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Abstract

The aim of this paper is to examine the effect of
neighborhood structures on the evolution of
cooperative behavior in a spatial IPD (Iterated
Prisoner’s Dilemma) game where every player is
located in a cell of a two-dimensional grid-world.
In our spatial IPD game, a player in each cell
plays against players in its neighboring cell s. A
game strategy of each player is represented by a
binary string, which determines the next action
based on a finite history of previous rounds of
the IPD game. A new strategy for a player is
generated by genetic operations from a pair of
parent strategies, which are selected from its
neighbors. We use two neighborhood structures:
One is for the interaction among players (i.e.,
IPD game) and the other is for the genetic
operations. Simulation results show that the
evolution of cooperative behavior is facil itated
by small neighborhood structures for the genetic
operations as well as for the IPD game. We also
examine a variant of our spatial IPD game where
an opponent of a player is randomly selected
from its neighbors at every round of the IPD
game. This means that the IPD game is not
iterated against the same opponent.

1. INTRODUCTION

The evolution of cooperative behavior in the IPD game

has been discussed in many studies (for example, see
Axelrod, 1987, Lindgren, 1991, Fogel, 1993, and the
special issue of Biosystems on IPD, vol.37, no.1-2, 1996).

Every player usually plays the IPD game against all
players in a population. A game strategy of a player,
which was represented by a binary string, was evolved by

genetic operations such as selection, crossover, and
mutation. A fitness value of a strategy was calculated as

the average payoff obtained from the IPD game. It is well -
known that a simple reciprocal strategy called “ tit for tat
(TFT)”  works very well in the IPD game.

Dugatkin & Mesterton-Gibbons (1996) discusses three

categories of cooperation among unrelated individuals:
reciprocal altruism, by-product mutualism, and group
selection (i.e., structured demes). The evolution of

reciprocal strategies such as the TFT in the above-
mentioned studies is related to the reciprocal altruism
where the choice of an action by a player is conditioned

on the previous actions of its opponent.

Some studies (Wilson et al., 1992, Nowak & May, 1992,
Huberman & Glance, 1993, Oliphant, 1994, and Vega-

Redondo, 1996) focused on the evolution of cooperative
behavior in spatial IPD games where every player was
located in a cell of single-dimensional or two-dimensional

grid-worlds. Every player plays the prisoner’s dilemma
game only against its neighbors. That is, the interaction
among players is restricted by neighborhood structures.

These studies can be viewed as computer simulations of
the evolution of cooperative behavior in structured demes
(Wilson, 1977). In these studies, only two strategies (i.e.,

ALLC: always cooperate, and ALLD: always defect)
were considered. Thus the evolution of cooperative
behavior is not based on the reciprocal altruism but the

group selection among the three categories of Dugatkin et
al. (1996).

In some studies (Nowak & Sigmund, 1992, and Grim,
1996), strategies are not deterministic but stochastic. The

choice of an action of a player was stochasticall y



determined based on the previous action of its opponent.

It was shown that a stochasticall y reciprocal strategy
called “generous TFT” finall y triumphed in computer
simulations with stochastic errors. The generous TFT is

almost the same as the deterministic TFT except that it
forgives the opponent’s defection with a positi ve
probabilit y. Grim (1996) showed that the probabilit y of

forgiving in the final population was 1/3 in the non-spatial
case and 2/3 in the spatial case. That is, more generous
strategies were favorable in spatial IPD games.

In this paper, we examine the evolution of cooperative
behavior in a spatial IPD game by computer simulations
in a two-dimensional grid-world. A deterministic strategy

with stochastic errors is represented by a binary string that
determines the next action of a player based on a finite
history of previous rounds of the IPD game. Thus the

evolution of cooperative behavior in our computer
simulations is related to both the reciprocal altruism and
the group selection while usually one of these two

cooperative mechanisms was examined in the literature.
The main characteristic feature of our computer
simulations in this paper is that two neighborhood

structures are considered. One is for the interaction among
players (i.e., IPD game). This neighborhood structure
corresponds to trait groups in Wilson’s structured demes

model (Wilson, 1977). The other is for genetic operations
that generate new strategies. This neighborhood structure
corresponds to demes in the Wilson’s model. Various

specifications of these two neighborhood structures are
used in our computer simulations for examining their
effects on the evolution of cooperative behavior.

We also examine a variant of our spatial IPD game where

an opponent of a player is randomly selected from its
neighbors at every round of the IPD game. This means
that a different opponent may be selected at every round.

Thus the current action of an opponent affects the choice
of the next action by the player against a different
opponent. For example, if a player adopts the TFT

strategy, the defection of its opponent in the current round
of the IPD game causes the player’s defection against a
different opponent in the next round. In this situation, the

evolution of cooperative behavior is very difficult (also
see Crowley et al.(1996)). By computer simulations, we
show that only a very small neighborhood structure for

the IPD game facili tates the evolution of reciprocal
strategies.

2. SPATIAL IPD GAME

In this paper, we use a typical payoff matrix in the IPD
game. When both players cooperate, the payoff of each
player is 3. On the contrary, when both players defect,

each player’s payoff is 1. The highest payoff 5 is obtained
by defecting when the opponent cooperates. In this case,
the opponent receives the lowest payoff 0.

A strategy of a player is denoted by a binary string. Every
strategy determines the next action based on a finite
history of previous rounds of the IPD game. We show an

example of such a strategy in Fig. 1. This figure il lustrates
how a binary string “00001”  determines the next action
based on the memory of the previous single round of the

IPD game. This strategy defects at the first round of the
IPD game. Afterwards, this strategy cooperates only when
both the player and its opponent cooperated in the

previous round. Every single-round-memory strategy is
denoted by a binary string of the length 5 in the same
manner as in Fig. 1.

Player’s move Opponent’s move

Suggested move

on the next play

Moves on the preceding play

Player’s move is to defect on the first play: 0

Defect Defect

Cooperate Defect

Defect Cooperate

Cooperate Cooperate

Defect: 0

Defect: 0

Defect: 0

   Cooperate: 1

Figure 1: Illustration of the strategy =is 00001.

A single-round-memory strategy can be extended to a
two-round-memory strategy that determines the next
action based on the memory of the previous two rounds of

the IPD game. Every two-round-memory strategy is
denoted by a binary string of the length 18 as in Fig. 2. A
player with the strategy in Fig. 2 cooperates at the first

and second rounds of the IPD game. The action of the
player for the t-th round ( 3≥t ) is determined by a kind
of a decision tree in Fig. 2 based on the memory of the
previous two rounds.

In our spatial IPD game, we assume that every player is
located in a cell of a two-dimensional 3131×  grid-world
(we do not use the torus structure). In this grid-world,

every player plays the IPD game only against its
neighbors defined by a neighborhood structure. Let

)(iN IPD  be the set of the neighboring players of Player i.



We can view )(iN IPD  as the neighborhood structure for

the interaction among players (i.e., IPD game). We
examine several specifications of )(iN IPD  in computer
simulations. Some examples are shown in Fig. 3.
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Opponent
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Figure 2: Illustration of a two-round-memory strategy
denoted by =is 111000000000001111.
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Figure 3: Examples of neighborhood structures.

The standard non-spatial IPD game can be viewed as the
case where its neighborhood structure is the same as the

entire grid-world. The IPD game is iterated between a
player and its neighbor for a pre-specified number of
iterations (e.g., 100 iterations). After the execution of the

IPD game is completed against a pre-specified number of
its neighbors, the fitness value of the player is calculated
as the average payoff obtained from each round of the

IPD game. When the neighborhood structure )(iN IPD  for
the interaction is small, the fitness value of each player is
calculated after the execution of the IPD game is

completed for all pairs of neighboring players. On the

other hand, when )(iN IPD  is large, a fixed number of

opponents are randomly selected for each player from its
neighbors. In our computer simulations, we randomly
selected five opponents from )(iN IPD  for calculating the

fitness value of Player i at every generation when
)(iN IPD  includes more than five neighbors. This is for

preventing the combinatorial increase in the CPU time

with the size of )(iN IPD .

Let )( isf  be the fitness value of Player i with the
strategy is . When a new strategy is to be generated by

genetic operations for Player i, a pair of parent strategies
are selected from its neighborhood including the player
itself. Let )(iNGA  be the set of Player i and its neighbors,

from which a pair of parent strategies are selected for
generating a new strategy for Player i. Thus )(iNGA  can
be viewed as the neighborhood structure for the genetic

operations. It should be noted that the neighborhood
structure )(iNGA  for the genetic operations is not always
the same as )(iN IPD  for the IPD game. In our computer

simulations of this paper, we examine various
specifications of these two neighborhood structures:

)(iN IPD  and )(iNGA .

The selection of a pair of parent strategies for generating a

new strategy for Player i is performed in )(iNGA . We use
the following roulette wheel selection with a linear
scaling in this selection:
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where Player j is a neighbor of Player i (or Player i itself),

js  is the strategy of Player j, )( ji sp  is the selection

probabilit y of js  for generating a new strategy of Player i,
)( jsf  is the fitness value of Player j obtained by the

strategy js , and ))((min iNf GA  is the minimum fitness

value among the players in )(iNGA .

After a pair of parent strategies are selected, a new
strategy is generated from them by genetic operations. We

use a standard one-point crossover. When the selected two
strategies do not have the same string length, an extension
operator in Fig. 4 or a reduction operator in Fig. 5 is

employed for generating two strings of the same length
(i.e., two strategies based on the same memory length).
One string is randomly selected from the two offspring

generated by the crossover. A standard bit-change
mutation operator is applied to each bit of the selected



offspring with a pre-specified mutation probabilit y. If the

generated string after the mutation is a single-round-
memory strategy, the extension operator in Fig. 4 is
employed with a pre-specified extension probabilit y for

generating a two-round-memory strategy. The extension
operator in Fig. 4 copies the first bit of the single-round-
memory strategy to the two-round-memory strategy. The

second bit of the two-round-memory strategy is randomly
specified. The other bits of the two-round-memory
strategy are copies of the single-round-memory strategy

as shown in Fig. 4. The correspondence between the
single-round-memory strategy and the two-round-memory
strategy in Fig. 4 is based on their coding il lustrated in Fig.

1 and Fig. 2. On the other hand, if the string generated by
the crossover and the bit-change mutation is a two-round-
memory strategy, the reduction operator in Fig. 5 is

employed with a pre-specified reduction probabilit y for
generating a single-round-memory strategy. The reduction
operator in Fig. 5 copies the first bit of the two-round-

memory strategy to the single-round-memory strategy.
The other bits of the single-round-memory strategy are
probabili sticall y specified based on the corresponding bit

values in the two-round-memory strategy. For example,
the third bit of the single-round-memory strategy in Fig. 5
is specified as “1” with the probabilit y 3/4. Its fourth bit is

specified as “1” with the probabilit y 2/4.

0 1 0 0

1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 00 0

1

Randomly Specified

Figure 4: Extension operator.

        0 1 0 0

1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 00 0

1

Figure 5: Reduction operator.

After new strategies of all players are generated by the

genetic operations, the current population of strategies is
updated by the newly generated strategies. The same
procedures (i.e., the IPD game among neighboring players

and the genetic operations) are applied to the new

population again. In this manner, the generation update is

iterated until a pre-specified stopping condition is
satisfied (e.g., 1000 generations: 1000 population updates).

3. COMPUTER SIMULATIONS

Using various specifications of the two neighborhood
structures (i.e., )(iN IPD  for the IPD game and )(iNGA

for the genetic operations), we examined the evolution of

cooperative behavior among spatiall y fixed 961 players in
the two-dimensional 3131×  grid-world. We examined all
the 36 combinations of the following specifications of the
two neighborhood structures:

The number of players in )(iN IPD : 2, 4, 8, 24, 48, 960.
The number of players in )(iNGA : 3, 5, 9, 25, 49, 961.

These neighborhood structures are defined as shown in

Fig. 3. It should be noted that the spatial IPD game with
960 players in )(iN IPD  and 961 players in )(iNGA  is
actuall y the same as the standard non-spatial IPD game. It

should also be noted that 31 players in each row are
evolved independently from other players in different
rows of the 3131×  grid-world in the case of )(iN IPD

with two players and )(iNGA  with three players (see Fig.
3 (a)). In this case, players in different rows do not play
the IPD game. Their strategies are not crossed over, either.

That is, a strategy of a player has no effect on the
evolution of strategies of other players in different rows of
the grid-world. When )(iNGA  includes more than three

players, a strategy of a player can be propagated to any
other players in the long run by the genetic operations. On
the other hand, when )(iN IPD  includes more than two

players, a strategy of a player has a direct or indirect
effect on the evolution of strategies of any other players
through the IPD game among neighboring players.

Our computer simulations were performed with the

mistake probabilit y 0.01. The mistake probabilit y is the
probabilit y with which each player chooses an action
different from the one suggested by its strategy. We used

a relatively high mistake probabilit y for intentionally
disturbing the mutual cooperation between players. The
other parameter values were specified as follows:

Crossover probabilit y: 1.0,
Mutation probabilit y: 0.00002 (for bit-change),

      0.00001 (for extension),

      0.00001 (for reduction),
Termination of the IPD game: 100 rounds,



Termination of the evolution: 1000 generations.

Average payoff over ten independent trials for each

combination of )(iN IPD  and )(iNGA  is shown in Table 1.
From this table, we can see that combinations of small
neighborhood structures )(iN IPD  and )(iNGA  facili tated

the evolution of cooperative behavior. The highest
average payoff 2.78 was obtained in the case of )(iN IPD

with four players and )(iNGA  with five players (see Fig.

3 (b)). We can also see that the smallest neighborhood
structure )(iNGA  for the genetic operations did not work
as well as )(iNGA  with five players (see the average

results by these two specifications of )(iNGA  in the last
row of Table 1). In the case of )(iNGA  with three players
(see Fig. 3 (a)), a strategy of a player can not be

propagated to other players in different rows in the two-
dimensional grid-world. This limitation of the genetic
spread of strategies may have a negative effect on the

evolution of cooperative behavior. On the contrary, the
smallest neighborhood structure )(iN IPD  for the IPD
game worked as well as )(iN IPD  with four players (see

the average results obtained by these two specifications of
)(iN IPD  in the last column of Table 1). That is, we did

not observe a clear negative effect of the very small

neighborhood structure )(iN IPD  for the IPD game.

Table 1: Average payoff obtained from each combination
of the two neighborhood structures.

Size of )(iNGASize of
)(iN IPD 3 5 9 25 49 961

Average

2 2.45 2.56 2.62 2.33 2.20 2.11 2.38
4 2.45 2.78 2.49 2.28 2.28 2.08 2.39

8 2.30 2.68 2.33 2.10 2.26 1.81 2.25

24 2.22 2.53 2.21 2.19 2.14 1.99 2.21

48 2.24 2.29 2.20 2.25 2.15 2.10 2.21

960 2.14 2.24 1.89 1.93 1.98 2.07 2.04

Average 2.30 2.51 2.29 2.18 2.17 2.03 2.25

For further examining the evolution of strategies in our
computer simulations with various specifications of the

two neighborhood structures, we monitored the share of
each strategy and the average payoff at every generation
in each trial. In Fig. 6 and Fig. 7, we show simulation

results obtained by a single trial with no spatial structures
(i.e., a spatial IPD game with 960 players in )(iN IPD  and
961 players in )(iNGA ). As shown in these figures,

cooperative behavior was rapidly evolved, but rapidly

collapsed due to the relatively high mistake probabilit y.
At the end of this computer simulation, all players had the
same strategy “10001”  (see Fig. 6). If the mistake

probabilit y is zero, the average payoff “3”  is obtained
from this strategy. Since the mistake probabilit y was 0.01
in our computer simulations, the average payoff was

about 1.9 at the end of Fig. 7.
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Figure 6: Shares of strategies in a computer simulation
with no spatial structures.
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Figure 7: Average payoff obtained by the computer
simulation in Figure 6.

In Fig. 8 and Fig. 9, we show simulation results obtained
by a single trial with the best combination in Table 1:

)(iN IPD  with four players and )(iNGA  with five players.

From these figures, we can see that the transition from
one strategy to another one (and the change of the average
payoff) was relatively gradual in the spatial IPD game if

compared with the case of the non-spatial IPD game in
Fig. 6 and Fig. 7. This is because the genetic operations
for generating a new strategy of each player were locall y
performed in its neighborhood.
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Figure 8: Shares of strategies in a computer simulation
with the best combination of the two neighborhood

structures.
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Figure 9: Average payoff obtained by the computer
simulation in Figure 8.
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Figure 10: Shares of strategies in a computer simulation
with the best )(iN IPD  and the smallest )(iNGA .

Furthermore, in Fig. 10 and Fig. 11, we show simulation

results obtained by a single trial with the combination of
the best )(iN IPD  and the smallest )(iNGA : )(iN IPD

with four players and )(iNGA  with three players. In this

case, strategies of players in each row are not propagated
to other players in different rows of the two-dimensional
grid-world by the genetic operations. From Fig. 10, we

can see that several strategies simultaneously existed at
every generation. This is because the spread of strategies
by the genetic operations was limited within each row by

the smallest neighborhood structure )(iNGA  with three
players (see Fig. 3 (a)). In Fig. 10, we can also see that the
increase or decrease in the share of each strategy is very

gradual. Several reciprocal strategies including the TFT
“10011”  were evolved during the first 200 generations.
After that, the change of their shares was very small.
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Figure 11: Average payoff obtained by the computer
simulation in Figure 10.

4. DIFFERENT MATCHMAKING

In this section, we change the matchmaking scheme in the
spatial IPD game for further studying the effect of the

neighborhood structures on the evolution of cooperative
behavior. In the previous section (and almost all studies
on the IPD game in the literature), a player iterated the

IPD game with the same opponent for a pre-specified
number of iterations (e.g., 100 rounds). We change this
matchmaking scheme in the following manner: Every

player randomly chooses its opponent at every round of
the IPD game from its neighbors.

This matchmaking scheme requires a new implementation

of the spatial IPD game, which is totally different from
our computer simulations in the previous section because
the IPD game is not iterated between the fixed pair of

players. In our previous study (Ishibuchi et al., 1999), we
tried to implement this situation as a computer program
where every player randomly chose its opponent at every



round of the IPD game from its neighbors. For calculating

the fitness value of Player i, our previous computer
program iterated the IPD game for a pre-specified number
of rounds by selecting an opponent from the neighbors of

Player i at every round. In this situation, while Player i

played the IPD game against a different opponent at every
round, the neighboring players of Player i always played

the IPD game against Player i when the fitness value of
Player i was calculated. Thus our previous computer
program did not correctly model the situation where an

opponent of every player should be randomly selected at
every round of the IPD game.

In this paper, we implement the IPD game based on the
new matchmaking scheme as the following procedures:

  Step 0: Specify t as 1=t  where t indexes the number of
iterations (i.e., rounds) of the IPD game.

  Step 1: Specify i as 1=i  where i is the index of player.

  Step 2: Randomly select Player j from )(iN IPD .
  Step 3: Player i plays a single round of the Prisoner’s

Dilemma game against Player j based on their

strategies.
  Step 4: Update the memories of Player i and Player j

according to the result of the game in Step 3.

  Step 5: If 961<i  (i.e., if some players have not been
selected as Player i yet), let 1: += ii  and return to
Step 2.

  Step 6: If Tt < , let 1: += tt  and return to Step 1 where
T is the pre-specified upper limit of iterations of the
IPD game. Otherwise stop the execution of the IPD

game.

By these procedures, the fitness values of all players are
simultaneously calculated. The next population of

strategies is generated by the genetic operations with the
neighborhood structure )(iNGA  using the calculated
fitness values.

Using the same parameter specifications as in the

previous computer simulations in Section 3, we examined
the evolution of cooperative behavior in the spatial IPD
game with the new matchmaking scheme. Because

opponents of players are randomly selected from their
neighbors at every round of the IPD game (i.e., because
the IPD game is not iterated between the fixed pair of

players), it seems that the evolution of reciprocal
strategies is very difficult. Simulation results in Table 2
show this diff iculty. In Table 2, the average payoff, which

was calculated over ten independent trials for each

combination of the two neighborhood structures, was very

small except for some exceptional cases with the smallest
neighborhood structure )(iN IPD  for the IPD game with
only two neighbors (see Fig. 3 (a)). In Table 2, high

average payoff was obtained only when )(iN IPD  was
very small and )(iNGA  was appropriate. As shown in the
previous section, the smallest neighborhood structure

)(iNGA  for the genetic operations had a negative effect
on the evolution of cooperative behavior. On the contrary,
the smallest neighborhood structure )(iN IPD  for the IPD

game facilitated the evolution of cooperative behavior in
our computer simulations with the new matchmaking
scheme.

Table 2: Average payoff obtained from the spatial IPD
game with the new matchmaking scheme.

Size of )(iNGASize of

)(iN IPD 3 5 9 25 49 961
Average

2 1.25 2.55 2.42 1.36 1.36 1.04 1.66

4 1.04 1.04 1.04 1.04 1.04 1.04 1.04

8 1.04 1.04 1.03 1.03 1.04 1.04 1.04

24 1.04 1.03 1.03 1.03 1.03 1.04 1.03

48 1.04 1.03 1.03 1.03 1.03 1.04 1.03

960 1.04 1.03 1.03 1.03 1.03 1.04 1.03

Average 1.08 1.29 1.26 1.09 1.09 1.04 1.14

In Fig. 12 and Fig. 13, we show simulation results
obtained by a single trial with the best combination of the
two neighborhood structures: )(iN IPD  with two players

and )(iNGA  with five players. From these figures, we can
see that reciprocal strategies such as the TFT “10011”
were evolved even under the new matchmaking scheme

where an opponent of each player was randomly selected
from its neighbors. That is, the reciprocal altruism among
neighboring players (not between a fixed pair of players)

was evolved when the neighboring structure )(iN IPD  for
the IPD game was very small.

5. CONCLUSIONS

In this paper, we examined the effect of neighborhood
structures in spatial IPD games on the evolution of

cooperative behavior. We considered two different kinds
of neighborhood structures: One is for the interaction
among players (i.e., IPD game) and the other is for the

genetic operations that generate new strategies. By



computer simulations, we showed that the evolution of

cooperative behavior was facil itated when both of these
two neighborhood structures were small. We also showed
that too small neighborhood structures for the genetic

operations had a negative effect on the evolution of
cooperative behavior. For further examining the effect of
neighborhood structures, we implemented a new

matchmaking scheme in the IPD game where an opponent
of every player was randomly selected from the neighbors
of the player at every round of the IPD game. In this

situation, the evolution of cooperative behavior is very
diff icult because each player interacts with a different
opponent at every round of the IPD game. By computer

simulations, we showed that cooperative behavior was
evolved only when we used a very small neighborhood
structure for the IPD game and an appropriate

neighborhood structure for the genetic operations.
Analysis of the observed results with the new
matchmaking scheme is left for future work.
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Figure 12: Shares of strategies in a computer simulation
with the new matchmaking scheme.
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Figure 13: Average payoff obtained by the computer
simulation in Figure 12.


