Treatment of Error in the Annealing
Biostep of DNA Computation,” Proc. of the Ge-
netic and Evolutionary Computation Conference
1999 Orlando FL (GECC099), vol. 2, pp.1829—
1834, 1999.

Sanger, W. “Principles of Nucleic Acid Struc-
ture”, Springer Verlag, 1984.

Sakamoto, K., Kiga, D., Komiya, K., Gouzu, H.,
Yokoyama, S., Ikeda, S., Sugiyama, H., Hagiya,
M. “State Transitions by Molecules”, Biosystems
52:81-91, 1999.

