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Abstract

This paper develops an Evolutionary Pro-
gramming based load-
ow algorithm. A
number of solution acceleration techniques
are developed to enhance the performance of
the basic EP algorithm. Power system spe-
ci�c information is also incorporated into the
EP algorithm to speed its convergence. Fi-
nally the algorithm is enhanced through the
addition of the Jacobian matrix into the so-
lution process which provides a very powerful
and robust load-
ow method. The developed
method is validated through application on a
number of IEEE test systems.

1 INTRODUCTION

Evolutionary computation techniques are becoming an
accepted solution technique in many areas of problem
solving. One �eld where it has been applied to many
problems is that of power systems engineering [1, 2, 3].
In these �elds, evolutionary computation brings with
it the advantage of being able to solve more detailed
problems where present and more classical techniques
fail to produce acceptable solutions.

The load-
ow problem [4, 5] is of critical importance in
the day to day operation of modern power systems. By
far the most popular method of solution for the load-

ow is that of the Newton-Raphson load-
ow (NRLF).
The NRLF method has the advantage of being fast,
converging in usually fewer than 6 iterations. How-
ever, if the system is heavily loaded or stressed the
NRLF may fail to converge. In practice, it is in these
situations when the load
ow solution is of great inter-
est. The problem itself is one of very high dimensions
with typical power systems having the order of thou-
sands of nodes within them. This presents a large and

highly constrained problem with practical signi�cance.

Evolutionary programming (EP) [6, 7] is a stochastic
optimisation technique based on the mechanics of evo-
lution. It di�ers from classical calculus based methods
in that it works with a population of solutions rather
than a single solution. Through the operators of muta-
tion and selection, this population is evolved towards
the global optimum solution. Due to the nature of EP,
it performs a parallel search of the solution space for
optimal solutions. This parallelism can prevent prema-
ture convergence to local optima as well as providing
alternative search paths if individual solutions become
infeasible, unlike pure gradient based approaches.

The basic EP algorithm does not require any gradi-
ent information. However when the dimensions of the
problem become large as in the case of load
ow, evo-
lutionary computation methods can take an unaccept-
able period of time to converge or fail to converge com-
pletely. To overcome this limitation the gradient may
be used to accelerate the population towards the global
optimum. Inclusion of gradient information greatly en-
hances the performance of the EP, but the EP itself
remains as the global optimisation routine with the
gradient used as a local search about certain candi-
dates.

2 THE LOADFLOW PROBLEM

The objective of the load
ow problem is to determine
the voltages and power 
ows throughout a power net-
work for a given operating condition. This problem
may be formulated mathematically as follows. Let
there be a total of N nodes in the power system. If
node i is a load (PQ) node where the active and reac-
tive power loads are known, the mismatch equations
at that node are:

�Pi = jP sp
i � Pij (1)

�Qi = jQsp
i �Qij



where �Pi, �Qi are the active and reactive power
mismatches of node i , P sp

i , Qsp
i are the speci�ed ac-

tive and reactive powers for node i and Pi, Qi are the
calculated active and reactive powers for node i.

In the case of a generation (PV) node i the voltage
magnitude jVij is speci�ed as well as the active power
generation P

sp
i . Qi is an unknown quantity to be de-

termined at the solution. So in the case of a generation
node the mismatch equations are:

�Pi = jP sp
i � Pij (2)

�Vi = jV sp
i � Vij

where �Vi is the voltage mismatch at node i, V
sp
i is the

speci�ed voltage at node i and Vi is the present voltage
at node i. In the present formulation, the voltage of
generator nodes is always forced to be the speci�ed
value, hence �Vi is zero. Summing over every node in
the system we can form the total squared mismatch of
the system:

H =
X

i�Npq+Npv

�P 2
i +

X
i�Npq

�Q2
i (3)

where Npq and Npv are the number of load and gener-
ation nodes respectively.

At the solution of the load
ow problem �Pi , �Qi

and �Vi for each node must be less than some preset
tolerance, usually 10�3 in per-unit notation(pu). The
load
ow problem may be formulated as a minimisa-
tion problem with the objective being to minimise the
total squared mismatch which will eventually cause
satisfaction of the 10�3 tolerance at each node. Such
a minimisation problem is well suited to evolutionary
computation methods such as Evolutionary Program-
ming.

3 EVOLUTIONARY

PROGRAMMING

Evolutionary programming is a stochastic optimisa-
tion technique based on the mechanics of evolution. It
di�ers from classical calculus based methods in that
it works with a population of solutions rather than a
single solution. Within each iteration, a second pop-
ulation is produced through the mutation operator.
This operator produces new solutions by perturbing
the independent variables of an existing solution using
a Gaussian random variable of mean zero and stan-
dard deviation �. The factor � is referred to as the
mutation factor and its value is critical in the EP pro-
cess. Each individual is given a �tness score which is
a measure of its optimality with respect to the objec-

tive function. A higher �tness is awarded to a more
optimal solution.

Through the use of a selection scheme, these two pop-
ulations are reduced to a single population containing
the survivors of the competition. For the EP process
to optimise, the candidate solutions with a higher �t-
ness value must have a greater chance of survival in the
selection scheme. This new population now undergoes
the same process of mutation and competition until a
stopping criterion is met.

4 EP LOADFLOW ALGORITHM

Based on the EP methodology, an algorithm for solv-
ing the load
ow can be established. The 
ow chart of
the algorithm is shown graphically in Fig 1, and its
main components are presented below.
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Figure 1: EP Load
ow 
owchart

(i) Individuals and Initialisation: An individual in
a population represents a candidate load
ow so-
lution. The elements within the individual are
the voltage magnitudes and phases for all nodes
within the power system. Each of these elements
in all candidates is independently initialised by a
uniform random number.

(ii) Fitness of Candidates: A �tness score is assigned
to each of the candidate solutions according to
the relationship in (4).Using this method to assign
�tness will lead to more optimal solutions having
a higher �tness score.

fi =
10

Hi + 0:0001
(4)

where f is the �tness of candidate i and Hi is the
total squared mismatch of candidate i.



(iii) Mutation: At the mutation stage, the nodal volt-
ages of each individual within the parent popu-
lation undergo mutation in order to produce a
new population. Typically the mutation standard
deviation is formed by some relationship of the
present individuals �tness, however, if it is pos-
sible to also include information which is speci�c
to the problem being solved, the performance of
the EP can be enhanced signi�cantly. This ap-
proach is adopted in the present work where the
mutation scheme of a nodal voltage depends on
the type of the node, Load or Generation. A mu-
tation scheme is now developed.
Generation Nodes: In the case of a generation
node i, the only independent variable is that of
the phase �i. The phase is mutated as follows:

�0i = �i +N(0; �pv) (5)

�pv = K�

fmax � fi

fmax

(6)

where �0i is the phase in the new individual,
N(0; �pv) is a Gaussian random number of mean
0 and standard deviation �pv . K� is a scaling
constant for voltage phase. fmax is the maximum
�tness in the population at that iteration and fi
is the �tness of the candidate being mutated.

Load Nodes: For a load node i, the indepen-
dent variables are the voltage magnitude jVij and
the phase �i. From the simple relationship be-
tween power 
ow in a transmission branch be-
tween nodes i and j, we have the following equa-
tions:

P =
ViVj

X
sin(��) (7)

Q =
Vj

X
(Vi cos(��)� Vj) (8)

where P;Q are the active and reactive powers

owing out of the receiving end (j) of the line.
�� is the phase di�erence between the voltages
at the end of the transmission line. Vi, Vj are the
voltages at nodes i and j respectively and X is
the reactance of the transmission line.

From these equations, it can be seen that the ac-
tive power 
ow P, is strongly dependent on ��
while the reactive power 
ow Q, is dependent on
jVij� jVj j. The nodal power is a summation of all
the branch power 
ows as well as any local loads
or devices and as such can be assumed to approx-
imately follow these relationships also. The volt-
ages at load nodes are hence mutated according
to the following:

�0i = �i +N(0; ��pq) (9)

V 0

i = Vi +N(0; �V pq) (10)

��pq = K�

�
fmax � fi

fmax

��
�P 2

i

�P 2
i +�Q2

i + 1

�

�V pq = Kv

�
fmax � fi

fmax

��
�Q2

i

�P 2
i +�Q2

i + 1

�

where Kv is a scaling constant for voltage magni-
tudes. In this way if the active power mismatch
at a particular node is higher than the reactive
power mismatch, the phase angle will be mutated
more than the voltage magnitude. The opposite
is true, if the reactive power mismatch is greater
than the active power mismatch.

(iv) Selection: In order to form the resultant genera-
tion, the k parent solutions ps , s = 1; : : : ; k along
with their corresponding o�spring formed by mu-
tation p0s, s = 1; : : : ; k each undergo a series of Nt

tournaments with randomly selected opponents.
Each individual s, is assigned a score !ps accord-
ing to:

!ps =

NtX
i=1

!t (11)

!t =

�
1 iffps > fpr
0 otherwise

where fps is the �tness of the individual under
consideration and fpr is the �tness of the oppo-
nent pr . The opponent is chosen at random from
the 2k individuals based on r = b2ku + 1c. bxc
denotes the greatest integer less than or equal to
x, u is a uniform random number in the interval
[0,1]. The k highest scoring candidate solutions
are taken as the population in the next genera-
tion.

(v) Termination: The optimisation process is termi-
nated when all of the nodal mismatches are within
a tolerance of 10�3 pu.

5 CONSTRAINT SATISFACTION

The EP formulation given in Section 4 will not guar-
antee the satisfaction of the equality constraints for
load-
ow given in Equations (1) & (2). So although
the EP will minimise the total squared mismatch, it
may not produce a solution with all nodal mismatches
within the preset tolerance of 10�3 pu. In order to
aid the EP in �nding the solution with near zero total
squared mismatch, constraint satisfaction techniques
must be used. The technique used to constrain the
EP is presented in [8], where it was successfully ap-
plied to a genetic algorithm based load
ow method.



In order to satisfy the constraints described by equa-
tions (1) and (2), the voltages in the candidate solution
are updated such as to produce a new candidate solu-
tion whose total squared mismatch is less than before
and the nodes are closer to satisfying the constraints in
(1) and (2). For each node i, the magnitude and phase
parts of the voltage at node d are calculated such that
with this value for voltage at node d, the mismatch
at node i becomes zero. The derivation of these equa-
tions is lengthy and is omitted for clarity. They can
be found in [8].

For each node i, there is a choice of changing one the
remaining N � 1 nodal voltages in order to provide a
zero mismatch at node i. From this choice, the one
which provides the lowest total squared mismatch is
selected. The process is completed for all nodes in the
system. Experimentation has shown that the result-
ing solutions are far superior when this technique is
applied.

6 ACCELERATION TECHNIQUES

In order to improve the speed and reliability of the
EP load-
ow algorithm number of enhancements were
made to the basic algorithm.

6.1 VOLTAGE UPDATE ORDER

In carrying out the constraint satisfaction as detailed
in section 5, there are a number of choices of which
nodes to update �rst. By experimentation, it was
found that updating the nodes in order of greatest
mismatch to lowest mismatch produced a faster rate
of convergence. Also the number of voltages to be
changed could be dramatically reduced. Consider a
case where there are N nodes, in applying the method
of section 5, we are required to check a total of (N�1)2

cases, this is computationally expensive and results in
long calculation times.

It has been found through experimentation that it is
su�cient to consider modifying only the voltage of the
node presently being constrained. This reduces the
number of cases to N�1. Experimentation has shown
this method has close e�ectiveness to that detailed in
section 5 but with a greatly reduced calculation time.

6.2 POPULATION ACCELERATION

TECHNIQUE

A second technique [9] that was applied involves an in-
termediate re-mapping of the candidate solutions to-
ward the currently best individual. The assumption
behind this method is that the best individual in the

population is closer to the global optimum than the
others. By moving the population of solutions toward
the best individual, it is hoped that by searching this
region better solutions will be found.

Mathematically this is achieved by producing two ad-
ditional populations (A & B) by moving the voltages
of a candidate i toward the voltages in the best indi-
vidual as follows,

V 0

Aik = 2V best
k � Vik (12)

V 0

Bik = Vik + h(V best
k � Vik) (13)

where V 0

Aik is the voltage of node k of individual i in
the new population A, similarly for V 0

Bik . V
best
k is the

value of the voltage at node k in the best individual of
the current population. Vik is the voltage at node k in
the ith individual in the current population. h is a uni-
form random number between -1 and 1. These three
populations are then resolved into a resultant popula-
tion using the selection scheme as with mutation.

6.3 GRADIENT ACCELERATION

The basic EP algorithm does not require any gradi-
ent information, however when the dimensions of the
problem become large as in the case of load
ow, evolu-
tionary computation techniques may require excessive
iterations or large population sizes in order to �nd a
solution where possible. To overcome this the gradi-
ent may be used to accelerate individuals within the
population towards the global optimum.

This is achieved with the use of the Jacobian matrix.
At the step Jacobian Acceleration of Fig.1, a pre-set
percentage of candidates in the population undergo a
gradient step as used in the Newton-Raphson method.
In this way, the EP acts as a global optimisation frame-
work with the Jacobian providing a local search mech-
anism. If the Jacobian becomes singular(in which case
the Newton-Raphson method fails) the gradient step
is simply omitted until it is no longer singular.

7 APPLICATION RESULTS

The developed algorithm has been applied to a num-
ber of standard load
ow problems with great success.
Excluding the use of the gradient information, the
method has found solutions for systems as large as
57 nodes. When the gradient information is included,
the node limitation is removed and the EP shows sig-
ni�cant enhancements over the basic Newton-Raphson
method.

To demonstrate the features of the algorithm, results
for the IEEE 30 node test system are presented below



along with the IEEE 57 node systems when gradient
enhancement is used. All trials were run on an Intel
Pentium II 450 computer using the C programming
language.

7.1 IEEE 30 NODE SYSTEM

The standard IEEE 30 node test system was solved
using the developed algorithm. The system consists
of 30 nodes with 6 being generation nodes with reac-
tive power limits, providing a problem with 53 vari-
ables and 63 inequality constraints to be satis�ed at
the solution. In all cases the population size was set
at 50 while the maximum iterations executed is �xed
at 50. KV and K� were set at 0.2 and 0:35rad respec-
tively in all cases. The problem was solved 100 times
and produced the correct result in 92 of the 100 tri-
als. The average number of iterations required was 19,
while the time taken per iteration was 0.344 seconds.
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Figure 2: Convergence on the IEEE 30 system

To demonstrate the convergence of the algorithm, the
minimum, maximum and average total mismatch at
each iteration, averaged over the 100 trials is plotted
below in Fig.2. From this, it can be seen that the total
squared mismatch is rapidly minimised initially in the
�rst 10 iterations. Following this, convergence slows as
the nodes are close to their solution point and the rel-
ative change in mismatch is small while the remaining
constraints are being satis�ed.

7.1.1 POPULATION ACCELERATION

The population acceleration technique described in
section 6 has a dramatic e�ect on the performance of
the load
ow algorithm. When the 30 node test system
was run 100 times without the inclusion of the acceler-
ation technique, the algorithm failed to converge to a
solution in all trials. As can be seen by comparing the
convergence without acceleration shown in Fig.3, with-
out population acceleration the convergence is much
slower. The large spike at the 10th iteration is a result
of initiating reactive power limit switching at that iter-
ation. Without acceleration, the disturbance created
by switching is much larger as the solution is far from
being converged.

7.1.2 EFFECTIVENESS OF MUTATION

To demonstrate the e�ectiveness of the mutation
scheme developed in section 4, the algorithm was run
100 times with a basic EP mutation scheme given be-
low in (14). The average minimum total squared mis-
match at each iteration for the case with the developed
mutation scheme and without it are plotted below in
Fig.4.

When the developed mutation scheme is included the
convergence is much faster as can be seen in Fig.4. It is
also much more consistent in �nding the solution with
a correct result found in 92% of the trials with the
developed mutation scheme and only 78% in the case
where simple mutation is used. This result demon-
strates the e�ectiveness of including problem speci�c
information in the EP mutation.

��pq = K�

�
fmax � fi

fmax

�
(14)

�V pq = KV

�
fmax � fi

fmax

�

7.2 IEEE 57 NODE SYSTEM

The algorithm was next applied to the IEEE 57 node
test system which comprises of 7 generation nodes each
with reactive power limits. There are 106 variables to
be determined and 118 inequality constraints to be
satis�ed at the solution. The developed algorithm was
run 100 times to solve this system and found a solution
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Figure 3: Convergence without Acceleration

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

Iteration

To
ta

l S
qu

ar
ed

 M
is

m
at

ch

developed mutation
basic muation

Figure 4: Comparison of Mutation Schemes



in 50 cases, this performance is insu�cient for load
ow
applications. As the dimension of the problem become
larger, evolutionary programming EP techniques can
have trouble in �nding the solution, especially when
the number of constraints is also high. The average
convergence of the algorithm is plotted below in Fig.5,
the e�ect of system size on convergence can be seen by
comparing this case with that of the 30 node case in
Fig.2. The algorithm parameters in both cases were
identical. In order to overcome this limitation it is
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Figure 5: Convergence for IEEE 57 system

necessary to incorporate more information about the
load
ow problem into the EP structure. As the gradi-
ent information in the load
ow is well researched and
developed and intermediate gradient step was imple-
mented in the EP as described in section 6. Although
this breaks with the non-gradient nature of Evolution-
ary Programming, the resulting composite algorithm
is both powerful and robust. When run on the IEEE
57 node system convergence occurred in 2 iterations
and a solution was found in 100% of the trials, the
percentage of the population undergoing gradient ac-
celeration was set at 50%.

Conclusions

An evolutionary programming based load
ow algo-
rithm has been developed. The proposed method has
been enhanced with a mutation scheme which contains
load
ow speci�c information, the result of this have
been validated on standard test systems. Population
acceleration has also been incorporated into the tech-
nique with large performance gains in both reliability
and convergence speed. Finally the algorithm includes
gradient information about the load
ow in order to
solve larger and more complex systems.

The paper demonstrates that evolutionary program-
ming is a powerful optimisation tool whose perfor-
mance can be greatly enhanced with the inclusion
of problem speci�c information. The EP method re-
mains the global optimisation technique which controls
the progression of the population using acceleration,
constraint satisfaction and gradient information. The
work presented in this paper is ongoing and further

improvements to the method are expected.
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