
Ant Colony Optimization for Resource-Constrained Project
Scheduling

Daniel Merkle1, Martin Middendorf2, Hartmut Schmeck3

Institute for Applied Computer Science and Formal Description Methods
University of Karlsruhe

D-76128 Karlsruhe, Germany
{1merkle,2middendorf,3schmeck}@aifb.uni-karlsruhe.de

++49 721 608-{16591,23705,34242}
Abstract

An ant colony optimization approach (ACO)
for the resource-constrained project schedul-
ing problem (RCPSP) is presented. Combi-
nations of two pheromone evaluation meth-
ods are used by the ants to find new solutions.
We tested our ACO algorithm on a set of
large benchmark problems from the PSPLIB.
Compared to several other heuristics for the
RCPSP including genetic algorithms, simu-
lated annealing, tabu search, and different
sampling methods our algorithm performed
best on the average. For some test instances
the algorithm was able to find new best solu-
tions.

1 INTRODUCTION

The resource-constrained project scheduling problem
(RCPSP) is a general scheduling problem that con-
tains the job-shop, flow-shop, and open-shop problem
as special cases. The RCPSP has attracted many re-
searchers during the last years (see (Brucker et al.,
1999) for an overview). Since it is an NP-hard prob-
lem, different kinds of heuristics for it have been pro-
posed. A comparison of various heuristics on a set
of benchmark problems is given in (Hartmann and
Kolisch, 2000). The compared heuristics include prior-
ity based methods (e.g. multi priority rules, forward-
backward scheduling, sampling methods) that use dif-
ferent serial or parallel schedule generation schemes
and where the selection of the priority rule is biased
by the influence of a random device. Moreover, meta-
heuristics as genetic algorithms, a simulated annealing
approach, and tabu search have been tested.

In this paper we propose an Ant Colony Optimiza-
tion (ACO) approach for the RCPSP (see (Dorigo and

Di Caro, 1999) for an introduction to ACO). The ACO
approach has recently been applied to scheduling prob-
lems, as Job-Shop, Flow-Shop, and Single Machine
Tardiness problems (see (Bauer et al., 1999; den Besten
et al., 1999; Colorni et al., 1994; Merkle and Midden-
dorf, 2000; Stützle, 1998; van der Zwaan and Marques,
1999)). In ACO several generations of artificial ants
search for good solutions. Every ant of a generation
builds up a solution step by step going through several
probabilistic decisions. In general, ants that found a
good solution mark their paths through the decision
space by putting some amount of pheromone on the
edges of the path. The following ants of the next gen-
eration are attracted by the pheromone so that they
will search in the solution space near good solutions.
In addition to the pheromone values the ants will usu-
ally be guided by some problem specific heuristic for
evaluating the possible decisions.

The algorithms proposed in (Bauer et al., 1999) and
(Stützle, 1998) for the single machine total tardiness
problem and the flow-shop problem respectively use
a pheromone matrix T = {Tij} where pheromone is
added to an element Tij of the pheromone matrix when
a good solution was found where job j is the ith job
on the machine. The following ants of the next gen-
eration then directly use the value of Tij to estimate
the desirability of placing job j as the ith job on the
machine when computing a new solution. We call this
the direct evaluation (of the values in the pheromone
matrix).

A different way to evaluate the pheromone matrix was
proposed in (Merkle and Middendorf, 2000). Instead
of using only the value of Tij the ants use

∑i
k=1 Tkj

to compute the probability of placing job j as the ith
on the machine. We call this the summation evalua-
tion (of the values in the pheromone matrix). A diffi-
culty using direct evaluation occurs if the ant does not
choose job j as the ith job in the schedule even if τij has

a high value. If in this case the values Ti+1,j, Ti+2,j , . . .
are small then job j might be scheduled much later
than at the ith place. This is in general bad for many
scheduling problems and in particular when the tar-
diness of jobs is to be minimized or when precedence
constraints might hinder other jobs to be scheduled.
Using summation evaluation is likely that this will not
happen.

In this paper we propose a combination of direct and
summation evaluation for solving the RCPSP. We use
Tij respectively

∑i
k=1 Tkj to compute the probabil-

ity that activity j is the ith activity used by a serial
scheduling generation scheme.

The paper is organized as follows. The resource-
constrained scheduling problem is defined in Section 2.
In Section 3 we describe the serial generation scheme.
Our basic ant algorithm is described in Section 4. Vari-
ants of the ant algorithm are described in Section 5.
The benchmark problems that were used for our tests
and the parameter settings of the algorithms are de-
scribed in Section 6. Experimental results are reported
in Section 7. A conclusion is given in Section 8.

2 RESOURCE-CONSTRAINED
SCHEDULING PROBLEM

The RCPSP is the optimization problem to sched-
ule the activities of a project such that the makespan
of the schedule is minimized while given precedence
constraints between the activities are satisfied and
resource requirements of the scheduled activities per
time unit do not exceed given capacity constraints for
the different types of resources.

Formally, J = {0, . . . , n+1} denotes the set of activi-
ties of a project. We assume that a precedence relation
is given between the activities. K is a set of k resource
types. R = {R1, . . . , Rk} is the set of resource capac-
ities where Ri > 0 is the constraint for resources of
type i ∈ [1, k]. Every activity j ∈ J has a completion
time pj and resource requirements rj,1, . . . , rj,k where
rj,i is the requirement for a resource of type i per time
unit when activity j is scheduled.

Let Pj be the set of immediate predecessors of activity
j. 0 is the only start activity, that is it has no predeces-
sor, and n+1 is the only end activity, that is it has no
successor. We assume that the start activity and the
end activity have no resource requirements and have
processing time zero. A schedule for the project is
represented by the vector (s0, s1, . . . , sn+1) where sj is
the start time of activity j ∈ J . If si is the start time
of activity i then fi = si + pi is its finishing time. For

a schedule the start time is the minimum start time
min{sj | j ∈ J } of the activities, the finish time is
the maximum finish time max{sj + pj | j ∈ J } of the
activities and the makespan is the difference between
finish time and start time. Observe that the start time
of a schedule equals s0 and the finish time equals fn+1.

A schedule is feasible if it satisfies the following con-
straints: i) activity j ∈ J must not be started before
all its predecessors are finished, that is sj ≥ si + pi for
every si ∈ Pj , and ii) the resource constraints have to
be satisfied, that is at every time unit t the sum of the
resource requirements of all scheduled activities does
not exceed the resource capacities, that is for every re-
source of type i it holds that

∑
sj∈J ,sj≤t<sj+pj

rj,i ≤
Ri.

The RCPSP problem is to find a feasible schedule with
minimal makespan for a given project with resource
constraints.

3 SCHEDULE GENERATION
SCHEME

We used a serial schedule generation scheme (SGS)
that is a standard heuristic method for RCPSP (cf.
(Kolisch and Hartmann, 1999). SGS starts with a par-
tial schedule that contains only the start activity 0 at
time 0. Then SGS constructs the complete schedule in
n steps where at each step one activity is added to the
partial schedule constructed so far. In every step one
activity j is selected from the set of available activities
(that is, activities that have not been scheduled so far
and where each predecessor has been scheduled). It is
known that for every RCPSP instance it is possible to
obtain an optimal solution by SGS (e.g. (Kolisch and
Hartmann, 1999)) .

For every eligible activity j let EFj be the maximum
finishing time of all its immediate predecessors plus
pj . Let LFj denote the latest finishing time of activity
j that is calculated by backward recursion from an
upper bound of the finishing time of the project (cf.
(Elmaghraby, 1977)). Then the start time of activity
j is the earliest time in [EFj − pj , LFj − pj] such that
all resource constraints are satisfied.

4 THE ANT ALGORITHM

The general idea of our ACO approach is to use an ant
algorithm for deciding which activity from the set of el-
igible activities should be scheduled next by the SGS.
The general principle of our ant algorithm is similar
to an ant algorithm called AS-TSP for the traveling
salesperson problem of (Dorigo, 1992; Dorigo et al.,

1996). In every generation each of m ants constructs
one solution. An ant selects the activities in the or-
der in which they will be used by the serial schedule
generation scheme. For the selection of an activity the
ant uses heuristic information as well as pheromone in-
formation. The heuristic information, denoted by ηij ,
and the pheromone information, denoted by τij , are
indicators of how good it seems to schedule activity j
as the ith using the SGS. The heuristic value is gener-
ated by some problem dependent heuristic whereas the
pheromone information stems from former ants that
have found good solutions.

The next activity is chosen according to the proba-
bility distribution over the set of eligible activities D
determined either by direct evaluation according to

pij =
[τij]

α [ηij]
β

∑
h∈D [τih]

α [ηih]
β

(1)

or by summation evaluation according to

pij =
(
∑i

k=1 [τkj])α · [ηij]
β

∑
h∈D(

∑i
k=1 [τkh])α · [ηih]

β
(2)

where α and β are constants that determine the rela-
tive influence of the pheromone values and the heuris-
tic values on the decision of the ant. As a heuristic
we use an adaption of the LFT heuristic (Davis and
Patterson, 1975) that schedules activities according to
growing values of LF . The relative differences between
the latest finishing times are usually small for activ-
ities that become eligible late. Therefore we use the
absolute differences to the maximum latest finishing
time of an eligible activity as a heuristic value. In par-
ticular, the heuristic values ηij are computed for the
eligible activities according to

ηij = max
k∈D

LFk − LFj + 1

The best solution found so far and the best solution
found in the current generation are then used to up-
date the pheromone matrix. But before that some of
the old pheromone is evaporated on all the edges ac-
cording to

τij = (1− ρ) · τij

where parameter ρ determines the evaporation rate.
The reason for this is that old pheromone should not
have a too strong influence on the future. Then, for
every activity j ∈ J some amount of pheromone is
added to element (ij) of the pheromone matrix where
i is the place of activity j in the best solution found

so far. This is an elitist strategy that leads ants to
search near the best found solution. The amount of
pheromone added is ρ

2T∗ where T ∗ is the makespan of
the best found schedule, that is,

τij = τij + ρ · 1
2T ∗

The same is done also for the best solution found in
the current generation, that is for every activity j ∈
J pheromone is added to (ij) when i is the place of
activity j in the best solution found in the current
generation.

The algorithm runs until some stopping criterion is
met, e.g. a certain number of generations has been
done or the the average quality of the solutions found
by the ants of one generation has not changed for sev-
eral generations.

5 ADDITIONAL FEATURES

Some additional features of our algorithm are de-
scribed in this section.

5.1 COMBINATION OF DIRECT AND
SUMMATION EVALUATION

Summation evaluation was introduced in (Merkle and
Middendorf, 2000) and applied to the total tardiness
problem. For this problem it is important not to sched-
ule some jobs too late which is exactly what the sum-
mation evaluation enforces. For the RCPSP the situ-
ation is somewhat different. The precedence relation
requires that some activities should be scheduled not
too late but it is also important to schedule groups
of activities at the same time that have resource re-
quirements fitting to the constraints of the problem.
Therefore, for some activity there might be several
places in the sequence used by SGS which are good
while other places in between are not that good. Such
a behaviour can be better modelled using direct eval-
uation rather than summation evaluation. Therefore,
instead of using only either direct evaluation or the
summation evaluation we propose to use combinations
of both evaluation strategies for the RCPSP. The com-
binations were obtained as follows. We use a param-
eter c that determines the relative influence of direct
evaluation and summation evaluation. The probabil-
ity distribution used by an ant for choosing the next
activity is computed as in formula (1) but with the
following “new” values τ ′

ij that replace the values τij

τ ′
ij := c · xi · τij + (1− c) · yi ·

i∑

k=1

τkj

where xi :=
∑

h∈D
∑i

k=1 τkh and yi :=
∑

h∈D τih are
factors to adjust the relative influence of direct and
summation evaluation. Observe, that for c = 0 we ob-
tain the direct evaluation and for c = 1 the summation
evaluation.

5.2 LOCAL OPTIMIZATION STRATEGY

The influence of a local optimization strategy that is
applied to the solutions found by the ants is also stud-
ied in this paper. A 2-opt strategy was used to im-
prove the solutions found by the ants. 2-opt considers
swaps between pairs of activities in a solution. For
every pair (i, j), i < j of activities it is checked ex-
actly once whether the schedule derived by SGS using
the sequence where i and j are exchanged is feasible
and better than the schedule derived from the old se-
quence. If this is the case, the new sequence is fixed
for testing the remaining swaps between pairs of activ-
ities. Since the 2-opt strategy takes much computation
time, we applied it only to the best solution that was
found by the m ants in a generation (this approach
was also used in Bauer et al. (1999)).

5.3 FORGETTING THE BEST FOUND
SOLUTION

A best found solution that was stable for many gen-
erations has a great influence on the pheromone val-
ues since we apply an elitist strategy when doing the
pheromone update, that is pheromone is added after
every generation along the best found solution. Thus,
during long runs it can happen that the algorithm con-
verges too early to the best found solution. To come
up with this problem we allowed that in every gen-
eration with some small probability pw > 0 the best
found solution is exchanged with the best solution in
that generation, even if this solution is worse than the
(old) best found solution.

6 BENCHMARK PROBLEMS AND
PARAMETERS

As benchmark problems we used a set of test instances
which is available in the Project Scheduling Library
(PSPLIB) (Kolisch et al., 1999; Kolisch and Sprecher,
1996). From this library we used the test set j120.sm
where each project consists of 120 activities. These

are the largest problem instances contained in the
PSPLIB.

The benchmark problems in the set j120.sm were gen-
erated by varying the following three problem param-
eters: network complexity (NC), resource factor (RF),
and resource strength (RS). NC defines the average
number of precedences per activity. RF determines the
average percent of different resource types for which
each activity (besides the start and the end activity)
has a nonzero-demand. RS defines how scarce the re-
sources are. A value of 0 defines the capacity of each
resource to be no more than the maximum demand of
all activities while a value of 1 defines the capacity of
each resource to be equal to the demand imposed by
the earliest start time schedule.

The set j120.sm contains 600 problem instances, each
having 120 activities and 4 resource types. The set
contains 10 instances for each combination of the fol-
lowing parameter values: NC ∈ {1.5, 1.8, 2.1}, RF ∈
{0.25, 0.5, 0.75, 1}, and RS ∈ {0.1, 0.2, 0.4, 0.5}.
In the following AS-RCPSP denotes the algorithm as
described in Section 4 with a value c = 0.5, that is
direct evaluation and summation evaluation have an
equal influence. AS-RCPSP with the additional 2-opt
strategy (cf. Subsection 5.2) for local optimization
is denoted by AS-RCPSP-LO. Notation AS-RCPSP-
c, respectively AS-RCPSP-LO-c is used to explicitly
denote the value of c that was used.

The parameters for the test runs are: α = β = 1, pw =
0.01. In every generation we used m = 5 ants. The
combination between direct and summation evaluation
were tested with values for c ∈ {0, 0.25, 0.5, 0.75, 1}.
Since the 2-opt strategy is time consuming we ap-
plied it only at every 20th generation in algorithm
AS-RCPSP-LO-c.

To be able to compare our ACO algorithms with the
heuristics that have been compared in the study of
(Hartmann and Kolisch, 2000) we performed tests with
AS-RCPSP where the maximum number of genera-
tions was set to 1000. Since we use 5 ants per gen-
eration in every test run exactly 5000 schedules were
computed - which is the same as used in the tests of
(Hartmann and Kolisch, 2000). For our test runs we
set ρ = 0.02.

We also evaluated the potential of the ACO algorithm
if more evaluations of schedules are allowed. For this
we tested AS-RCPSP-LO with a maximum number of
10000 generations in each run. For this longer test runs
we used a ρ value of 0.01, which is slightly smaller than
the value of ρ used in the short runs. A smaller ρ value
often means that the algorithm tends to converge later

which is desirable for runs over more generations.

All tests have been performed on a Pentium III 500
MHz processor. One run of AS-RCPSP over 1000 gen-
erations takes about 25 sec. One run AS-RCPSP-LO
over 10000 generations takes about 25 minutes.

7 EXPERIMENTAL RESULTS

The influence of the c value that determines the rel-
ative influence of direct evaluation and summation
evaluation on the solution quality was tested for AS-
RCPSP-c and AS-RCPSP-LO-c. Table 1 shows the
average deviation of the quality of the obtained solu-
tions from lower bounds that can be obtained from a
critical path heuristic (Stinson et al., 1978) (the lower
bounds were provided by Hartmann and Kolisch). For
different values of c the best performance was obtained
for c = 0.5 for both algorithms — AS-RCPSP-c and
AS-RCPSP-LO-c. The average deviation was 36.65%
for AS-RCPSP-0.5 after 1000 generations and 33.68%
for AS-RCPSP-LO-0.5 after 10000 generations. The
worst performance was obtained for c = 1 which cor-
responds to pure direct evaluation with an average de-
viation of 40.59% for AS-RCPSP-1 and of 36.07% for
AS-RCPSP-LO-1.

We also compared the results of AS-RCPSP-c and AS-
RCPSP-LO-c to the best solutions which are currently
(Jan. 2000) known for the benchmark problems in
j120.sm. Both algorithms found the largest number
of solutions that are at least as good as the known
best solutions when the parameter c was set to 0.5.
AS-RCPSP and AS-RCPSP-LO found for 174, respec-
tively 205, of the 600 test problems solutions that are
at least as good as the best solutions that were known
before. While AS-RCPSP could not improve any best
known solutions AS-RCPSP-LO found new best solu-
tions for 2 test problems.

The results for AS-RCPSP-LO-c after 100, 1000, and
10000 generations are compared in Figure 1. The fig-
ure also shows the influence of the local optimization
strategy. AS-RCPSP-LO-c is better than AS-RCPSP-
c after 1000 generations for every value of c that was
tested. But it has to be noted that the computation
time of AS-RCPSP-LO-c is about 6 times the com-
putation time of AS-RCPSP for the same number of
generations.

To further investigate the potential of AS-RCPSP-LO-
0.5 we also tested it on the benchmark set j120.sm with
the parameters m = 20 ants, ρ = 0.005 and a maxi-
mum of 20000 iterations. For this parameter values
we found an average deviation from the critical path
lower bounds of 32.97% (compared to 33.68% with the

parameter values as described above). The average de-
viation from the known best solutions is only 0.02%.
For 278 of the 600 test instances a solution was found
that is at least as good as the known best solution and
for 15 test instances improved best solution have been
found.

We compared AS-RCPSP to various other heuristics
for the RCPSP that are included in an extensive ex-
perimental study by (Hartmann and Kolisch, 2000).
This study considers the following heuristics: i. three
deterministic single/pass heuristics with regret based
random sampling from (Kolisch, 1996a,b), ii. two sin-
gle/pass heuristics with adaptive regret based random
sampling (Kolisch and Drexl, 1996; Schirmer, 1998),
iii. four genetic algorithms of (Hartmann, 1998) and
(Leon and Ramamoorthy, 1995), iv. a simulated an-
nealing algorithm of (Bouleimen and Lecocq, 1998).
These heuristics were also compared with two pure
random sampling methods using two different heuris-
tics for building up a schedule. The random sampling
2 heuristic in Table 2 is a pure random sampling using
SGS for schedule generation. In this study all heuris-
tics were allowed to generate and evaluate at most 5000
schedules for each problem instance.

Table 2 compares the results from (Hartmann and
Kolisch, 2000) for the 600 problem instances in j120.sm
with the result of AS-RCPSP. The table shows that
AS-RCPSP performed better than all the other heuris-
tics. The second best heuristic is a genetic algorithm of
(Hartmann, 1998) that performed only slightly worse
than AS-RCPSP.

A recent tabu search algorithm for RCPSP not in-
cluded in the study of (Hartmann and Kolisch, 2000)
was proposed by (Nonobe and Ibaraki, 1999). This
algorithm found in 30000 iteration steps for 219 prob-
lems in j120.sm a solution that was at least as good
as the best known solution at that time (June 1999)
and improved 50 solutions. One run of the algorithm
took about 10 minutes on a Sun Ultra 2 (300 MHz,
1GB memory). Compared to this AS-RCPSP behaves
very good. It found 174 best solutions (but compared
to the improved bounds from January 2000) in about
25 seconds for one run on a Pentium III 500 Mhz pro-
cessor.

To study the influence of the c-value on AS-RCPSP-c
in more detail we computed the entropy of the prob-
ability distributions over all eligible activities that are
considered by the ants for choosing the next activity.
That is for every ith decision, i ∈ [1, 120] of an ant dur-
ing the process of constructing a solution we computed
the entropy

Table 1: Comparison between AS-RCPSP-c and AS-RCPSP-LO-c for different values of c: results are averaged
over all 600 problem instances from benchmark set j120.sm, comparison is done with respect to deviation from
critical path lower bounds, the number of solutions found that are at least as good as the best known solutions,
and number of improved best solutions (in parentheses).

c

AS-RCPSP-c AS-RCPSP-LO-c
1000 generations (ρ = 0.02) 10000 generations (ρ = 0.01)
Deviation number of Deviation number of

from LB in % best solutions from LB in % best solutions
0 37.77 158(0) 34.06 194(2)
0.25 37.16 169(0) 33.78 193(1)
0.50 36.65 174(0) 33.68 205(2)
0.75 37.70 171(0) 34.55 199(0)
1 40.59 136(0) 36.07 160(0)

Table 2: Comparison of AS-RCPSP with different randomized heuristics (cf. (Hartmann, 1998)): results are
averaged over all 600 problem instances from benchmark set j120.sm, every heuristic was allowed to construct
and evaluate 5000 solutions

Algorithm Reference deviation from LB in %
AS-RCPSP 36.65
GA 1 (Hartmann, 1998) 36.74
SA (Bouleimen and Lecocq, 1998) 37.68
GA 2 (Hartmann, 1998) 38.49
adaptive sampling 1 (Schirmer, 1998) 38.70
single pass/sampling 1 (Kolisch, 1996b) 38.75
single pass/sampling 2 (Kolisch, 1996a,b) 38.77
adaptive sampling 2 (Kolisch and Drexl, 1996) 40.45
GA 3 (Leon and Ramamoorthy, 1995) 40.69
single pass/sampling 3 (Kolisch, 1996b) 41.84
GA 4 (Hartmann, 1998) 42.25
random sampling 1 (Kolisch, 1995) 43.05
random sampling 2 (Kolisch, 1995) 47.61

ei = −
∑

j∈D
pij log pij

Figures 2 to 4 show entropy curves for different gener-
ations of ants. Each point of the curve is averaged over
300 values obtained from the 5 ants in the generation
for 60 problem instances (we took the first instance
of every problem type contained in j120.sm). One ob-
servation is that the entropy values corresponding to
decisions in the middle of the construction process of
a solution are larger than at the end or at the begin-
ning of the process. A reason for this is that decisions
in the middle have a larger set of eligible activities.
Another observation is that for direct evaluation the
entropy values are much smaller than for summation
evaluation or the combination of direct and summation

evaluation.

It is interesting that for direct evaluation the entropy
for the first decisions of an ant shrinks very fast, e.g.
all entropy values are below 0.2 for the first 80 deci-
sions after generation 1500. In contrast to this, for
summation evaluation the entropy values for the later
decisions shrink faster than for decisions at the begin-
ning. Only the combination of direct and summation
evaluation shows for all generations nearly symmet-
rical curves, that is decisions at the beginning and
at the end have similar entropy values. Also in this
case the entropy values are higher in later generations
than for pure direct or pure summation evaluation.
This indicates an advantage of the combined evalua-
tion method, it prevents the algorithm to converge too
early.

0

1

2

3

4

5

6

7

8

0 0.25 0.5 0.75 1

de
vi

at
io

n

c

AS-RCPSP-LO generation 100
AS-RCPSP-LO generation 1000

AS-RCPSP-LO generation 10000
AS-RCPSP generation 1000

Figure 1: Percentage of deviation from the best known
solutions for AS-RCPSP-LO-c and AS-RCPSP-c with
different values of c: results are averaged over all 600
problem instances from benchmark set j120.sm.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120

av
er

ag
e

en
tr

op
y

place in sequence for SGS

generation 250
 500

 1000
 1500
 2000
 2500
 3000

Figure 2: Entropy of the probability distribution used
by the ants for AS-RCPSP-1: results are averaged over
5 ants per generation for 60 problem instances.

8 CONCLUSION

In this paper we have introduced an ACO approach for
RCPSP. A combination of direct and summation eval-
uation methods is used by the ants for the construc-
tion of a new solution. We compared our approach
with the results of various other randomized heuristics
for the RCPSP including genetic algorithms and simu-
lated annealing on a large set of benchmark problems.
Under the constraint that every algorithm is allowed
to compute and evaluate the same restricted number
of solutions our algorithm performed best. Moreover,
we showed that an additional 2-opt strategy leads to
improved results while using more computation time.
With the additional 2-opt strategy our algorithm was

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

av
er

ag
e

en
tr

op
y

place in sequence for SGS

generation 250
 500

 1000
 1500
 2000
 2500
 3000

Figure 3: Entropy of the probability distribution used
by the ants for AS-RCPSP-0.5: results are averaged
over 5 ants per generation for 60 problem instances.

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

av
er

ag
e

en
tr

op
y

place in sequence for SGS

generation 250
 500

 1000
 1500
 2000
 2500
 3000

Figure 4: Entropy of the probability distribution used
by the ants for AS-RCPSP-0: results are averaged over
5 ants per generation for 60 problem instances.

able to find new best solutions for several problems in
the benchmark set.

References

Bauer, A., Bullnheimer, B., Hartl, R., and Strauss, C.
(1999). An ant colony optimization approach for the
single machine total tardiness problem. In Proceed-
ings of the 1999 Congress on Evolutionary Compu-
tation (CEC99), 6-9 July Washington D.C., USA,
pages 1445–1450.

Bouleimen, K. and Lecocq, H. (1998). A new eff-
cient simulated annealing algorithm for the resource
constrained project scheduling problem. European
Journal of Operational Research. to appear.

Brucker, P., Drexel, A., Möhring, R., Neumann, K.,

and Pesch, E. (1999). Resource-constraint project
scheduling: Notation, classification, models, and
methods. European Journal of Operations Research,
112:3–41.

Colorni, A., Dorigo, M., Maniezzo, V., and Trubian,
M. (1994). Ant system for job-shop scheduling.
JORBEL - Belgian Journal of Operations Research,
Statistics and Computer Science, 34:39–53.

Davis, E. W. and Patterson, J. H. (1975). A compari-
son of heuristic and optimum solutions in resource-
constrained project scheduling. Management Sci-
ence, 21(8):944–955.

den Besten, M., Stützle, T., and Dorigo, M. (1999).
Scheduling single machines by ants. Technical Re-
port IRIDIA/99-16, IRIDIA, Université Libre de
Bruxelles, Belgium.

Dorigo, M. (1992). Optimization, Learning and Nat-
ural Algorithms (in Italian). PhD thesis, Diparti-
mento di Elettronica , Politecnico di Milano, Italy.
pp. 140.

Dorigo, M. and Di Caro, G. (1999). The ant colony op-
timization meta-heuristic. In Corne, D., Dorigo, M.,
and Glover, F., editors, New Ideas in Optimization,
pages 11–32. McGraw-Hill.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The
ant system: Optimization by a colony of cooperating
agents. IEEE Trans. Systems, Man, and Cybernet-
ics – Part B, 26:29–41.

Elmaghraby, S. E. (1977). Activity networks. Wiley
Interscience.

Hartmann, S. (1998). A competitive genetic algorithm
for resource-constrained project scheduling. Naval
Research Logistics, 45(7):733–750.

Hartmann, S. and Kolisch, R. (2000). Experimen-
tal evaluation of state-of-the-art heuristics for the
resource-constrained project scheduling problem.
European Journal of Operational Research. to ap-
pear.

Kolisch, R. (1995). Project Scheduling under Resource
Constraints. Production and Logistics. Physica-
Verlag.

Kolisch, R. (1996a). Effcient priority rules for the
resource-constrained project scheduling problem.
Journal of Operations Management, 14(3):179–192.

Kolisch, R. (1996b). Serial and parallel resource-
constrained project scheduling methods revisited:
Theory and computation. European Journal of Op-
erational Research, 90(2):320–333.

Kolisch, R. and Drexl, A. (1996). Adaptive search
for solving hard project scheduling problems. Naval
Research Logistics, 43(1):23–40.

Kolisch, R. and Hartmann, S. (1999). Heuristic algo-
rithms for solving the resource-constrained project
scheduling problem: Classification and computa-
tional analysis. In Weglarz, J., editor, Handbook on
Recent Advances in Project Scheduling, pages 197–
212. Kluwer, Amsterdam.

Kolisch, R., Schwindt, C., and Sprecher, A. (1999).
Benchmark instances for project scheduling prob-
lems. In Weglarz, J., editor, Handbook on Re-
cent Advances in Project Scheduling, pages 147–178.
Kluwer, Amsterdam.

Kolisch, R. and Sprecher, A. (1996). PSPLIB - a
project scheduling problem library. European Jour-
nal of Operational Research, 96(1):205–216. library
accessible under http://www.bwl.uni-kiel.de
/Prod/psplib/index.html.

Leon, V. and Ramamoorthy, B. (1995). Strength and
adaptability of problem-space based neighborhoods
for resource-constrained scheduling. OR Spektrum,
17:173–182.

Merkle, D. and Middendorf, M. (2000). An ant
algorithm with a new pheromone evaluation rule
for total tardiness problems. In Proceeding of the
EvoWorkshops 2000, number 1803 in Lecture Notes
in Computer Science, pages 287–296. Springer Ver-
lag.

Nonobe, K. and Ibaraki, T. (1999). Formulation and
tabu search algorithm for the resource constrained
project scheduling problem (RCPSP). Technical
report, Department of Applied Mathematics and
Physics, Kyoto University, Japan.

Schirmer, A. (1998). Case-based reasoning and im-
proved adaptive search for project scheduling. Naval
Research Logistics. submitted.

Stinson, J., Davis, E., and Khumawala, B.
(1978). Multiple resource-constrained scheduling us-
ing branch and bound. AIIE Transactions, 10:252–
259.

Stützle, T. (1998). An ant approach for the flow
shop problem. In Proceedings of the 6th European
Congress on Intelligent Techniques & Soft Comput-
ing (EUFIT ’98), volume 3, pages 1560–1564. Verlag
Mainz, Aachen.

van der Zwaan, S. and Marques, C. (1999). Ant colony
optimisation for job shop scheduling. In Proceedings
of the Third Workshop on Genetic Algorithms and
Artificial Life (GAAL 99).

