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Abstract

The am of this paper isto examine the dfect of
neighborhood structures on the evolution of
cooperative behavior in a spatial IPD (Iterated
Prisoner’ s Dilemma) game where every player is
located in a cél of atwo-dimensional grid-world.
In our spatial IPD game, a player in each cdl
plays againg players in its neighbaring cdls. A
game drategy of each player isrepresented by a
binary string, which determines the next action
based on a finite history of previous rounds of
the IPD game A new dtrategy for a player is
generated by genetic operations from a pair of
parent drategies, which are sdeded from its
neighbars. We use two neighborhood structures:
One is for the interaction among players (i.e,
IPD game) and the other is for the genetic
operations. Simulation results show that the
evolution of cooperative behavior is facilitated
by small neighbarhoad structures for the genetic
operations as well as for the IPD game. We also
examine avariant of our spatial IPD game where
an opponent of a player is randomly seleded
from its neighbors at every round of the IPD
game. This means that the IPD game is not
iterated againg the same opponent.

1. INTRODUCTION

The evolution of cooperative behavior in the IPD game
has been discused in many studies (for example, see
Axdrod, 1987, Lindgren, 1991, Fogel, 1993, and the
spedal isae of Biosystems on IPD, vol.37, no.1-2, 1996).
Every player usudly plays the IPD game against all
players in a population. A game drategy of a player,
which was represented by a binary string, was evolved by
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genetic operations such as <edion, crosover, and
mutation. A fitnessvalue of a strategy was calculated as
the average payoff obtained from the IPD game. It is well -
known that a Smple redprocal strategy called “tit for tat
(TFT)” works very well in the IPD game.

Dugatkin & Mesterton-Gibbans (1996 discusses three
categories of cooperation among unrdlated individuas
redprocal altruism, by-product mutuaism, and group
sdedion (i.e, structured demes). The evolution of
redprocal strategies such as the TFT in the above
mentioned studies is related to the redprocal atruism
where the choice of an action by a player is conditioned
on the previous actions of its opponent.

Some studies (Wilson et al., 1992, Nowak & May, 1992
Huberman & Glance 1993, Oliphant, 1994, and Vega
Redondo, 199%) focused on the evolution of cooperative
behavior in spatial IPD games where every player was
located in a cdl of single-dimensional or two-dimensional
grid-worlds. Every player plays the prisoner’s dilemma
game only againgt its neighbars. That is, the interaction
among players is restricted by neighborhood structures.
These studies can be viewed as computer smulations of
the evolution of cooperative behavior in structured demes
(Wilson, 1977). In these studies, only two strategies (i.e.,
ALLC: always cooperate, and ALLD: aways defeq)
were @nsidered. Thus the evolution of cooperative
behavior is not based on the redprocal atruism but the
group seledion among the three céegories of Dugatkin et
al. (1996).

In some studies (Nowak & Sigmund, 1992, and Grim,
1996), strategies are not deterministic but stochagtic. The
choice of an action of a player was dochasticdly



determined based on the previous action of its opponent.
It was shown that a stochasticdly redprocal strategy
caled “generous TFT” findly triumphed in computer
simulations with stochastic errors. The generous TFT is
amost the same as the deterministic TFT except that it
forgives the opponent's defedion with a positive
probability. Grim (1996) showed that the probability of
forgiving in the final population was 1/3 in the non-spatial
case and 2/3 in the spatiad case. That is, more generous
strategies were favorable in spatial 1PD games.

In this paper, we examine the evolution of cooperative
behavior in a spatial IPD game by computer ssimulations
in atwo-dimensional grid-world. A deterministic strategy
with stochastic erorsis represented by a binary string that
determines the next action of a player based on a finite
history of previous rounds of the IPD game. Thus the
evolution of cooperative behavior in our computer
simulations is related to bah the redprocal atruism and
the group seledion while usudly one of these two
cooperative mechanisms was examined in the literature.
The main characteristic feature of our computer
simulations in this paper is that two neighborhood
structures are mnsidered. Oneis for the interaction among
players (i.e, IPD game). This neighborhood structure
corresponds to trait groups in Wilson’'s gructured demes
modd (Wilson, 1977). The other is for genetic operations
that generate new strategies. This neighborhood structure
corresponds to demes in the Wilson’s modd. Various
spedfications of these two neighborhood structures are
used in our computer simulations for examining their
effeds on the evolution of cooperative behavior.

We also examine a variant of our spatial IPD game where
an opponent of a player is randomly sdeded from its
neighbars at every round of the IPD game. This means
that a different opponent may be seleded at every round.
Thus the arrent action of an opponent affeds the choice
of the next action by the player against a different
opponent. For example, if a player adopts the TFT
strategy, the defedion of its opponent in the arrent round
of the IPD game caises the player’s defection against a
different opponent in the next round. In this situation, the
evolution of cooperative behavior is very difficult (also
see Crowley et al.(1996). By computer simulations, we
show that only a very small neighborhood structure for
the IPD game facilitates the evolution of redproca
strategies.

2. SPATIAL IPD GAME

In this paper, we use a typical payoff matrix in the IPD
game. When bath players cooperate, the payoff of each
player is 3. On the ntrary, when bath players defect,
each player’s payoff is 1. The highest payoff 5 is obtained
by defeding when the opponent cogperates. In this case,
the opponent receves the lowest payoff 0.

A dtrategy of a player isdenoted by a binary string. Every
strategy determines the next action based on a finite
history of previous rounds of the IPD game. We show an
example of such astrategy in Fig. 1. Thisfigureil lustrates
how a binary string “000QL” determines the next action
based on the memory of the previous sngle round of the
IPD game. This drategy defects at the first round of the
IPD game. Afterwards, this strategy cooperates only when
both the player and its opponent cogperated in the
previous round. Every single-roundmemory strategy is
denoted by a binary string o the length 5 in the same
manner asin Fig. 1.

Player’smoveisto defed on thefirst play: O
Moves onthe preceding gay Suggested move
Player’smove | Opporent’'smove | onthe next play
Defed Defed Defed: 0
Cooperate Defed Defed: 0
Defed Cooperate Defed: 0
Cooperate Cooperate Cooperate: 1

Figure 1: [llustration of the Srategy s =00001

A singleround-memory strategy can be extended to a
two-round-memory strategy that determines the next
action based on the memory of the previous two rounds of
the IPD game Every two-round-memory strategy is
denoted by a binary string o the length 18 asin Fig. 2. A
player with the strategy in Fig. 2 cooperates at the first
and second rounds of the IPD game. The action of the
player for the t-th round (t = 3) is determined by a kind
of a dedsion treein Fig. 2 based on the memory of the
previous two rounds.

In our spatial IPD game, we asaume that every player is
located in a cél of atwo-dimensional 31x31 grid-world
(we do not use the torus gructure). In this grid-world,
every player plays the IPD game only against its
neighbors defined by a neighborhood structure. Let
Npp (i) bethe set of the neighboring players of Player i.



We @n view Npp(i) asthe neighborhood structure for
the interaction among payers (i.e, IPD game). We
examine severa spedfications of Npp (i) in computer
simulations. Some eamples are shown in Fig. 3.

(t-1)-th round

(t-2)-th round

[1]1]1]ofoJoJofo]ofofofofofof1]a]a]1]

second round t-th round

first round

Figure 2: lll ustration of a two-round-memory strategy
denoted by 5 =11100000000001111.
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(c) 8 neighbars (d) 24 neighbars

Figure 3: Examples of neighborhood structures.

The standard non-spatial 1PD game can be viewed as the
case where its neighborhoad structure is the same as the
entire grid-world. The IPD game is iterated between a
player and its neighbor for a pre-spedfied number of
iterations (e.g., 100 iterations). After the exeaution of the
IPD game is completed againg a pre-spedfied number of
its neighbars, the fitnessvalue of the player is calculated
as the average payoff obtained from each round o the
IPD game. When the neighborhoad structure Npp (i) for
the interaction is small, the fithessvalue of each player is
calculated after the exeaution of the IPD game is
completed for al pairs of neighboring players. On the

other hand, when Npp (i) is large, a fixed number of
opponents are randomly seleded for each player from its
neighbors. In our computer simulations, we randomly
seleded five opponents from Npp (i) for calculating the
fitness value of Player i at every generation when
Nipp (i) includes more than five neighbars. This is for
preventing the wmbinatorial increase in the CPU time
with thesizeof Npp (i) .

Let f(s)) be the fitness value of Player i with the
strategy s . When a new strategy is to be generated by
genetic operations for Player i, a pair of parent drategies
are sdeded from its neighborhood including the player
itself. Let Nga(i) bethe set of Player i andits neighbars,
from which a pair of parent dtrategies are sdeded for
generating a new strategy for Player i. Thus Nga(i) can
be viewed as the neighbarhood structure for the genetic
operations. It should be noted that the neighborhood
structure Nga(i) for the genetic operations is not aways
the same as Npp (i) for the IPD game. In ouwr computer
smulations of this paper, we eamine various
spedfications of these two neighborhood structures:
Nipp (i) and Nga(i) -

The seledion of a pair of parent strategies for generating a
new strategy for Player i isperformed in Nga(i) . We use
the following roulette whed sdledion with a linea
scaling in this sledion:

F(Sj) = Tmin(Nga(i))
> {1(SK) ~ Tmin(Na())}

kONga (i)

for jONga(),

pi(sj) =

where Player j isaneighbor of Player i (or Player i itsdlf),
s; is the strategy of Player j, p;(sj) is the seledion
probebility of s; for generating anew strategy of Player i,
f(sj) is the fitness value of Player j obtained by the
strategy sj, and fmin(Nga(i)) is the minimum fitness
value among the playersin Nga(i) .

After a pair of parent dtrategies are sdeded, a new
strategy is generated from them by genetic operations. We
use a standard ane-point crosover. When the seleded two
strategies do not have the same string length, an extension
operator in Fig. 4 or a reduction operator in Fig. 5 is
employed for generating two strings of the same length
(i.e, two strategies based on the same memory length).
One string is randomly selected from the two offspring
generated by the crossover. A dandard hit-change
mutation operator is applied to each bit of the seleded



offspring with a pre-spedfied mutation probability. If the
generated string after the mutation is a single-round-
memory dStrategy, the extension operator in Fig. 4 is
employed with a pre-spedfied extension probability for
generating a two-round-memory strategy. The extension
operator in Fig. 4 copies the first bit of the single-round-
memory strategy to the two-round-memory strategy. The
second hit of the two-round-memory strategy is randomly
spedfied. The other bits of the two-round-memory
strategy are @pies of the singleround-memory strategy
as shown in Fig. 4. The correspondence between the
single-round-memory strategy and the two-round-memory
strategy in Fig. 4 is based on their coding il lustrated in Fig.
1 and Fig. 2. On the other hand, if the string generated by
the aosover and the bit-change mutation is a two-round-
memory strategy, the reduction operator in Fig. 5 is
employed with a pre-spedfied reduction probability for
generating a single-round-memory strategy. The reduction
operator in Fig. 5 copies the first bit of the two-round-
memory strategy to the sngle-round-memory strategy.
The other bits of the single-round-memory strategy are
probabili sticaly spedfied based on the crresponding kit
values in the two-round-memory strategy. For example,
thethird kit of the single-round-memory strategy in Fig. 5
is pedfied as“1” with the probability 3/4. Itsfourth bit is
spedfied as“1” with the probability 2/4.

1]o]1]o]o]

1lofofofofof1[1]1[1]ofofofofo[o]o]0]
Randomly Specified

Figure 4: Extension operator.

[1][oJofolofo]1[1]o[1]of1]a]o]0[0]0]0]

Figure 5: Reduction operator.

After new strategies of all players are generated by the
genetic operations, the current population of strategies is
updated by the newly generated strategies. The same
procedures (i.e., the IPD game anong neighboring players
and the genetic operations) are applied to the new

population again. In this manner, the generation update is
iterated wntil a pre-spedfied stopping condition is
satisfied (e.g., 1000 generations; 1000 population updates).

3. COMPUTER SIMULATIONS

Using various 9edfications of the two neighborhood
structures (i.e., Nypp(i) for the IPD game and Nga(i)
for the genetic operations), we examined the evolution of
cooperative behavior among spatialy fixed 961 payersin
the two-dimensional 31x 31 grid-world. We examined all
the 36 combinations of the foll owing spedfications of the
two neighborhoaod structures:

The number of playersin Nipp (i) : 2, 4, 8, 24, 48, 960.
The number of playersin Nga(i): 3,5, 9, 25, 49, 961.

These neighborhood structures are defined as shown in
Fig. 3. It should be noted that the spatia IPD game with
960 players in Npp (i) and 961 players in Nga(i) is
actually the same as the standard non-spatial 1PD game. It
should also ke noted that 31 players in each row are
evolved independently from other players in different
rows of the 31x31 grid-world in the @se of Npp(i)

with two players and Nga(i) with threeplayers (seeFig.
3 (d). In this case, players in different rows do not play
the IPD game Their strategies are not crossed over, ether.
That is, a strategy of a player has no effed on the
evolution of strategies of other playersin dfferent rows of
the grid-world. When Nga(i) includes more than three
players, a strategy of a player can be propagated to any
other players in the long run by the genetic operations. On
the other hand, when Npp (i) includes more than two
players, a strategy of a player has a dired or indired
effed on the evolution of strategies of any other players
throughthe IPD game among neighboring dayers.

Our computer simulations were performed with the
mistake probability 0.01. The mistake probability is the
probability with which each player chooses an action
different from the one suggested by its drategy. We used
a relatively high mistake probability for intentionaly
disturbing the mutual cogperation between players. The
other parameter values were spedfied as foll ows:

Crosoover probability: 1.0,

Mutation probahility: 0.00002 (for bit-change),
0.00001 (for extension),
0.00001 (for reduction),

Termination of the IPD game: 100 rounds,



Termination of the evolution: 1000 generations.

Average payoff over ten independent trials for each
combination of Npp (i) and Nga(i) is $own in Table 1.
From this table, we @n see that combinations of small
neighborhoad structures Nypp (i) and Nga(i) facili tated
the evolution of cooperative behavior. The highest
average payoff 2.78 was obtained in the @ase of N;pp (i)
with four players and Nga(i) with five players (seeFig.
3 (b)). We can also see that the smallest neighborhood
structure Nga(i) for the genetic operations did not work
as well as Nga(i) with five players (see the average
results by these two spedfications of Nga(i) in the last
row of Table 1). Inthe @se of Nga(i) with threeplayers
(see Fig. 3 (a)), a strategy of a player can not be
propagated to ather players in different rows in the two-
dimensional grid-world. This limitation of the genetic
spread o strategies may have a negative dfect on the
evolution of cooperative behavior. On the wntrary, the
smallest neighborhood structure Nypp (i) for the IPD
game worked as wdll as Npp (i) with four players (see
the average results ohtained by these two spedfications of
Nipp (i) in the last column of Table 1). That is, we did
not observe a clea negative dfect of the very small
neighborhoad structure Nypp (i) for the IPD game.

Table 1: Average payoff obtained from each combination
of the two neighborhoad structures.

Sizeqf Sizeof Ngal(i) Average

Nipp()| 3 | 5 | 9 | 25| 49 | 961
2 |245|256|2.62|233|220/211| 238
4 |245|278|249|2.28|2.28|2.08| 2.39
8 |2.30]268|2.33|210|2.26/181| 225
24 |222|253[221|219|214/1.99| 221
48 |2.24|229|220|2.25|215[2.10| 221
960 |2.14|2.24|1.89|1.93|1.98|2.07| 2.04

Average|2.30|2.51|2.29|2.18|2.17|2.03| 225

For further examining the evolution of strategies in our
computer simulations with various edfications of the
two neighborhood structures, we monitored the share of
each dtrategy and the average payoff at every generation
in each trial. In Fig. 6 and Fig. 7, we show simulation
results obtained by a single trial with no spatial structures
(i.e, aspatiad IPD game with 960 playersin Npp (i) and
961 players in Nga(i)). As shown in these figures,

cooperative behavior was rapidly evolved, but rapidly
collapsed due to the relatively high mistake probability.
At the end o this computer simulation, all players had the
same dtrategy “10001 (see Fig. 6). If the mistake
probability is zero, the average payoff “3” is obtained
from this drategy. Since the mistake probahility was 0.01
in ouwr computer smulaions, the average payoff was
about 1.9 at theend of Fig. 7.
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Figure 6: Shares of strategiesin a omputer simulation
with no spatial structures.
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Figure 7: Average payoff obtained by the computer
simulation in Figure 6.

In Fig. 8 and Fig. 9, we show simulation results obtained
by a single trial with the best combination in Table 1:
Npp (i) with four playersand Nga(i) with five players.
From these figures, we @n see that the transition from
one strategy to another one (and the change of the average
payoff) was relatively gradual in the spatia 1PD game if
compared with the case of the non-spatial IPD game in
Fig. 6 and Fig. 7. This is because the genetic operations
for generating a new strategy of each player were locally
performed in its neighborhoaod.
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Figure 8: Shares of strategiesin a cmmputer smulation
with the best combination of the two neighborhood
structures.
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Figure 9: Average payoff obtained by the computer
simulation in Figure 8.
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Figure 10: Shares of strategies in a computer smulation
with the best NIPD (I) and the small est NGA(I) .

Furthermore, in Fig. 10 and Fig. 11, we show simulation
results obtained by a single trial with the combination of
the best N|pD(i) and the smallest NGA(i): N|pD(i)

with four players and Nga(i) with threeplayers. In this
case, strategies of players in each row are not propagated
to aher players in dfferent rows of the two-dimensona
grid-world by the genetic operations. From Fig. 10, we
can see that several strategies smultaneoudly existed at
every generation. This is becuse the spread o strategies
by the genetic operations was limited within each row by
the smallest neighborhood structure Nga(i) with three
players (seeFig. 3 (a)). In Fig. 10, we @n aso seethat the
increase or deaease in the share of each strategy is very
gradual. Several redprocal strategies including the TFT
“10011 were evolved during the first 200 generations.
After that, the change of their shares was very small.
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Figure 11: Average payoff obtained by the mmputer
simulation in Figure 10.

4. DIFFERENT MATCHMAKING

In this sdion, we change the matchmaking schemein the
spatial IPD game for further studying the effect of the
neighborhoad structures on the evolution of cooperative
behavior. In the previous sdion (and almost al studies
on the IPD game in the literature), a player iterated the
IPD game with the same opponent for a pre-spedfied
number of iterations (e.g., 100 rounds). We cange this
matchmaking scheme in the following manner: Every
player randomly chooses its opponent a every round of
the IPD gamefrom itsneighbors.

This matchmaking scheme requires a new implementation
of the spatial IPD game, which is totally different from
our computer simulaions in the previous ®dion because
the IPD game is not iterated between the fixed pair of
players. In our previous gudy (Ishibuchi et al., 1999), we
tried to implement this stuation as a computer program
where every player randomly chose its opponent a every



round of the IPD game from itsneighbors. For cdculating
the fitness value of Player i, our previous computer
program iterated the IPD game for a pre-spedfied number
of rounds by seleding an opponent from the neighbors of
Player i at every round In this stuation, while Player i
played the IPD game against a different opponent at every
round, the neighboring payers of Player i always played
the IPD game againg Player i when the fitness value of
Player i was calculated. Thus our previous computer
program did not correaly model the situation where an
opponent of every player should be randomly selected at
every round of the IPD game.

In this paper, we implement the IPD game based on the
new matchmaking scheme as the foll owing procedures:

Sep 0: Spedfy t as t =1 wheret indexes the number of
iterations (i.e., rounds) of the IPD game.

Sep 1: Spedfyiasi =1 wherei istheindex of player.

Sep 2 Randomly sdled Player j from Nypp (i) .

Sep 3: Player i plays a single round of the Prisoner’s
Dilemma game against Player j based on ther
strategies.

Sep 4: Update the memories of Player i and Player |
acoording to the result of the gamein Step 3.

Sep5: If 1 <961 (i.e, if some players have not been
seleded as Player i yet), let i:=i+1 and return to
Step 2

Sep6: If t<T,let t:=t+1 andreturn to Step 1 where
T isthe pre-spedfied upper limit of iterations of the
IPD game. Otherwise stop the exeaution of the IPD
game,

By these procedures, the fitnessvalues of all players are
simultaneously calculated. The next population of
strategies is generated by the genetic operations with the
neighborhood structure Nga(i) using the calculated
fitnessvalues.

Using the same parameter spedfications as in the
previous computer Smulationsin Sedion 3, we examined
the evolution of cooperative behavior in the spatial 1PD
game with the new matchmaking scheme. Because
opponents of players are randomly seleded from their
neighbors at every round of the IPD game (i.e., because
the IPD game is not iterated between the fixed pair of
players), it seans that the evolution of redprocal
dtrategies is very difficult. Simulation results in Table 2
show this difficulty. In Table 2, the average payoff, which
was calculated over ten independent trials for each

combination of the two neighbarhood structures, was very
small except for some exceptional cases with the small est
neighborhoad structure Nypp (i) for the IPD game with
only two neighbars (see Fig. 3 (a). In Table 2, high
average payoff was obtained only when Npp(i) was
very small and Nga(i) was appropriate. As shown in the
previous sdion, the smallest neighborhood structure
Ngal(i) for the genetic operations had a negative dfect
on the evolution of cooperative behavior. On the mntrary,
the small est neighborhood structure Nypp (i) for the IPD
game facilitated the evolution of cooperative behavior in
our computer smulations with the new matchmaking
scheme.

Table 2: Average payoff obtained from the spatial 1PD
game with the new matchmaking scheme.

Sizeo_f Sizeof Ngal(i) Average

Nipp()| 3 | 5 | 9 | 25| 49 | 961
2 |125|255(242|1.36|1.36|1.04| 1.66
4 |1.04|1.04|1.04|1.04|1.04|1.04| 104
8 |1.04|1.04|1.03|1.03|1.04|1.04| 104
24 |1.04|1.03|1.03|1.03|1.03/1.04| 103
48 |1.04|1.03|1.03|1.03|1.03|1.04| 1.03
960 |1.04|1.03|1.03|1.03|1.03|1.04| 1.03

Average| 1.08|1.29| 1.26| 1.09| 1.09| 1.04| 1.14

In Fig. 12 and Fig. 13, we show simulation results
obtained by a singetrial with the best combination of the
two neighborhood structures: Nypp (i) with two players
and Nga(i) with five players. From these figures, we @n
see that redprocal strategies auch as the TFT “10011”
were evolved even under the new matchmaking scheme
where a opponent of each player was randomly seleded
from itsneighbars. That is, the redprocal altruism among
neighboring players (not between a fixed pair of players)
was evolved when the neighboring structure Nypp (i) for
the IPD gamewas very small.

5. CONCLUSIONS

In this paper, we examined the dfect of neighborhood
structures in spatial IPD games on the evolution of
cooperative behavior. We mnsidered two different kinds
of neighborhood structures: One is for the interaction
among players (i.e,, IPD game) and the other is for the
genetic operations that generate new strategies. By



computer simulations, we showed that the evolution of
cooperative behavior was facilitated when bath of these
two neighborhoad structures were small. We aso showed
that too small neighborhood structures for the genetic
operations had a negative dfed on the evolution of
cooperative behavior. For further examining the dfed of
neighborhood structures, we implemented a new
matchmaking scheme in the IPD game where an opponent
of every player was randomly seleded from the neighbars
of the player at every round o the IPD game. In this
Situation, the evolution of cooperative behavior is very
difficult because ech player interacts with a different
opponent at every round o the IPD game. By computer
simulations, we showed that cooperative behavior was
evolved only when we used a very small neighborhood
structure for the IPD game ad an appropriate
neighborhood structure for the genetic operations.
Analysis of the observed results with the new
matchmaking schemeisleft for future work.
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Figure 12: Shares of strategies in a computer Smulation
with the new matchmaking scheme.
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Figure 13: Average payoff obtained by the omputer
simulation in Figure 12.



