A Free Lunch Proof for Gray versus Binary Encodings

D. Whitley
Computer Science Department
Colorado State University
Fort Collins, CO 80523
email: whitleycs.colostate.edu

Abstract

A measure of complexity is proposed that
counts the number of local minima in any
given problem representation. A special class
of functions with the maximum possible num-
ber of optima is also defined. A proof is given
showing that reflected Gray code induce more
optima than Binary over this special class of
functions; by the No Free Lunch principle,
reflected Gray codes therefore induces fewer
optima over all other remaining functions.

1 INTRODUCTION

Over all possible functions, Gray codes and Standard
Binary codes are equal in that they both cover the
set of all possible bit representations [4]. In spite of
this No Free Lunch result [5], applications oriented
researchers have often argued for the use of Gray codes
[1]. The debate as to whether Gray coding is better
than Binary representations has been a classic example
of where theory and practice clash. The results in
this paper bring theory and practice closer together
and yields new insights into the role of representation
during search.

A measure of complexity is proposed that counts the
number of local minima in any given problem represen-
tation. On average, functions that have fewer minima
are assumed to be less complex than functions with
more minima.

The set of functions which are considered are such that
they can be remapped so that the range of the func-
tions is 0 to 2¥ — 1 and the domain the values 0 to
2L — 1. This restriction of the domain and range has
the advantage of mapping all functions that can be
discretized and represented by an L bit encoding onto

a well defined finite set of functions. We will refer to
this set of functions as F', and f; as a function in F.

Two neighborhood structures over F' will be defined.
Let F represent the set of wrapped neighborhoods for
functions in F. For all integers, ¢, ¢ — 1 and ¢ + 1 are
neighbors and the addition and subtraction operations
are mod 27 — 1 so that endpoint are also neighbors.

Let F represent the set of non-wrapping neighbor-
hoods for functions in F. For all integers, ¢, ¢ — 1
and 7 + 1 are neighbors except that endpoints have a
single neighbor; thus 0 and 2% — 1 are not neighbors.
This is a relatively minor difference, but one that turns
out to be useful for proving properties about Gray and
Binary representations.

The main argument of this paper is as follows.

Typically, when functions are encoded as bit strings,
they are first mapped to F or F. Note this neighbor-
hood preserves local optima in the original function
under search operators that move to adjacent points
in the space. The neighborhoods F and F preserve the
connectivity of the original function. After mapping to
F or I, a bit representation is introduced. Assuming
that the original function has limited complexity (in
that sense that it has fewer than the maximum pos-
sible number of local optima), it can be proven that
Gray codes on average provide theoretical advantages
over standard Binary encodings. In this situation, a
special family of Gray codes (called “reflected” Gray
codes) will in expectation induce fewer total optima
than the corresponding set of Binary representations.

2 BIT REPRESENTATIONS

Let R denote the set of all bit representations over
functions in F; R includes the string representation
and the associated evaluations of those strings. When
the parameters in the domain of every function in F

are converted into their Binary representation, a one-
to-one and onto mapping is created between F and R;
Gray coding also induces a one-to-one and onto map-
ping between F and R, but the mapping is different.
Hence, a No Free Lunch result holds: over all func-
tions in F, both Gray and Binary encodings produce
all possible representations in R.

2.1 “REFLECTED” GRAY CODES

Usually “Gray code” refers to Standard Reflected Bi-
nary Gray code [2]. A Gray code is any representa-
tion where for any integer i the bit representation of ¢
is Hamming distance 1 away from the bit representa-
tions of the integers ¢ + 1 and ¢ — 1. The addition and
subtraction operators are mod the number of points in
the set from which ¢ is drawn.

To define what is meant by “reflected,” consider any
Gray code for a function defined over 2£~1 points. We
then construct a reflected Gray code for L bits as fol-
lows. Define the permutation 7;_; to be the ordered
set of 2L~ strings. Let R(m_1) reverse the order of
the set of strings. Concatenate a 0 onto each string
in 771 to generate II and concatenate a 1 onto every
string in R(mp—1) to generate R(I'). Then concate-
nate the two permutations II and R(II') to generate
. Since m;_y is a Gray code, the new permutation
mr, is also a Gray code.

2.2 DEFINITIONS AND CONCEPTS

When referring to functions in “F” the neighborhood
can be either F or F.

Let FQ be the set of functions with less than or equal
@ optima in F'.

Let F'Q be FQ-complement, the set of functions with
more than) optima in F.

Let R(Q be the set of functions with less than or equal
@ optima in R.

Let RQ be RQ-complement, the set of functions with
more than () optima in F.

Let C(G,FQ) be the count of all optima for Gray
coded functions in class F'Q.

Let C(G,FQ) be the count of all optima for Gray
coded functions in class F'Q.

Let C(B,FQ) be the count of all optima for binary
coded functions in class F'Q.

Let C(B,FQ) be the count of all optima for binary
coded functions in class F'Q.

Note that every bit function in R is the Gray coding for
some function in F; it is also the Binary encoding for
some function in F. Thus, over all functions in F, the
total number of local optima under each representation
is the same. Forall @,

C(G,FQ)+ C(G,FQ)=C(B,FQ) + C(B,FQ)
It also follows that :
C(G,FQ) < C(B,FQ) IFF C(G,FQ) > C(B,FQ).

A number of properties that relate to Gray codes have
previously been proven by Whitley and Rana [4].

THEOREM 1 (The Gray-Compactness Theo-
rem): Let X be the number of local optima induced
by a local neighborhood search operator over the bits in
any Gray coded representation of any function in F.
LetY be the number of local optima induced under the
neighborhood of the same function inF or F: X <Y.

For specific values of Q, one can construct functions in
FQ that have a Binary representation in RQ. How-
ever, when Gray encoding is involved, the following
Theorem holds.

THEOREM 2: FEvery function in FQ has a Gray
representation, ry in RQ. Every representation, Ty
in RQ is the representation of a Gray encoding of a
function in FQ.

Theorem 2 following directly from the Gray-
Compactness Theorem: every function in F'Q) has Q)
or fewer minima and must have a Gray representation
in RQ; every representation in RQ is the Gray repre-
sentation of some function that must have more than
Q optima and hence must be in FQ.

THEOREM 3: For all discrete functions in F over
with bit representation of any length L, for Q = 1,
the set of all Gray coded representation for functions
in FQ induce fewer total minima than the set of all
Binary coded representations for functions in FQ).

Proofs for all of the above theorems are given by Whit-
ley and Rana [4]. A corollary of Theorem 3 when
Q = 1is that C(B,FQ) < C(G,FQ) which means
that Binary is better over F'Q when @ = 1. However,
consider the classification for all function in F' for bit
strings of length 3 given in Table 1. In this case there
are (23)! functions, all of which can be enumerated.
The functions are decomposed into sets of functions
with exactly ”K” minima.

The Gray code in this case is the commonly used Stan-
dard Reflected Binary Gray. This empirical data illus-
trates a number of interesting properties. First for
K = 1,2 and 3, the Gray code induces fewer min-
ima than Binary. For K = 4, Binary codes induce

FOR WRAPPING FUNCTIONS

#F # of Min Wins
K K Min | Gray Binary | Gray Binary | Ties
1 512 512 960 448 0 64
2 14,592 23,040 27,344 6384 2176 6032
3 23,040 | 49,152 49,392 7088 6704 9248
4 2,176 7,936 2,944 0 2160 16
Sum | 40,320 | 80,640 80,640 13,920 11,040 15,360
FOR NON-WRAPPING FUNCTIONS
#F # of Min Wins
K K Min | Gray Binary | Gray Binary | Ties
1 128 128 264 120 0 8
2 7,680 11,904 15,016 3944 1016 2720
3 24,576 | 48,384 51,160 8720 6144 9712
4 7,936 20,224 14,200 1136 3880 2920
Sum | 40,320 | 80,640 80,640 | 13,920 11,040 | 15,360

Table 1: A comparison of the number of minima under
Gray and Binary encodings for all 3-bit functions of F'
with 1, 2, 3 and 4 minima.

fewer minima than Gray. The implications of No Free
Lunch can be seen in the totals: the total number of
optima in Gray and Binary is equal. However, there
is also a “MiniMax” difference between Gray and Bi-
nary: when asking which representation is better in
a one-to-one comparison, Gray is better more often.
This is because Gray can be somewhat better on many
functions, while being much worse than Binary on a
few functions. However, the total number of optima
under Gray and Binary stay the same. Wolpert and
Macready [5] speculated that such MiniMax difference
were possible. Radcliffe and Surry [3] explore proper-
ties of the MiniMax relationship. This example proves
MiniMax differences do exist. But exactly on what
functions is the Gray representation much worse than
Binary?

The empirical evidence suggests that Gray is much
worse than Binary on functions that have the maxi-
mum possible number of optima. On these functions,
it is never possible to take more than 1 step in the
search space before becoming stuck at a local opti-
mum. By the No Free Lunch principle, then, Gray
codes will induce fewer optima than Binary on all re-
maining functions.

Note that one consequence of Theorems 1 and 2, is
that under Gray encoding, a bit representation with
the maximum number of optima can only be produced
by Gray coding a function in F' with the maximum
number of optima.

3 WORST CASE FUNCTIONS

A “worse case function” in F results if every other
point is a minima (i.e. even numbered points can
be minima and odd numbered points maxima, or vice
versa). An equivalent worse case function in R occurs

if all strings with even numbers of bits are minima (or
maxima) while all strings with odd numbers of bits are
maxima (or minima). Thus, the maximum number of
minima in F or Fis MAX = 2L-1,

The remainder of this paper proves the following the-
orem.

THEOREM 4: For all discrete functions in F with
bit representation of any length L, for Q = MAX-1, the
set obtained using any Reflected Gray Coded represen-
tation for functions in FQ induce fewer total minima
than the set obtained using the Binary coded represen-
tation for functions in FQ); this holds for both meigh-
borhoods F and F.

Before presenting a proof, several preliminary results
are needed. Define F™** and F™?* to be the set of
functions under neighborhood F and F to be the set of

functions with the maximum number of local optima:
2L-1,

LEMMA 1. The Subset Lemma: ez C Fmoaz

PROOF:

Both F™%® and F™** neighborhoods have minima at
alternating points: only one endpoint can be an op-
timum. Let f represent a function in F™**. When
the endpoint of f is an optimum in F, it must also
be an optimum in F, since its internal neighborhood
does not change and it has no external neighbor. Thus
f € F™me® implies f € F™%®. Let f be a function in
Fmez An endpoint that is an optimum in F will fail
to be an optimum in F if that optimum is greater than
the opposite endpoint, which is a saddle. Thus F™*
is a proper subset of F™*. QED

It will first be shown that over all functions in F™e®
the set of Binary representations induce fewer minima
than the set of all “reflected” Gray code representa-
tions. We will then specialize the result for F™**.
First, we need to establish some foundational concepts
and principles.

First, note that we can divide F™** and F™** into
odd and even functions. Since every other point is
an optima, an even function has minima at the even
numbered integers; an odd function has minima at the
odd numbered integers. There is a one-to-one map-
ping between the odd and even functions. If II is a
permutation corresponding to an even functions, then
R(IT) is a unique corresponding odd function.

The Subset Lemma, F™%* C F™2 still holds for the
set of even functions in F. Thus, without loss of gen-
erality, proofs will be done only for the set of even
functions, but apply equally to odd functions.

3.1 EXPECTED FREQUENCY

Let ¢ be a value in the range (output) of the functions
that make up F for L bit functions, where the range
is 0 to 2¢ — 1. Define T = 2% — 1.

Let f,(i,p) be the frequency with which the value ¢ oc-
curs as a local optimum at position p over all functions
in F™e®_ Let fs(i,p) be the frequency with which the
value i occurs as a saddle at position p over all func-
tions in F™e¥_ TLet £(f(p)) represent the expected
value of the function (permutation) at position p.

LEMMA 2. The Position-Based Frequency
Lemma for 7™%* and F™®*

The following frequency relationship hold for both
Fmez gnd F™% although the actual frequencies vary.
Vi in the range of F, 1 <i < (T'—1) andV p

Property 1.
fs(i,p) < fs(i+1,p) and fo(i,p) > fo(i +1,p)
Property 2.
folisp) = fs(T —4,T — p)

Property 3. ' '
VJ wherej < T : Zi:o fs(kJT_p) < Zi}:o f/ro(kﬂp)

Property 4.

Vp,q if p is an optimum and q is a saddle
E(fp) <E&(f(9)

PROOF.

Property 1.

Case a For any position p which is an optimum and
not an endpoint; consider 7 from smallest to largest.

t =1 and 7 = 2 are always optimal in all functions in
]:ma.z

In general, consider any value ¢ > 2. There are (%)
ways to buffer i and make it saddle point with (2% —3)
valves remaining over which to construct all possible

functions in F™%* that have 7 as a saddle.

Consider i + 1. There are (‘}') ways to make i + 1 a
saddle point with (2 —3) valves remaining over which
to construct all possible functions in F™%* that have

k as a saddle.

Furthermore the (;) ways to buffer i when constructed
from values less than i are a proper subset of the (142-1)
ways available to buffer i+1 constructed from all values
less than ¢+ 1. The ways of ordering remaining values
is the same with respect to ¢ or ¢ + 1 since they are
adjacent values; in other words, ¢ and 7 + 1 have the

same relative rank with respect to all other points.

Case b When considering the ways that points can
appear as saddles the case is exactly symmetric to the
situation in case a.

Case ¢ When p is an endpoint position of the permu-
tation the value 1 is never a saddle, but value 2 can be
a saddle when buffered by 1.

Consider any value i. There are ¢ ways to buffer 7 and
make it a saddle point with (2F — 2) valves remaining
over which to construct all possible functions in F™**
that have i as a saddle.

Consider any value ¢ + 1. There are ¢ + 1 ways to
buffer i + 1 and make it a saddle point with (2% — 2)
valves remaining over which to construct all possible
functions in F™®* that have i as a saddle.

Other than these changes in counting ways to build
buffers, the situations are exactly the same as those
that hold for points that are not endpoints.

Thus, the cases for optima and saddles are symmetric
with identical probabilities and it follows that:

fs(i,p) < fs(i+1,p) and f,(i,p) > fo,(1 + 1,p)

Property 2.

Consider position p and 7' — p. If p is an optimum
at the p** position in the permutation when counting
left to right starting at 0, then 7' — p is a saddle at the
p*" position in the permutation when counting right to
left starting at T. However, if we switch the problem
from minimization to maximization, then 7" — p is an
optimum at the p** position in the permutation when
counting right to left starting at T, and p is a saddle
at the p!* position in the permutation when counting
left to right starting at 0. Note that counting positions
from left to right or right to left does not change the
number of ways we can construct different functions
in F™%% after having placed an element 4 at position
at p or element T — 4 at position T'— p: we can reverse
the permutation, fill all open positions, then reverse
the permutation again to its original order. Thus it
follows that

Vi, Vp: fo(i,p) = fo(T —i,T — p)

Property 3.

We know fo(i,p) = fs(T —i,T — p) regardless of
whether p and (T" — p) are endpoints or not. It fol-
lows that forall p

However, because the frequencies in f; (4,7 — p) mono-
tonically increase with increasing ¢ and the frequencies
in f,(Z, p) monotonically decrease with increasing i, it
follows that as long as we sum over all j such that
7 < T then

J J
Vj where j <T: Y fo(k, T —p) <> fro(k,p).

k=0 k=0

Property 4.

2L 1

Fulin@) < Fuli 4 1,0) = E(7(@) > 5 3 i
1=0
1 2k 1

fo(i,p) > foli +1,p) = E(f(p)) < ¥ i
1=0

QED

4 RECURSIVE CONSTRUCTION
OF PERMUTATIONS

It is useful to look at functions as permutations, and
to construct the set of functions/permutations recur-
sively. Permutations over 2L+ elements will be de-
composed into sets of permutations over subsets of 2%
elements.

Divide the set of 2L+ values into two equal sets. There

N+1 .
are (*,y) ways to do this. Construct and concate-
nate all possible permutations over each set. There
are (2V1)(2™!) ways to do this. The set of all permuta-
tions over any subset of 2"V unique values is isomorphic
with the set of all functions in Fn. Repeating this op-
. . oN+1 e
eration over all of the possible (oN) decompositions
results in all possible functions in Fx 41 since

oN+1y — 2™ 2V = 2" 9N19N|
o\ 2V i Yo QNpNIT T

We now prove Theorem 4; the proof is given in two
parts: 4a and 4b.

THEOREM 4a: For all functions in F™** with bit
representations of length L, the set of Reflected Gray
code representations over all functions in F™** induce
more total minima than the set of all Binary coded
representations.

PROOF

The proof is inductive and constructive.

By observation the set of all functions when L = 2 and
L = 3 is such that C(B, F™) < C(G, F™ma®).

We assume the theorem is true for N and show that
the N +1 case must be true. Denote functions in F™*
with L = N bit encodings by F3/**. When L =N +1
functions in the set Fy'{{ can be constructed from
functions in the set F3** in the following fashion.

Divide all possible values in the range of Fy41 into
two equal sized sets. Label the two sets A’ and B’;
note that these are sets of values and not sets of func-
tions. There are (22N) ways to split the set of values
in F when L = N + 1. We next look at all possible
functions over sets A’ and B’. This is also just all pos-
sible permutation over sets A’ and B’ and each set of
permutations (i.e., functions) is isomorphic with Fy
since we can sort the components of A’ and B’ and
index these components from 0 to 2V — 1.

We then construct all possible functions over the sets
A’ and B’ and then select only those functions that
are also members of F#%*. We will denote the fil-
tered sets by A and B. Note that A and B are sets of
functions composed of elements drawn from A’ and B’
respectively, and both A and B are isomorphic with
Fyee.

All functions which are members of F¢{ can be con-
structed by concatenating the corresponding sets of
functions A and B. (both of which are isomorphic with
Fr**). This construction works due to the fact that
concatenation of two functions from Fy can destroy
optima, but never create optima. Only the end points
that are concatenated are affected. If both endpoints
are optima, one must collapse. If both are saddles, the
number of optima in F is not changed by concatena-
tion. If one is an optimum and the other a saddle, the
saddle cannot become an optimum, but the optimum
may or may not collapse. There are no other cases.

The proof now proceeds in two parts.

PART 1: Construction of Set X

When we consider all possible ways of splitting Fy 41
into A’ and B’ then concatenate all possible sets A
and B we obtain a set X such that

TEFDE — 1€ X.

Both A and B are isomorphic with F%*. By the in-
ductive hypothesis, the set of connections over A in-
duces fewer minima in Binary than Graey. The same
is true of connections over B. Thus, we need only con-
sider the new connections that are recreated when A
and B are concatenated to create functions in Fy41.

If it is true for each particular sets of value A’ and B’
(and particular set of functions A and B) then it is

3 3 maxr
true over all functions in N1

When concatenating functions in A with functions in
B, we can only concatenate functions with optima at
even numbered indices with functions in B with even
number indices. This does not effect the outcome of
the following counting argument due to the symmet-
ric of F{**: when F%® is divide into odd and even
functions, this create 2 equal and symmetric subsets.
Only functions with optima in even positions are con-
sidered; the situation for functions with optima in odd-
numbered positions and the counting arguments are
identical.

Consider recursively constructing a function over 2-+1
elements from two permutations over 27 elements. Un-
der a Binary representation, the values from functions
in A with even numbered indices are connected to val-
ues of functions in B with even numbered indices. This
is because the binary mapping of the concatenated
functions from A and B are identical, except when
concatenated, the binary representations of the func-
tion from A are prefixed with a 0 and those of the
function from B are prefixed by a 1.

Thus, under a Binary representation, optima in
A are connected to optima in B and saddles in
A are connected to saddles in B.

Any “reflected” Gray code, on the other hand, reverses
the order of set of bit strings mapping the function in
B. Then 0 is appended to the bit strings mapping
onto the function from A and a 1 is appended to the

reversed set of bit strings mapping to the function in
B.

Thus, under any ”reflected” Gray representa-
tion, optima in A are connected to saddles in B
and saddles in A are connected to optima in B.

More precisely, an optimum at position p in A is con-
nected to point p in functions in B using standard Bi-
nary representation; however, it is connected to the
saddle point 7' — p under any reflected Gray represen-
tation.

We next show that, in expectation, connecting optima
to optima (as occurs under a Binary representation)
causes more optima to collapse than connecting op-
tima to saddles (as occurs under reflected Gray encod-

ings).
Select and fix a specific function from A and iterate
over all possible functions in B. Next consider any

optimum in A at position p. Let be the value of the
optimum in A. We know that z < T, since T cannot

be an optimum.

Let £(f(p)) represent the expected value of the func-
tion (permutation) at position p. Therefore, iterating
over all functions f € B we know from the Frequency
theorem that

D (G, T=p) <Y fro(s,p)-
j=o j=o

and since smaller values appear more often as optima
at p than as saddles at T' — p, then

E(f(p) <E(F(T = p))

therefore, concatenation between the permutation
from A and all the permutations of B causes more
optima to collapse in Binary than Gray.

PART 2: Filtering Set X for Members of 7]

One additional issue must be addressed. Not all con-
catenations of a specific function in A with all func-
tions in B results in a function in FP¢]. Since we
are working with even numbered optima, the relevant
endpoint from A will be a saddle and the relevant end-
point from B will be an optimum. (Again, the case is
symmetric for odd-numbered functions.) Thus, when
the endpoint saddle in the final position of A is less
than the endpoint ”optimum” in the initial position of
B, the optimum in B collapses and the resulting func-
tion is not a member of F¢¢{. Another way of viewing
this is, for a specific function f € A, we only concate-
nated with members of B where the first element in B
is less than the last element of A. When the endpoint
saddle in A is one of the 2 largest values in the set of
2N+1 values, none of the functions in B are discarded.
In this case the desired result holds. When the final
element of A is the value 2, the value 1 must also be
in A (adjacent to 2) and all of the members of B in
this case are discarded. In both cases, the result holds.
But these are extreme cases.

We wish to show that when we filter out the mem-
bers of F#¢] from the constructed set in the previous
section, that the expected value of the optima con-
nected under the binary representation is less than the
expected value of the saddles connected under any re-
flected gray representation. Also, since we are filtering
the set that was constructed, the inductive argument
used in the construction cannot be used at this point.

Consider any functions/permutation in
consider the following set of points.

maz - Next

Optima Saddles

a=p w=p+1
b=2T"14p z=2T"1_p+1
c=2T"1-p—-1 y=2T"1_-p
d=2T -p—1 z2=2T—p

Note that these points have a closed-neighborhood re-
lationship, which will be referred to as the Closed-
Binary-Gray-neighborhood. Points (a,b) are neighbors
under Binary; points (¢,d) are also neighbors under
Binary. The pairs (a,w) (b,x) (c,y) and (d,z) are all
neighbors under Binary, Gray and in . But under any
reflected Gray code, the following pairs of points are
neighbors: (a,z) (d,w) (c,x) (b,y). Thus, each of the
four optima in the closed-neighborhood has a Binary
and Gray neighbor in this set of points.

We already know the set X has more optima under
Gray code than Binary. For all functions in X, if the
pair (a,z) and the pair (b,y) are not end points in the
functions that made up A and B, then for any specific

function in Fy/¢7, it is true that:

fla) < f(w), f(b) < f(=), fc) < f(y), f(d) < f(2)
{7(a) + f(d)} < {f(w) + f(2)}

and
{f®) + fe)} <{f(z)+ fy)}

Denote these the closed-neighborhood -constraints.
Since the functions are being constructed recursively,
the closed-neighborhood constraints also hold for any
arbitrary optima and some appropriate value of [> 3,
where 1 replaces T when computing the positions of
the closed-neighborhood. When [= 2, the rightmost
two bits are o' = 00,w' = 01,0’ = 10,2’ = 11,
and if a,b,w,z are the corresponding strings, then
f(a) < f(w) and f(b) < f(z). A closed-neighborhood
still exists, since (b,w) and (a,x) are neighbors under
Gray code. When [= 2, there can only be exactly 1
optimum in Binary, but 1 or 2 can exist in Gray. When
[=1, the rightmost bit is ¢’ = 0 and w' = 1, and the
corresponding string pair (a,w) are neighbors under
both Gray and Binary — and there is no difference be-
tween Binary and Gray. Thus, a closed-Binary-Gray-
neighborhood exists for every optima, and all closed-
neighborhoods favor a Gray code.

Assume none of the points in the closed-neighborhood
are endpoints.

Under the Binary encoding, only two of the four points
that are optima in F, i.e., (a,b, ¢, d), can remain local
optima due to collapse within this set of points. This
collapse always occurs. (It can also be proven that the
number of optima in Binary must be less than 2F~2
for functions in F™%* and F™* and thus over half of

the optima in Binary must always collapse [4]).

However, under a Gray code, if f(a) < f(z) and f(b) <
f(y) and f(c) < f(z) and f(d) < f(w) then there is
no collapse of optima under Gray code through this
set of points.

Note that it is possible that
{f(a) < f(w) < f(d) < f(2)} or {f(d) < f(2) < f(a) < f(w)}

which allows at most one optimum to collapse in Gray
code; the connecting “or” in this case is an exclusive-
or. It is also possible that

{f(e) < £(y) < £(b) < f(2)} or {f(b) < f(=) < f(c) < f(y)}

which allows at most one additional optimum to col-
lapse in Gray code. But at most 2 optima can collapse
under Gray code via this set of points. By construction
there are many cases were no optima collapse under a
Gray code (e.g. all optima are less than all saddles.)
And cases exist were only one may collapse. Thus, in
expectation, more optima must collapse under Binary
than Gray code.

Of course, this is already known to be true by con-
struction for the set X. However, as X is filtered, we
also know there are sets of points that violate the usual
constraints over the set of closed-neighbors: a, b, ¢, d,
w, X, y z. These are the endpoints. We further filter
from X those cases where

a=0,c=T—-1, w=1, y=T in function A and

b=0,d=T-1, 2z=T, x=1 in function B
where f(y) < f(b), thus causing b to col-
lapse as a minimum and not be a member of
~ii- We thus filter out the internal endpoints

(e.g., the last element of A, the first element of
B) that violate the normal constraints associated
with the closed-neighborhood structure. Note that

{£(a) + F()} < {f(w) + F(2)}

and

{F(0) + £(©)} < {f(2) + F)}
not only remains true for the filtered set, but is now
true for a larger percentage of the set F/{7 compared
to X. The only potential violations are now at exter-
nal endpoints at the beginning and end of the concate-
nated strings. But we also know from the frequency
lemma,

For ¢ = w,z,y, z and For p = a,b,c,d

Foliyp) > foli +1,p) = E(f(p)) < % 23;0—11'
Fs(iyq) < foli+1,9) = E(f(0) > £ 0ot

and that this holds even for endpoints. Thus, for any
optimum at position p, that optimum is connected to

another optimum under a Binary encoding and to a
saddle in ¢ under Gray; the only exception is when
that optimum is connected to the same saddle in both
Binary and Gray. Therefore, in expectation the op-
timum collapses more often under a Binary encoding
than any reflected Gray encoding.

QED.

THEOREM 4b: For all functions in F™** with bit
representations of length L, the set of reflected Gray
code representations over all functions in F™%* induce
more total minima than the set of all Binary coded
representations.

PROOFEF: To show this is true for F"™** we need only
filter the set of strings F'{] a second time. This time
all cases of external endpoints that violate the closed
neigh-
borhood property are removed. Thus for all points,

{£(a) + F(d)} < {f(w) + F(2)}

and

() + £(0)} < (@) + F)}

We also know

For q € {w,z,y, 2z} and for p € {a,b,c,d}
folip) > foli+1,p) = E(f(p)) < % Ko i
filiyq) < fuli+1,9) = E(f(@) > £ 0o "i

Thus, for every string and every neighborhood the
closed-neighborhood constraints hold, and the ex-
pected value of every optimum is less than the expect
value of any saddle. Therefore, in expectation optima
collapse more often under a Binary encoding than any
reflected Gray encoding.

QED.

In hindsight, the proofs might be simplified, but the
current versions provide very detailed information that
support the following, much stronger, conjecture.

Conjecture: For every individual string in F™** the
Gray code for that individual string induces more op-
tima than the corresponding Binary encoding.

The empirical data proves this is true for 3 bit strings.
The fact that the closed-neighborhood constraint must
hold for every neighborhood of every string suggest
that Gray must induce more minima than Binary, even
at the level of the individual string. It is also possible
to show that this is true for functions over all strings of
length 4. This is done by iteratively constructing the
closed-neighborhoods one at a time and propagating
the resulting constraints to show that for every string,
every collapse of any remaining optima in Gray space
forces the collapse of at least one or more remaining
optima in Binary space.

5 CONCLUSIONS

This paper proves that any Reflected Gray code pre-
serves more optima than a Binary representation over
the set of “worst case” functions that have the max-
imum possible number of minima. These functions
have 2L~! optima and a local search operator can
never make more than 1 move before encountering a
local optimum. These functions are extremely unlikely
to be encountered in practice.

Due to the No Free Lunch result, since Gray codes
induces more optima than Binary over functions with
2L-1 optima, Gray codes induce fewer optima than Bi-
nary over all remaining functions—providing Gray code
with a Free Lunch over a clear and pragmatically de-
fined subset of all possible functions.

6 ACKNOWLEDGEMENTS

This work was supported by NSF grant IRI-9503366
and AFOSR grant F49620-97-1-0271. The US Govern-
ment is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copy-
right notation thereon.

References

[1] R. Caruana and J. Schaffer. Representation and
Hidden Bias: Gray vs. Binary Coding for Genetic
Algorithms. In Proc. of the 5th Int’l. Conf. on
Machine Learning. Morgan Kaufmann, 1988.

[2] Keith E. Mathias and L. Darrell Whitley. Trans-
forming the Search Space with Gray Coding. In
J. D. Schaffer, editor, IEEFE Int’l. Conf. on Evolu-
tionary Computation, pages 513-518. IEEE Service
Center, 1994.

[3] N.J. Radcliffe and P.D. Surry. Fundamental limita-
tions on search algorithms: Evolutionary comput-
ing in perspective. volume 1000. Springer-Verlag,
1995.

[4] Darrell Whitley and Soraya Rana. Representation,
search and genetic algorithms. In Proceedings of
the Fourteenth National Conference on Artificial
Intelligence, 1997.

[5] David H. Wolpert and William G. Macready. No
free lunch theorems for optimization. IEEE Trans-

actions on FEwvolutionary Computation, 4:67-82,
1997.

