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Abstract

Elements of genetic algorithms, DNA com-
puting, and in vitro evolution are combined
into laboratory procedures. The traditional
test problem for genetic algorithms, Max 1s
problem is addressed. Preliminary labora-
tory results are shown.

1 Introduction

Evolution is a concept of obtaining adaptation through
the interplay of selection and diversity. Analogies
from evolution have been used in both computing and
molecular biology. The paradigm in molecular biology
is known as \in vitro evolution."

In this paper we identify elements of genetic algorithms
and in vitro evolution that we recommend combining
to address Max 1s problems. We choose Max 1s to test
our techniques, which can also be used on some other
problems [6]. We choose genetic algorithms because
they manipulate bitstrings using operations of point-
wise mutation and crossover. These operations can be
performed by modi�cations of techniques from in vitro

evolution. The crucial operation of physically separat-
ing DNA strands by their \�tness" is demonstrated
using 2d denaturing gradient gel electrophoresis.

We are careful to make the following point. Evolu-
tionary computation has controversial aspects. Evo-
lutionary computation makes few assumptions and is
ostensibly applicable to very broad classes of problems.
Naturally, this makes it di�cult to establish any prov-
able guidelines. We do not take any stance on the
virtues of any particular method of evolutionary com-
putation. Instead, we aspire to provide the means for

assessing some evolutionary computations using pop-
ulation sizes larger than is practical with conventional
computers.

2 DNA Suggests Genetic Algorithms

Several means of DNA computation have been ad-
dressed. The �rst was, of course, by Adleman [1, 2].
Recent overviews can be found in [12] and [18]. See
also the DNA computing bibliography of Dassen [8].

From the beginning of DNA based computing to the
present there have been calls [10, 19, 24] to consider
carrying out evolutionary computations using genetic
materials in the laboratory. So far, there have been
three such experiment designs proposed, including two
in a recent DIMACS Workshop [3, 6]. The very �rst
design was presented about two years ago [9], but has
not yet been carried out in the laboratory.

Naturally, computing time using DNA is proportional
to the number of generations required. This motivates
incorporating both pointwise mutation and crossover,
attempting to minimize the number of generations re-
quired. Of all computing paradigms inspired by evo-
lution, genetic algorithms seem particularly suited to
implementation using DNA. This is because genetic al-
gorithms generally use bitstrings, crossover, and point-
wise mutation.

2.1 DNA Attributes Suit Genetic Algorithms

DNA computing techniques are desirable for genetic
algorithm computations for several reasons, some of
which are listed below.

� These techniques might process, in parallel, pop-
ulations which are billions of times larger than is
usual for conventional computers. The expecta-
tion for larger populations is: they can sustain
larger ranges of genetic variation and thus can
generate high-�tness individuals in fewer genera-
tions.



� Massive information storage is available using
DNA. For example, grams of DNA could even-
tually be used. A gram of DNA contains about
1021 bases. This information content is approx-
imately 2 � 1021 bits, greatly exceeding the 200
petabyte storage of all the digital magnetic tape
produced in one year [30].

� Biolaboratory operations on DNA inherently in-
volve errors. These are more tolerable in execut-
ing genetic algorithms than in executing deter-
ministic algorithms. To some extent, errors may
be regarded as contributing to desirable genetic
diversity.

� Modi�cations to the current technology of in

vitro evolution su�ce to implement crossover and
pointwise mutation.

However, selecting DNA strands for \breeding" in ge-
netic algorithms is moderately challenging because one
must physically separate DNA strands according to
their \�tness."

2.2 DNA Genetic Algorithms Compared to

Supercomputers

The following oversimpli�ed estimates indicate DNA
computing techniques could in the future compare fa-
vorably to supercomputers in some cases. These favor-
able cases include executing genetic algorithms having
simple �tness evaluations and very large populations
of candidate solutions.

Consider a population represented by a total of p bits.
Executing a genetic algorithm by any means will re-
quire at least g � O(p) �tness evaluations, where g is
the number of generations used. Now, assume the �t-
ness evaluation of a candidate solution processes all the
bits of the candidate solution. A state-of-the-art ter-
a
op supercomputer performs about 1012 operations
per second. Thus, we have a rough estimate for super-
computer time complexity,

T � g�p�10�12 seconds � g�p�10�17 days: (1)

To compare this to DNA computing, let us assume
the �tness evaluation of an entire population can be
done in the laboratory in 24 hours [6]. Thus, the time
complexity of a DNA approach to genetic algorithms
is seen to be about

T � g days: (2)

Essentially no new laboratory techniques or equipment
would be needed to use gram quantities of DNA. This

corresponds to populations represented by about p =
1021 bits. For populations of this size, we see fromEq 1
and from Eq 2 that DNA implementation of genetic
algorithms compares favorably to supercomputer time
complexity.

Some caution is needed in interpreting this compar-
ison. The comparison is based on unprecedentedly
large populations. (Still miniscule compared to the
size of the search space, of course!) As far as we know,
it is unclear exactly how bene�cial large population
sizes might be. The classical \schema theorem" of
Holland [14] says a population of P distinct candidates
probes O(P 3) potential solutions. However the appli-
cability of this result, like many others in evolutionary
computation, is actively debated.

This may be an appropriate point to repeat our pri-
mary goal. We do not take any stance on the virtues
of any particular method of evolutionary computation.
Instead, we aspire to provide the means for assess-
ing some evolutionary computations using population
sizes larger than is practical with conventional com-
puters.

2.3 DNA Genetic Algorithms Compared to

In Vitro Evolution

Methods in molecular biology known as \in vitro evo-
lution" are similar to those used in genetic algorithms.

Virtually all DNA sequences can be equally meaningful
as inputs or outputs of genetic algorithms. In fact, in
a DNA context, Max 1s problems with various targets
(not just all 1s) are of interest: \Evolve a population
of DNA strands highly similar to a given one."

In contrast, in vitro evolution focuses on variations
of the extremely rare DNA sequences of biological
or biochemical interest. Naturally, in vitro evolution
methods use �tness criteria limited to properties of
biomolecular interest. Indeed, �nding means to physi-
cally separate biological materials by \�tness" has de-
termined which problems are addressed by in vitro evo-
lution.

The comparison can be summarized like this. The
�tness and selection techniques of in vitro evolution
are limited. They produce a relatively few, but im-
portant, possible outcomes. DNA implementation of
Max 1s problems allow essentially arbitrary bitstrings
as inputs (targets) and outputs.

In vitromethods suit the following very important but
relatively small classes of problems.
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� Seeking improved enzymes [23], which are pro-
teins that serve as catalysts in biochemical reac-
tions. This work emphasizes crossover more than
mutation.

� Seeking ribozymes [13, 20, 26, 28], which are RNA
strands that serve as biochemical catalysts. This
work uses mutation but not crossover.

� Seeking binding sites [26, 27], which are se-
quences of DNA that are acted upon by small
biomolecules. This work uses repeated selection
but neither mutation nor crossover.

3 The Max 1s Problem

This is a traditional test problem for genetic algo-
rithms. It involves binary bitstrings of �xed length.
An initial population (usually randomly generated) is
given. The objective is to evolve some bitstrings to
match a prespeci�ed \target" (generally taken to be
all 1s). However, arbitrary targets may be of interest
in working with DNA.

3.1 The Max 1s Problem via DNA

This section begins with an outline of a DNA imple-
mentation. The corresponding information is shown in
Figure 1. In the remainder of the section, details and
preliminary laboratory results are given. Throughout
this section, information is grouped in the following
categories: (1) candidate pool, (2) �tness evaluation,
(3) selection and (4) breeding.

3.2 Outline of DNA Implementation

Our implementation is given by the following outline.
The same information, with a few added details, is
shown in Figure 1.

DNA Genetic Algorithm for Max 1s

Begin with an initial population of candidates.

1. Evaluate �tness by hybridizing to target
strands and physically separate on a 2d gel.

2. Select and purify candidates to breed.

3. Amplify selected candidates incorporating
pointwise mutation and reserve a portion.

4. Breed candidates, using crossover.

5. Combine reserved and bred candidates, ob-
taining a new generation.

Repeat.

3.3 A New Fitness Selection is Added to In

Vitro Evolution, and Combined With

Existing Breeding Techniques

As mentioned earlier, modi�cations to current tech-
nology su�ce to implement crossover and pointwise
mutation. However, selecting DNA strands for \breed-
ing" in genetic algorithms is more challenging because
one must physically separate DNA strands according
to their \�tness." Thus, we combine modi�ed forms of
three robust biolaboratory techniques for implement-
ing DNA genetic algorithms [6].

� A new application of 2d denaturing gradient gel
electrophoresis (2d DGGE): the more �t candi-
date strands of DNA can be physically separated
from the less �t candidates according to how
well they match (hybridize with) \target" DNA
strands.

� Existing \dirty" polymerase chain reaction
(dPCR) [13, 20, 26, 27, 28] incorporates pseudo-
random mutation.

� An existing in vitro crossover technique due to
Stemmer [22, 23, 25] shu�es DNA by blocks. We
modify this to give single-point crossover to agree
with a common choice for genetic algorithms.

3.4 Design of Candidate Solutions and

Target DNA Strands

Figure 2 shows our DNA strand design. A target

/-----------------TARGET------------------\

/-----CG-CLAMP--------\/----- 80 A's------\

5' -> CGCCCTCCGCCCGTCGCCCGCCCAAAAAA.......AAAAAAA -> 3'

3' <- GCGGGAGGCGGGCAGCGGGCGGGTTTTTT.......TTTTTTTGTGATCACTCAGCATAAT <- 5'

\--CG-CLAMP COMPL-----/\----- 80 T's------/\----- TAIL -----/

\---------------PERFECT CANDIDATE---------------------------/

Figure 2: Design of target and a perfect candidate.
Imperfect candidates would have a mixture of 80 Ts
and Cs in place of the 80 Ts in the perfect candidate.

strand and a perfect candidate strand are shown in
the �gure. Imperfect candidate strands have a mix-
ture of 80 Ts and Cs instead of 80 consecutive Ts. At
the 30 end of all candidate strands there is a universal
section complementary to the CG clamp section of the
target strands. The CG clamp has been designed to
encourage correct alignment and to avoid secondary
structure (hybridizing to itself). All 50 ends of the
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Figure 1: Outline of DNA implementation of genetic algorithms for Max 1s problem. The candidate pool appears
in the upper left. Selection using 2d DGGE appears at the lower left. Puri�cation and ampli�cation of the more
�t candidate strands appears at the lower right. Breeding using crossover appears at the upper right.

candidate strands are extended by a universal tail se-
quence. Since candidate strands have known sequences
(used as primer sites) at both ends, they can be am-
pli�ed by PCR. The candidate strands are longer to
facilitate eventual separation of target and candidate
strands using denaturing gel electrophoresis.

3.5 Fitness Evaluation by 2d DGGE Physical

Separation of DNA

The most challenging part of the DNA implementation
of genetic algorithms is to identify a laboratory process
that will physically separate DNA strands according
to their \�tness." For this task we use so-called 2d
denaturing gradient gel electrophoresis (2d DGGE),
which we push far beyond its established domain of
application [15].

� A �rst important fact for DNA computing is that
2d DGGE can detect even a single base mismatch

in DNA strands. Indeed, this is a common appli-
cation of 2d DGGE in molecular biology [15].

� A second important fact is that our experiments
with 2d DGGE (see Figure 4) demonstrate a sur-
prisingly smooth transition through a large dy-

namic range of mismatching.

To the best of our knowledge, no one has ever before
demonstrated what happens when 2d DGGE is used
with a population having a very great diversity of mis-
matchings. (The question has not arisen in molecular
biology applications.) Populations of strands all hav-
ing considerable mismatches might regrettably not be
distinguishable at all. Fortunately, we found other-
wise.
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Let us review the nature of DGGE. Figure 3 shows a
control case: a 2d DGGE from our laboratory having
perfect candidates combined with target strands. The
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Figure 3: DGGE using perfect candidates. DNA
strands move downward from a reservoir at the top
of the �gure. The speed of vertical strand migration
is retarded as strands come apart (denature) as shown
schematically on the �gure.

target strands hybridize (stick) to the perfect candi-
date strands, with a tail of unmatched bases at the
50 end. The mixture of hybridized strands is placed
uniformly along the top of the gel. The hybridized
strands travel vertically downward in the gel as a re-
sult of an applied electric �eld. However, their speed
of migration is determined by their initial placement
from left to right; that is, by how strongly they are
denatured (pulled apart). On the left, where no de-
naturant is encountered, the strands move relatively
quickly downward. In the center, they move more
slowly because they encounter intermediate denatur-
ing. At the extreme right, the stands are able to move
only very slowly because the strands are almost com-
pletely pulled apart except in the more resistant CG
clamp region.

We heuristically reason that when we repeat the above
experiment with a mixture of targets and imperfect
candidates, we expect that everywhere across the gel
the candidate strands that best match (hybridize to)
the targets will migrate downward relatively faster. In
fact, a mixture of imperfect matches exhibits vertical
spreading in our experiments. See Figure 4. In this
�gure the 80 variable positions of the imperfect candi-
dates are chosen to be Ts with :8 probability and Cs
with :2 probability.
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Figure 4: DGGE vertically separates imperfect can-
didates. The speed of vertical strand migration is re-
tarded as strands come apart (denature). This is due
to two factors: increasing denaturant concentration
and decreasing quality of target-candidate matching
(hybridization).

3.6 Fitness Selection of Candidate Solutions

Selection is done by literally cutting out a portion of
the 2d gel and extracting the DNA strands from it.
This allows a wide latitude for selection criteria. The
most �t candidates are presumably lowest on any ver-
tical line. However, the nature of variation from left to
right is not clear. Further experiments will be needed
to optimize a selection strategy. Experience in genetic
algorithm computing demonstrates the desirability of
maintaining genetic diversity to prevent the loss of ge-
netic materials which may be needed in later stages of
evolution.

The selected DNA is puri�ed (for example, sepa-
rated by length using conventional denaturing gel elec-
trophoresis) to get rid of target strands. The puri�ed
candidate strands are ampli�ed by PCR, which can
also induce pointwise mutation at a rate of 10�2 to
10�4 [4, 5, 7, 16, 17, 29, 31]. One of the PCR primers,
the one that makes strands complementary to the can-
didates, is phosphorylated on its 50 end so that these
strands can later be digested with �-exonuclease.

A portion of the resulting double stranded product is
temporarily reserved; the remainder is used for breed-
ing.
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3.7 Breeding Using Single Point Crossover

The portion of double stranded product to be used for
breeding is partially digested with the enzyme DNase I
to nick (cut only one strand) at random locations. The
nicked strands are combined with a similar amount of
reserved unnicked strands. The mixture is denatured
(strands are melted apart) and allowed to reanneal
forming new combinations. Many, many possible con-
�gurations could be formed. But among these, some
will be intact complements of candidate strands an-
nealed to a 50 end of a candidate strand including its
CG clamp, which enforces alignment. These are fea-
tured in the upper right corner of Figure 1. By adding
DNA polymerase, the partial candidate strand is ex-
tended to a full length legal candidate combining its
genetic information with that encoded in the intact
strand. The net result is single point crossover. The
o�spring candidate strand has a block of genetic in-
formation from one parent followed by another block
from a di�erent parent.

The Sexual PCR (gene shu�ing) technique of Stem-
mer [25, 22] is similar to our crossover operation. Sex-
ual PCR would be limited to populations of candi-
date DNA strands which are very similar and nonuni-
formly structured. These two properties are needed
to ensure alignment of the DNA fragments. We avoid
these restrictions on the variety of candidate strands
by adding the universal CG sequences at the ends of
the candidate strands to enforce alignment. However,
our present approach limits us to using single point
crossover (which is usually used in genetic algorithms).

Finally, the reaction products are combined with the
remainder of the reserved material and complemen-
tary strands are digested with �-exonuclease. Our
crossover reactions may produce many products be-
sides o�spring candidates, but they will be benign and
rarely the same length as a candidate. Puri�cation
by length (using denaturing gel electrophoresis) com-
pletes the breeding operation.

The new generation is ready to be processed.
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