
XCS and the Monk’s Problems

Shaun Saxon
The Database Group,

Colston Centre, Colston Avenue
Bristol, UK.

Email : Shaun.Saxon@uwe.ac.uk
Phone : (++44) 117 965 3607

Alwyn Barry
Faculty of Computer Studies and Mathematics,

University of the West of England,
Coldharbour Lane, Bristol, BS16 1QY, UK

Email: Alwyn.Barry@uwe.ac.uk
Phone: (++44) 117 965 6261 ext. 3777

Abstract

It has been known for some time that Learning
Classifier Systems (Holland, 1986) have potential
for application as Data Mining tools. Parodi and
Bonelli (1990) applied the Boole LCS (Wilson,
1985) to a Lymphography data set and reported
82% classification rates. More recent work, such as
GA-Miner (Flockhart, 1995) has sought to extend
the application of LCS to larger commercial data
sets, introducing more complex attribute encoding
techniques, static niching, and hybrid genetic
operators in order to address the problems
presented by large search spaces. Despite these
results, the traditional LCS formulation has shown
itself to be unreliable in the formation of accurate
optimal generalisations, which are vital for the
reduction of results to a human readable form. XCS
(Wilson, 1995, 1998) has been shown to be capable
of generating a complete and optimally accurate
mapping of a test environment (Kovacs, 1996) and
therefore presents a new opportunity for the
application of Learning Classifier Systems to Data
Mining. As part of a continuing research effort this
paper presents some first results in the application
of XCS to a Data Mining task. It demonstrates that
XCS is able to produce a classification
performance and rule set which exceeds the
performance of most current Machine Learning
techniques when applied to the Monk's problems
(Thrun, 1991).

1 INTRODUCTION
With the increase in the computerization of business, and in
particular retail business, large amounts of business data is
gathered and stored. Until recently the benefit of attempting
to extract useful information from this data only marginally
outweighed the cost of maintaining this great a volume of
data because the then current data analysis techniques were
ill-suited to coping with large and noisy data and were not
able to extract information of sufficient quality and quantity.
With the reduction in the cost of storing data, there is now

pressure to effectively utilise the data for the benefit of the
data producers. For example, improvements in the
performance of data analysis techniques would be beneficial
for a large retail chain with computerized stock control and
sales systems by enabling it to analyze its large databases to
predict customer behavior. Furthermore, the recent
popularity of loyalty cards generates customer specific
transaction data, which increases the potential for forming
more accurate models of customer behavior.

Current techniques for discovering patterns in data, termed
'Data Mining', have various limitations when considered
against criteria for an effective data mining method. These
criteria include the ability to cope with large and noisy data,
being able to produce simple, meaningful and useful results
that can be understood by a human user, and the use of a
practical amount of computational resources. Evolutionary
computation techniques, including those based on genetic
algorithms, are able to explore a large search space to find
an optimal solution effectively due to their implicitly
parallel nature. They are also [largely] undirected and
therefore require minimum input of domain knowledge.
These robust techniques have therefore been considered in
order to counter the limitations of current data mining
techniques and have already been successfully applied in a
commercial environment (Flockhart, 1995).

Whilst holding much promise, there are also known
difficulties with the application of GA based techniques to
the task of Data Mining. Traditional Learning Classifier
Systems (Holland, 1986) which can be used for this purpose
have a limited ability to generalize rules. A traditional LCS
provides generalization pressure by the use of specificity
measures that are factored into the action selection process
(Goldberg, 1989; Riolo, 1987). This method does not
produce optimal generalization, tending to over generalize
in the early stages of learning, only to over specialize as the
GA continues to operate (Riolo, 1988; Wilson, 1988).
Wilson's XCS (1995, 1998) introduced niching techniques
and an accuracy-based fitness which enables XCS to
produce accurate optimally general co-operative rule sets.
This ability to generalize lays the foundations of a concept
builder of the kind required for data mining.

In investigating the performance of a Data Mining algorithm
a comparison with the performance of existing techniques is

useful. The Monk's Problem is one of only a few
classification problems that has been used to generate a
substantial comparative study (Thrun, 1991). As a first
investigation of the abilities of XCS as a Data Mining tool
the use of the Monk's Problem is appropriate, providing
strong evidence of the qualities of XCS classification in
comparison to other machine learning techniques. This
paper details these investigations and seeks to identify areas
of strength and weakness in XCS for further ongoing
research into the application of XCS to the Data Mining of
large commercial data sets.

2 BACKGROUND
This potential for extraction of useful trends and indicators
from consumer data can be realized providing that the
problems of increased database size can be overcome by
improved data analysis and reduction techniques which are
constituents of the larger process commonly known as
Knowledge Discovery in Databases (KDD) (Fayyad, 1996).
This term is used to describe all of the tasks required to
extract useful information from raw databases and to
distinguish the task of automatically discovering patterns in
pre-processed data, Data Mining, from data extraction, data
cleansing, data reduction, and interpretation and application
of results from data mining. Within the context of Data
Mining, classification is the process of using a set of pre-
classified instances to assign a new instance to one of n
classes. A finite vector of attribute values defines an
instance. The training set is a set of instances that have been
assigned to one of the n classes.

Current data mining techniques (Saxon, 1998) have been
developed from methods originating in the fields of
statistical modeling, neural networks and machine learning.
Statistical techniques (Mitchell, 1994; Molina, 1994) exist
for classification (e.g. CART (Breiman, 1984) and CHAID
(Kass, 1980)), regression (linear, quadratic and logistic) and
clustering tasks but are based on assumptions about the
probability distributions of data, which limits their
effectiveness on real data, and can only be applied with the
intervention of a statistician. Advanced machine learning
techniques have been applied to data mining tasks with
varying degrees of success. Decision tree (ID3, C4.5) and
production rule (AQ15, CN2) learners1 produce fairly
accurate but complex representations of patterns in the data
although these representations may be simplified by using
heuristic search. Generalization occurs when grouping
attribute values and when decision trees are pruned. These
techniques often require considerable computation and can
be applied to limited data types therefore much effort needs
to be put into data reduction prior to application. Artificial
neural networks have been used widely with considerable
success for Data Mining tasks (Lu, 1995; Rowher, 1991)
and are implemented in many commercial data mining
software packages. They are able to learn complex models

1 For further information on these and similar techniques Mitchell

(1997) provides an accessible though detailed review chapter.

of data and provide good generalization but the
interpretation and application of the neural network models
are difficult tasks for the human user.

In order to counter the problems with the current data
mining techniques there have been projects which sought to
apply evolutionary computing techniques to various areas
within KDD. Evolutionary techniques have primarily
concentrated upon the KDD task of Feature Selection (e.g.
Punch, 1993), and advances have been made in the
modification of GA techniques to develop and maintain
both single (GABL, GABIL, (Spears, 1992)) and multiple
(COGIN, (Greene 1993, 1994) target concepts. Recent work
within Feature Selection has moved onto the application of
Genetic Programming with pruning techniques introduced
to produce human readable results (eg. Raymer, 1997).
Applying evolutionary computing to Data Mining is a more
complex task, directly tackling the learning problem rather
than metalearning. Early work by Parido and Bonelli (1990)
with the Animat LCS (Wilson, 1983) illustrated the
potential of LCS for Data Mining within a simple data
mining problem, and two significant research projects have
sought to extend these results to commercial data sets (see
REGAL (Giordana, 1994) and GA-Miner (Flockhart,
1995)). Significantly, both of these projects introduce high
level attribute and attribute vector encoding with directed
mutation and crossover operators in order to cope with the
large search space presented by commercial data sets.
Problems with these approaches remain, however. In
particular, with GA-Miner for example, the establishment
and maintenance of multiple co-operative rules in the
presence of the GA has been tackled using static techniques
that can require domain knowledge, and the methods
applied to obtain generalization are primitive. These
problems are common to all traditional Michigan style LCS
implementations.

The XCS Classifier System (Wilson, 1995, 1998) represents
a major step forward for Michigan style LCS. Deriving from
Wilson's Animat (Wilson, 1985) and ZCS (Wilson, 1994),
the XCS simplifies the Holland style classifier system in an
attempt to produce a LCS whose operation and dynamics
can be readily understood and predicted. It borrows strength
update mechanisms from Reinforcement Learning (Watkins,
1991) using a modified Widrow-Hoff update mechanism to
provide a multi-parameter strength regime that more
accurately reflects the different roles of strength within
action selection and the GA. XCS also re-introduces GA
mechanisms recommended by Booker (1989) which provide
a niching facility to allow co-operative sets of rules to co-
exist within a population whilst encouraging competing
rules to converge on optimum rule attributes within a niche.
By using accuracy as the GA selection criteria, XCS is the
first LCS to be able to claim to 'reliably generate the most
general accurate classifiers' - the so-called 'Generalization
Hypothesis' (Wilson, 1998). Further work by Kovacs
(Kovacs, 1997) has demonstrated that the provision of
further operators can sufficiently focus the population once
exploration is complete to reliably produce a minimum rule
set consisting of the most general accurate classifiers, and
has led to the 'Optimality Hypothesis' which suggests that

using these operators the rule set generated will be the
optimal rule set for a given static problem.

It would appear, therefore, that the application of [a possibly
modified form of] XCS to Data Mining has the potential to
address the significant problems which remain unsolved
within previous Michigan style LCS based Data Miners. As
part of a continuing project to develop an effective Data
Mining tool using Evolutionary Computing techniques, an
investigation into the potential of XCS is underway.
Learning from previous efforts, it is expected that XCS will
need to be modified to accommodate more complex
attribute and attribute vector encoding and that hybrid
genetic operators will be applied. Before venturing further
in these investigations, however, it is important to identify a
baseline performance of XCS in order to ascertain its
appropriateness for the task of Data Mining. It was decided
that XCS should be applied to a small data set in order to
demonstrate the effectiveness of its generalization and
niching mechanisms within the domain of Data Mining.

3 EXPERIMENTAL INVESTIGATION

3.1 TEST ENVIRONMENT

For an initial investigation of the suitability of XCS to the
task of Data Mining the use of a 'standard' test data set was
considered important. Unfortunately within the field of Data
Mining no such test sets exist, with the best attempt at a
standard test set being the data sets used with the
STATLOG project (Michie, 1994) which due to their
complexity and quantity are inappropriate for use at this
stage. Within the Machine Learning community a number of
data sets have a sufficient usage to make them a 'de facto'
standard. The Monk’s test set, held on the UCI Repository
{REF}was selected as an appropriate test set because of its
small size with high internal complexity, and the extensive
set of published comparative results available with the test
data.

The Monk’s problems are binary classification problems of
differing complexity based on a pre-classified artificial
robot data set created to empirically compare learning
classifiers (Thrun, 1991). There are three problems each of
which involves learning target concepts described by
conjunctions of logical relations on attributes (see Thrun).
Training and test data sets are created by partitioning the
data set containing all possible instances and pre-classifying
each instance according to the problem. 5% noise is added
to the training data for the third Monk’s problem. Objective
assessment of the performance of XCS is feasible because
the data has been pre-classified according to explicit and
well-defined target concepts which enables a direct
comparison to be made with the performance of other Data
Mining techniques on these problems.

The three test sets provided with the Monk’s problem are
individually significant to the evaluation of XCS for Data
Mining. The first test set is solved using a simple boolean
expression which, whilst not directly representable in a

single XCS classifier condition, can be optimally
represented (including the corresponding negative cases)
using the standard XCS ternary conditions by small set of
12 cooperating classifiers. Four of the six attributes must be
removed from consideration using generalization, thereby
providing a test of the generalization capabilities of XCS.
The second experiment requires a complex set of
disjunctions of conjunctions to be fully represented, and
presents a considerable challenge to most Machine Learning
techniques. This experiment will test the ability of XCS to
maintain a population of many cooperative classifiers in
order to represent the classification accurately. In real data it
is difficult to clean the data completely, and the use of
accuracy as the basis of XCS learning could be
compromised by noisy data. Thus, the Monk's 3 data set will
illustrate the ability of XCS to cope with typical amounts of
noise found in data after data cleansing without hindering
the learning operation.

3.2 THE LEARNING SYSTEM

A XCS implementation conforming to the XCS used within
(Wilson, 1998; Kovacs, 1996) was obtained (Barry, 1998).
In all experiments the parameterization of the XCS was set
as follows: p1 =10.0, ε1=0.01, F1=0.01, β=0.2, γ=0.71, θ=25,
ε0=0.01, α=0.01, χ=0.8, µ=0.04, φ=0.5, P#=0.33 (see Kovacs
(1996) Appendix B for a parameter glossary). These
parameter settings were taken from the settings used by
Wilson (1995), and were considered appropriate due to the
similarity of the Monk’s search problem to the Boolean
Multiplexor problems investigated by Wilson. During our
investigations alternative parameter settings were
investigated and not adopted. The message length, condition
length, and maximum population size were set according to
the needs of each experiment.

The Monk’s problems are derived from a data set of 432
instances, each consisting of six categorical integer valued
attributes (see Thrun). Initially the input encoding was
devised as a binary string with each attribute represented by
a minimal corresponding binary form concatenated to
produce the input bit vector. For example, attribute 1 is a
three valued attributed (values 1, 2, and 3), represented in
this encoding by two bits with value 1 coded as 00, value 2
coded as 01, and value 3 coded as 10. This gives a string
length of 10 to represent all six attributes. The minimum
string length required to represent the entire attribute space
of 432 is 9 (29 = 512). Thus, this representation produces a
small degree of redundancy. The encoding assumes that the
attribute values are ordered in some way, even arbitrarily.
This assumption is satisfied in the Monk’s data because the
categorical attribute values are represented as successive
integers starting at one. The output message is a single
binary bit representing the predicted class for instances
matching the classifier condition.

A training and test environment was constructed to present
the data instances sampled at random from the training set
on each iteration of the XCS. Upon receiving the chosen
output message from the XCS, the environment returns a
maximum reward if the output message is the same as the

class of the instance used to provide the input message and a
minimum reward is returned otherwise. To test the learnt
classifier population, the test set is presented to the XCS
after a predetermined number of exploration (learning)
trials, set as appropriate for each experiment, and the
performance of XCS captured during this phase with
classifier induction and strength modification disabled. The
results presented are an average of 10 runs of XCS on the
training set and with constant parameterization. The results
of this test phase are presented only if the performance of
the XCS on the test data set was different from that achieved
within the training set at the end of the learning phase.
Coverage Tables, used to compare the completeness of
concept learning within Thrun (1991), were also captured at
the end of the learning phase.

The graphs show three measures of XCS performance:
system prediction, system error and macroclassifier
population size. System prediction indicates the proportion
of exploit iterations, out of the previous 50 exploitation
iterations, in which XCS correctly classifies a data instance.
The system error is a moving average of the error in the
prediction of the chosen Action Set [A] (the set of classifiers
chosen to perform the action in an iteration), again
calculated over the previous 50 exploitation iterations. The
population size is the proportion of the number of
macroclassifiers in the population to the total number of
microclassifiers that the population may hold. For an XCS
that successfully learns an optimal set of classifiers the
prediction rises steeply to 1.0 and stays at that level.
Occasional fluctuations just below this maximum may occur
when the GA deletes a classifier during search for the
optimal population (termed [O]; (Kovacs, 1996)).
Macroclassifier population size will typically increase to a
peak at around three-quarters of the total population size as
the XCS explores as many classifiers as possible. The
pressure to obtain optimally general classifiers drives the
population down as the “good” classifiers increase in
numerosity and the “poor” ones are deleted. Eventually the
population will stabilize when the XCS has found the
optimal set. A sign of a weak performance within XCS
(when it doesn't explore a high enough proportion of the
population and hence is unable to converge on the optimal
solution) is when the population size oscillates around a
relatively high proportion (> 0.3) without further reduction.
Note that the proportion of macroclassifiers in the stable
population depends on the population limit set as a
parameter and that this limit is set using knowledge of the
domain.

3.3 THE MONK'S 1 PROBLEM TEST

The Monk's 1 test is a relatively simple test designed to
demonstrate that a new classification algorithm is capable of
simple concept learning. As such, the application of this test
set to XCS should confirm or deny the basic hypothesis that
XCS is an appropriate basis for the development of a Data
Mining tool. From results reported for the testing of other
Machine Learning algorithms on this test set (Thrun, 1991)
it would be expected that XCS should be able to

demonstrate accurate classification (demonstrated by
accurate prediction) within a relatively short learning
period. In addition, it is desirable that XCS be able to
identify the optimal classifier set for this problem. The
optimal set of twelve classifiers for the Monk’s 1 problem
using binary encoding is: {#00#######→1,
######0000→1, #######1#1→1, ######1#1#→1,
#1####0#1#→0, ##1###0#1#→0, #1####1#0#→0,
##1###1#0#→0, #1#####0#1→0, ##1####0#1→0,
#1#####1#0→0, ##1####1#0→0}. Note that XCS retains
accurately wrong classifiers therefore each of these
classifiers will have an associated classifier with the same
condition, the opposite action, and a prediction equal to the
minimum reward value.

The condition size and message size for the binary encoding
used with this test were set at 10. The population size limit
was chosen from a consideration of the predicted size of
[O]. If we want to find all the optimal classifiers each with
an average numerosity of fifteen then the minimum
population size should be 24 . 15 = 360 micro classifiers.
Thus, for this experiment a population size of 400 was
deemed adequate.

Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

P
ro

po
rti

on

Exploitations

XCS Output

Performance
Error

Population

Figure 1 : XCS performance during training using the Monk’s 1
Test data set, averaged over 10 runs with parameterization as
described in Section 3.2. The performance during the test set

remained at the same level as the final 5,000 iterations.

The performance measures averaged over 10 runs of XCS
on the first Monk's training set indicate that XCS had
learned the target concepts after only 10,000 exploitations.
The performance curve in Figure 1 indicates that XCS has
successfully established a population that correctly classifies
the data set. An analysis of the populations resulting from
the individual runs revealed that all of the populations had
discovered [O] with the members of [O] obtaining high
numerosity, accurate prediction and fitness. In three of the
final populations one of the optimally general classifiers did

not have a relatively high numerosity or experience but was
still perfectly accurate and had a high fitness, demonstrating
that this final member of [O] had been established relatively
late within the run in these cases. On average each final
population held 80 macroclassifiers, 24 of which made up
[O]. All of the remaining classifiers had low numerosity
(less than 5) and small experience, indicating that they were
the product of continued but unnecessary GA search.

These results confirm the hypothesis that XCS is able to
induce and establish the accurate and optimally general rule
set from a simple data set of pre-classified data. The
performance of XCS was comparable with the performance
of neural networks and production rule classifiers (CN2 and
those based on AQ-15), and exceeded that of all the ID3
based decision tree classifiers reported in Thrun (1991).

3.4 MONK'S 2 PROBLEM TEST

The Monk's 2 data set represents a much more complex
relationship than that seen in Monk's 1. In the comparison of
performance (Thrun, 1991) only the neural network based
classifiers and AQ17DCI obtained 100% classification
performance, with most decision tree classifiers obtaining
65-70% correct classification. The complexity of the task is
indicated by the fact that in order to represent the concepts
optimally within the ternary condition encoding of XCS a
set of 104 binary-encoded classifiers is required for positive
classification and 100 classifiers for negative classification.
It must be noted, however, that the target concept in Monk's
2 Problem cannot be simply described when using
disjunctions of conjunctions of attribute-value pairs and
therefore this problem is artificially hard for XCS using the
standard condition representation.

The XCS message encoding used within this test was
initially kept the same as that used for the Monk's 1 test.
Knowing the size of the solution space, however, the
population size was increased to 1600 classifiers. This is
potentially small for the predicted number of target
classifiers but investigations into larger population size did
not show improvements sufficient to justify the extra
computational resources required.

Results

It can be seen from the XCS performance in Figure 2 that it
struggles to find the optimal set of classifiers. The system
prediction converges slowly towards 1.0 but still averages
only about 0.98 at 50,000 exploitations. The proportion of
macroclassifiers in the population peaks at only 0.6 and then
falls to ~0.35 over the whole 50,000 exploitations,
indicating that the XCS has not explored enough of the
solution space to find all the optimally general classifiers.
System error stabilizes at about 0.05 which is significantly
larger than the accuracy cutoff of 0.01 supporting the
suggestion that insufficient search has been performed.
Inspection of the final populations and the corresponding
coverage tables revealed that XCS had only learnt a small
proportion of the optimal rule set in each of the runs if only
the high numerosity classifiers are considered. A larger

proportion of the optimal rule set was present if ‘weak’
classifiers were considered.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

P
ro

po
rti

on

Exploitations

XCS Output

Performance
Error

Population

Figure 2 : XCS performance in the Monk’s 2 Test data set using a
Binary Encoding, averaged over 10 runs, population size 1600.

From these results it was hypothesized that XCS was unable
to find suitable classifiers due to the deceptive nature of the
encoding used. To test this hypothesis a second encoding
type was introduced - an enumeration encoding. The
enumeration encoding maps an attribute with n possible
values to a binary string of length n. The attribute value is
mapped to an integer ranking, i, by setting the ith lowest bit
to 1 and all the others to 0. This gives a string length of 17
for the Monk's Problems and a condition search space of 317.
In fact, using this encoding in XCS allows the same
attribute vector to be encoded in more than one way. For
example, the attribute-value pair (A1, 3) can be represented
using the ternary strings, '100', '1#0', '10#', '1##', and '#00'
because (A1, 3) can only ever be encoded in a binary string
as '100' in an input message. Also, it is more convenient to
express inequalities such as A1≠1, which in an enumeration
encoding has a single representation '##0' whereas in a
binary-valued encoding two strings are required: '1#' and
'01'. This reduces the number of classifiers required from
204 for the binary encoding to 42 - 15 and 27 classifiers for
positive and negative classification respectively. It was
expected that the greater flexibility of the enumeration
encoding in representing attribute-value relations will
enable XCS to optimally classify for the Monk’s 2 Problem
and to find the optimal rule set.

The encoding was adjusted within the test and trial
environment and the experiment was repeated with the new
encoding. The population size was maintained at 1600
microclassifiers in order to allow a direct comparison with
the results from the binary encoding.

The averaged results of the 10 runs are depicted in Figure 3.
With the enumeration encoding the system prediction
reaches its maximum of 1.0 at around 25,000 exploitations
with the system error correspondingly dropping to around
0.0, as expected. This demonstrates that XCS was able to
identify a correct classification for the test data set. An
examination of the final populations revealed that [O] was
not completely formed, with approximately 30 of the 42

members of [O] present and the remainder covered by two
or more classifiers with conditions that remained too
specific.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

P
ro

po
rti

on

Exploitations

XCS Output

Performance
Error

Population

Figure 3 : XCS performance in the Monk’s 2 Test data set
using the Enumeration Encoding (averaged over 10 runs,
population size = 1600), demonstrating the ability of XCS to
perform optimally given a suitable classifier encoding.

These results confirmed the hypothesis that XCS was able
to learn the correct classification of a data set representing a
complex concept. Clearly this performance is an
improvement over most Machine Learning algorithms
reported in Thrun (1991). The results reported for the
application of Back-Prop neural networks could not
generate generalized concepts that were open to
examination, which is a key requirement of an effective
Data Mining technique.

3.5 MONK'S 3 PROBLEM TEST

The target concept of the Monk’s 3 Problem is of similar
complexity to Monk’s 1 but it incorporates noise by
including 6 misclassified examples (~5%) in the training set.
This test data set could pose significant problems for XCS,
with the ability to maintain ‘strong’ classifiers dependent
upon the value of the parameters of the accuracy function.
Data that contains too much noise could be preventing XCS
from forming accurate generalizations and thereby hinder
the search process of the GA within XCS. Alternatively,
where a lower level of noise is present XCS may over
generalize ('overfit' to the training data), hindering
performance on the test set. It is hypothesized that the
limited extent of noise added to the Monk's 3 data set will
not hinder the ability of XCS to establish the best [O]
available from the training set, although XCS may overfit to
the training set.

This experiment was run using 10 runs in each case of both
the Binary encoding and the Enumeration encoding, with
the condition and message size set appropriately for each
encoding. The population size was set to 400 because of the
lower level of complexity of this problem, requiring 22
classifiers to map the [noiseless] problem completely with
optimal generality when using the Binary encoding.

Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000

P
ro

po
rti

on

Exploitations

XCS Output

Performance
Error

Population

Figure 4 : XCS performance in the Monk’s 3 Test data set
(averaged over 10 runs, population size = 400). The last 2000
exploration iterations were conducted without the induction
algorithms using the Test data set. The optimal expected
performance was 95% due to the noisy training set.

No difference in performance was found as a result of
differences in the encoding form used. Figure 4 shows the
results of running XCS using the Binary encoding on the
Monk’s 3 training and test data sets. Training XCS gives a
classification performance of ~0.95 and a relatively large
system error. This is a consequence of the noise in the
training set, with a maximum achievable performance of
0.95 on average. When XCS is switched to run on the test
data set the classification performance improves and the
system error drops. An examination of the populations at the
end of each run revealed that XCS had successfully
established a set of high numerosity optimally general
classifiers close to [O] (which will never be achieved
because of the presence of noise). We hypothesize that the
improvement in performance during the test phase is due to
the presence of other classifiers in the population as a result
of continued GA exploration which cover the over
generality due to noise of the high numerosity classifiers.

The results achieved by XCS are comparable with those
obtained by Neural Network classifiers in Thrun (1991), and
marginally better than the Decision Tree classifiers. They
were not as good as the AQ15 based Production Rule
classifiers which typically achieved 100% performance in
the test set due to the larger (normally redundant) coverage
of the classification space which they maintain. These
results are encouraging, although staged experiments
introducing graduated amounts of noise are required to fully
evaluate the ability of XCS to cope with noisy data.

4 DISCUSSION
The performance of XCS within the Monk's problems is
very encouraging. Comparisons with existing Machine
Learning techniques have already been made in Section 3,
which demonstrate that the performance of XCS is at least
as good as, and in many cases better than classifiers based

on other Machine Learning techniques. Furthermore, the
ability of XCS to determine the compact rule representation
provided by the optimally general classifier set in these
tests, and potentially present these classifiers in a human
readable form, is a clear advantage.

In the Monk's 2 Problem the XCS did not form a completely
generalized mapping of the target concepts. In these
populations a number of classifiers existed which were
marginally over specific, indicating that more GA
recombination was required in order to obtain full
generalization. Kovacs (1997) has introduced additional
deletion operators in a mechanism termed "condensation",
triggered to reduce a population to the optimal set. It is
likely that a mechanism of this type could be employed to
enable XCS to reliably produce a minimal set of optimal
rules even when learning is halted prior to establishing [O].

In data mining applications the target concepts are rarely
known, although sometimes estimated by a domain expert,
so we have resisted the temptation to introduce any
encoding that is tailored to the problem. At least one of the
production rule algorithms compared in the Thrun paper
(Bala, 1991) produces 100% accuracy on both the Monk's 2
test sets. This is wholly due to the fact that the algorithm
had been set to learn concepts of based on the number of
first-valued attributes, which enables the target concepts to
be represented by only two production rules:

if (equals (number of attributes that are first valued, 2)) then 1
if (notEquals (number of attributes that are first valued, 2)) then 0

Without specific knowledge of the target concepts the
classifier system cannot be setup to use rules such as these
so more general representations are needed. For these
artificial problems the target concepts are known and
therefore an encoding that is concept-specific would
theoretically perform better on this problem than the more
general ternary encoding used.

Theoretically, the enumeration encoding should be used for
all of the Monk’s problems because all of the attributes are
categorically valued and the binary encoding becomes
unwieldy when relations between attributes and logical
negations need to be represented. Practically, because the
enumeration encoding is longer than the binary for the
Monk’s problem and there are many more redundant
classifiers than when learning relatively simple target
concepts such as in the Monk’s 1 problem, the compactness
of the binary encoding makes it just as, or more, effective
than the enumeration encoding. These encodings are
suitable only for discretely-valued attributes so future work
will include investigation into encodings for continuously
valued attributes and alternatives encodings for discrete
attributes. It is recognized that GA-Miner and other LCS
based Data Mining tools which have been developed have
employed high level attribute representations and more
complex classifier condition formulations which are
advantageous in many circumstances. Future work will
address these issues.

The difficulty in learning the concepts for the Monk's 2
training set using the Binary encoding require further

investigation. Although intuitively XCS would be expected
to increase its level of exploration when correctly
classifying rules cannot be found, the degree of exploration
used by XCS was actually reduced. This would suggest that
the GA in XCS was unable to recombine classifiers in a way
that produced significant improvements in their accuracy, so
preventing a clear search direction emerging which would
be exploited by the GA. This may indicate a potential
problem within XCS, or it may be the case that the binary
encoding simply presented a deceptive landscape. Further
investigation of this phenomenon is required.

An important criterion for an effective data mining
technique is the ability to cope with noisy data. The large
number of samples taken from only 124 training examples
presented the danger of over-fitting to the training data and
succumbing to bias within the training data. The tension
between obtaining accurate classification and achieving
maximally general classifiers in the operation of XCS
appeared to prevent this. More investigation is required in
order to ascertain the proportion of noise (and/or bias) in the
data which XCS is able to absorb before performance
degrades significantly.

5 FUTURE WORK
The Monk's problems are based on a data set with six
attributes each having no more than four values making a
total of 432 possible attribute vectors. A typical commercial
data set that has been prepared for analysis will have up to
100 ordinal and nominal, continuous and discrete attributes
and has a dimensionality several orders higher than the
Monk's data sets. The results presented in this paper have
demonstrated that XCS classifies the Monk's data sets more
accurately than many current classifier systems, and at least
as well as those systems based on artificial neural networks,.
In order to establish the effectiveness of XCS and GA-based
classifier systems as Data Mining techniques, then the
performance of XCS on the large and noisy commercial data
must be investigated.

XCS employs the ternary alphabet which is used in the
canonical LCS and which grew out of the binary encodings
used in GAs. The results in this paper demonstrated that
even when restricted to this alphabet, changing the encoding
causes an observable change in the performance of XCS and
is itself affected by the nature of the concepts to be learnt.
An effective encoding must be able to compactly and
accurately represent patterns in data, of which there is
typically little prior information, whilst keeping disruptions
of the generalisation mechanisms of XCS to the minimum.
There has been much work (Goldberg,) on representing
discrete and continuous values in a GA but these
representations are not always adequate for a classifier. For
example, standard binary-based representations for many-
valued discrete attributes will produce prohibitively long
and inefficient bit strings if there are several of these
attributes that are sparsely-valued. Coping with the
uncertainty of noisy data will require fuzzy or windowed
representations (Booker,). Mixing representations in a
single classifier has implications for the crossover operators

used by XCS and thus the correct operation of XCS niching
and generalisation. Thus, any new or modified
representations will necessitate creating original operators
and investigating their effect on XCS performance.

Establishing a set of effective encodings will enable XCS to
be tested over a wider range of test data sets and allow a
more detailed comparison of its performance against other
classifier systems.

The performance of XCS on the data sets used to compare
Machine Learning, statistical and Artificial Neural Network
techniques in the Statlog project (Michie et al) would
provide a good measure of XCS's relative effectiveness as a
classifying system. Several of the data sets used within the
Statlog project were taken from real commercial sources
and are characteristically large and noisy and would
therefore be appropriate performance reference points. For
effective comparison between Data Mining investigations
within the LCS community it is vital that these common
data sets are adopted.

XCS has the ability to identify the attributes that have a
significant effect on the classification by completely
generalising the contribution of the less important attributes.
There will be a practical limit on the number of attributes
that XCS can handle which will be exceeded by many
commercial data sets so it is important to apply suitable
feature selection techniques. One such technique, taken
from statistical modelling, is to increment or decrement the
number of attributes depending on the classification
performance of the preceeding model generated by the Data
Miner and the relative value of each particular attribute in
this model. Statistics on the distribution of attribute values
for each class are used to measure of the importance of an
attribute. XCS provides an excellent platform for integrating
these mechanisms dynamically so that attributes can be
added and subtracted in a single run of XCS.

6 CONCLUSIONS
In the application of the Monk's problems to XCS is has
been shown that XCS was able to perform at least as well as
traditional Machine Learning techniques in both simple and
complex classification tasks, and in the presence or absence
of small proportions of noise within the data. In some cases
XCS was seen to perform better than Machine Learning
techniques which are commonly found in commercial data
mining applications. XCS was also able to produce and
maintain an easily identifiable accurately general set of
classifiers representing the concepts within the data sets. If
combined with software to convert the ternary classifier
representation into a standard production rule format, XCS
will generate a model that can be readily understood and
reapplied by potential clients of a data mining application.

Whilst encouraging, the Monk's problems are limited in
their correlation to data sets used within a commercial Data
Mining environment. Work is underway on expanding the
application of XCS to graded real world data sets that will
allow the XCS mechanism to be scaled to cope with large or

sparse data sets. In particular, the encoding problems seen
within the Monk's 2 problem indicate a need to find
appropriate attribute representation, and appropriate
condition representations. Large data will also require more
input from hybrid genetic and non-genetic operators that
will take into account knowledge about the distribution of
attributes within the data set. It is also possible that methods
akin to those used to establish linkage within genotypes may
bear fruit, and this avenue will be investigated.

If GA-based Data Mining is to compete with the statistical
modelling, artificial neural networks and decision-tree
learners that are well-established Data Mining techniques
then it must at least be able to offer the ability for
supervised classification of large and noisy data over many
different domains. Of the previous work in GA-based
techniques for Data Mining outlined earlier only REGAL
and GA-Miner have been used successfully to mine
commercial data by using hybrid techniques to solve some
of the practical problems of mining commercial data but
these use domain knowledge and primitive generalisation
operators. XCS has the potential to extend the capabilities
of GA-based data mining systems over and above other
Data Mining techniques because it has the ability to produce
the optimally general descriptions of patterns in any data.
This, together with the robust nature of GAs, will mean that
a GA-based data mining system with XCS capabilities will
have an accuracy comparable with that of Neural Networks,
and will provide an explicit human-readable description of
the patterns in the data equivalent to those produced by
decision-tree learners.

Acknowledgements

Project funded by UK Department of Trade and Industry
under the auspices of the Teaching Company
Directorate.The authors wish to acknowledge the advice and
discussions with Stewart Wilson and Tim Kovacs in the
development and testing of the XCS implementation. They
also acknowledge the help, support, and resources given by
The Database Group and Dr Andrew Greenyer, in the
conduct of this project.

Bibliography

Bala, J., Bloedorn, E., Kaufman, K., Michalski, R.S.,
Pachowicz, P., Vafaie, H., Wnek, J., Zhang, J. (1991),
Applying Various AQ Programs to the MONK’s
Problems: Results and Brief Description of the Methods,
in Thrun (1991), 7-22.

Barry (1998), The XCS Classifier System, Tech. Rep.,
Faculty of Computer Studies and Maths, UWE, UK.

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J.
(1984), Classification and Regression Trees, Wadsworth

Booker, L.B. (1989), Triggered Rule Discovery in Classifier
Systems, in Schaffer, J.D. (ed), Proc. Third Intl. Conf.
On Genetic Algorithms, 265-274, Morgan-Kaufmann.

Fayyad, U.M., Piatetsky-Shapiro, G. and Smyth, P. (1996),
From Data Mining to Knowledge Discovery: An

Overview, in Fayyad, U.M., Piatetetsky-Shapiro, G.,
Smyth, P., and Uthurusamy, R. (eds), Advances in
Knowledge Discovery and Data Mining, AAAI Press.

Flockhart, I. (1995), GA-Miner: Parallel Data Mining and
Hierarchical Genetic Algorithms, Tech. Rep.: EPCC-
AIKMS-GA-MINER-REPORT 1.0, Univ. of Edinburgh.

Giordana, A., Neri, F., Saitta, L. (1994), Search-Intensive
Concept Induction, Tech. Rep., Universita di Torino,
Dipaertimento di Informatica, Torino, Italy.

Goldberg, D.E. (1989), Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley.

Greene, D.P., Smith, S.F. (1993), Competition-based
Induction of Decision Models from Examples, Machine
Learning, 13, 229-257.

Greene, D.P., Smith, S.F. (1994), Using Coverage as a
Model-Building Constraint in Learning Classifier
Systems, Evolutionary Computation, 2(1).

Holland, J.H. (1986), Escaping Brittleness: The possibilities
of general-purpose learning algorithms applied to
parallel rule-based systems, in M. Michalski, M.
Carbonell (Eds), Machine Learning, an Artificial
Intelligence approach, Vol. 2, pp. 593-623, Morgan
Kauffman.

Kass, G.V. (1980), An exploratory technique for
investigating large quantities of categorical data, Applied
Statistics, 119-127.

Kovacs, T. (1996), Evolving optimal populations with XCS
classifier systems, Tech. Rep.: CSR-96-17, School of
Computer Science, University of Birmingham, UK.

Kovacs, T. (1997), XCS Classifier System Reliably Evolves
Accurate, Complete and Minimal Representations for
Boolean Functions, WSC2: 2nd On-line World Conf. on
Soft Computing in Engineering Design.

Lu, H., Setiono, R., Liu, H. (1995), NeuroRule: A
Connectionist Approach to Data Mining, Proc. Intl.
Conf. Very Large Databases VLDB95.

Michie, D., Spiegelhalter, D.J., and Taylor, C.C. (eds)
(1994), Machine Learning, Neural and Statistical
Classification, Ellis Horwood.

Mitchell, J. M. O. (1994), Classical Statistical Methods, in
Michie (1994), 17-28.

Mitchell, T M. (1997), Machine Learning, McGraw-Hill.
Molina, R., Perez de al Blanca, N., Taylor, C.C. (1994),

Modern Statistical Techniques, in Michie (1994), 29-49.
Punch, W.F., Goodman, E.D., Min Pei, Lai Chia-Shun,

Hoyland, P., Enbody, R. (1993), Further Research on
Feature Selection and Classification using Genetic
Algorithms, in Proceedings of the Fifth International
Conference on Genetic Algorithms, 557-564.

M.L. Raymer, W.F. Punch, E.D. Goodman and L.A. Kuhn,
Genetic Programming for Improved Data Mining -
Application to the Biochemistry of Protein Interactions,
Proc. Intl. Conf. Genetic Programming GP-96, 375-380.

Parodi, A., Bonelli, P (1990), The Animat and the
Physician, Proc. First Intl. Conf.

Riolo, R.L. (1987), Bucket Brigade performance: II. Default
Hierarchies, Proc. Second Intl.Conf. on Genetic
Algorithms and their Applications, 196-201.

Riolo, R.L. (1989), The emergence of default hierarchies in
LCS, Proc.Third Intl.Conf. on Genetic Algorithms and
their Applications, 322-337.

Rowher, R., Wynne-Jones, M., Wysotzki, F. (1991), Neural
Networks, in Michie (1994), 84-106.

Saxon, S. (1998), Data Mining Techniques, Tech. Rep.,
Computer Studies and Maths, UWE, UK.

Spears, W. M., DeJong, K.A. (1992), Using Genetic
Algorithms for Supervised Concept Learning, in
Bourbakis, N. G. (ed), Artificial Intelligence Methods
and Applications, World Scientific.

Thrun, S.B., Bala, J., Bloedorn, E., Bratko, L., Cestnik, B.,
Cheng, J., De Jong, K., Dzeroski, S., Fahlmann, S.E.,
Fisher, D.,Hamann, R., Kaufman, K., Keller, S.,
Kononenko, L., Kreuziger, J., Michalski, R.S. Mitchell,
T., Pachowicz, P., Reich, Y., Vafaie, H., Van de Welde,
W., Wenzel, W., Wnek, J., Zhang, J. (1991), The Monk's
Problems: A Performance Comparison of Different
Learning Algorithms,Technical Report: CMU-CS-91-
197, Carnegie Mellon University.

Wilson, S.W. (1983), Knowledge Growth in an artificial
animal, Proc. First Intl. Conf. On Genetic Algorithms
and their Applications.

Wilson, S.W. (1988), Bid Competition and Specificity
Reconsidered, Research Memo 54R, Roland Institute.

Wilson, S.W. (1995), Classifier fitness based on accuracy,
Evolutionary Computation 3(2), 149-175

Wilson, S.W. (1998), Generalization in the XCS classifier
system, in Proc. Third Annual Genetic Programming
Conference GP-98

Appendix

Coverage tables are mappings of the entire Monk’s attribute
space with each point marked as being correctly classified
as 1 or 0 or incorrectly classified (X) and are closely based
on those in Thrun (1991).

Holding Jacket Tie Map to Column
Sword red yes 1
Sword yellow no 2
Sword green yes 3
Sword blue no 4
Sword red yes 5
Sword yellow no 6
Sword green yes 7
Sword blue no 8
Flag red yes 9
Flag yellow no 10
Flag green yes 11

Flag blue no 12
Flag red yes 13
Flag yellow no 14
Flag green yes 15
Flag blue no 16

Balloon red yes 17
Balloon yellow no 18
Balloon green yes 19
Balloon blue no 20
Balloon red yes 21
Balloon yellow no 22
Balloon green yes 23
Balloon blue no 24

Head Body Smiling Maps to Row
round round yes 1
round round no 2
round square yes 3
round square no 4
round octagon yes 5
round octagon no 6
square round yes 7
square round no 8
square square yes 9
square square no 10
square octagon yes 11
square octagon no 12

octagon round yes 13
octagon round no 14
octagon square yes 15
octagon square no 16
octagon octagon yes 17
octagon octagon no 18

Monk’s 1

These coverage tables are produced after a test iteration of
XCS and indicate the population’s ability to classify the
every point in the attribute space.

The coverage table for perfect classification of the Monk’ s
1 problem is shown in fig. A.1. This was produced in all
but 5 of the 30 runs in the Monk’s 1 experiment. Of the five
other runs the coverage tables showed that the worst run had
21 misclassifications with the other four having no more
than 8 misclassifications.

Monk’s 2

This typical coverage table for the Monk's 2 problem
indicates that although XCS has learnt the training data
perfectly - see fig A.2 - the system classifies with ~90%
accuracy over the whole set, indicating an that XCS has
overfit to the training data.

Monk's 3

111111111111111111111111
111111111111111111111111
110000001100000011000000
110000001100000011000000
110000001100000011000000
110000001100000011000000
110000001100000011000000
110000001100000011000000
111111111111111111111111
111111111111111111111111
110000001100000011000000
110000001100000011000000
110000001100000011000000
110000001100000011000000
110000001100000011000000
110000001100000011000000
111111111111111111111111
111111111111111111111111

Figure A.1: The coverage table for 100%
classification accuracy of the Monk’s 1
problem as produced from 25/30 XCS

runs

00000000000X0X0X000X0X0X
000X0X0X00X1010100X10101
000000000001010100010101
0X0X0X0X0110101001101010
000000000001010100010101
0X0X0101X110101001101010
000000000001010100010101
0X0101010110X0X00110X0X0
000101010110101001101010
011010101X0000001X000000
000101010110101001101010
011010101X0000001X000000
000000000001010100010101
0X0101010110X0X00110X0X0
000101010110101001101010
011010101X0000001X000000
000101010110101001101010
011010101X0000001X000000

Figure A.2: A typical coverage table
for the Monk's 2 problem using the

enumeration encoding.

