
Forecasting the MagnetoEncephaloGram (MEG) of Epileptic
Patients Using Genetically Optimized Neural Networks

Adam V.
Adamopoulos
Laboratory of

Medical Physics,
Medical School,

Democritus
University of

Thrace, Creece.

Efstratios F.
Georgopoulos
University of

Patras, Dept. of
Computer

Engineering &
Informatics, Patras

26500, Greece.

Spiridon D.
Likothanassis
University of

Patras, Dept. of
Computer

Engineering &
Informatics, Patras

26500, Greece.

Photios A.
Anninos

Laboratory of
Medical Physics,
Medical School,

Democritus
University of

Thrace, Creece

Abstract

In this work MagnetoEncephaloGram
(MEG) recordings of epileptic patients
were analyzed using a hybrid neural
networks training algorithm. This
algorithm combines genetic algorithms
and a training method based on the
localized Extended Kalman Filter (EKF),
in order to evolve the structure and train
Multi-Layered Perceptrons (MLP)
networks. Our goal is to examine the
predictability of the MEG signal on a
short and long predicting horizon.
Numerous experiments were conducted
giving highly successful results.

1 INTRODUCTION

A very interesting task in the field of signal
analysis is the short and long term prediction of
real world signals. In the present work is examined
the predictability of MEG recordings of epileptic
patients. MEG recordings were obtained using a
Super-conductive QUantum Interference Device
(SQUID) and were digitized with a sampling
frequency of 256Hz using a 12-bit A/D Converter.
SQUID is a very sensitive magnetometer, capable
to detect and record the bio-magnetic fields
produced in the human brain due to the generation
of electrical micro-currents at neural cellular level
(Anninos et. al. 1997). MEG data were provided
by the Laboratory of Medical Physics of the
Democritus University of Thrace, Greece, where a
one-channel DC SQUID is operable. The MEG
data were normalized in the interval [0,1] in order
to be processed by the neural networks.

The problem of MEG predictability is faced using
Multi-Layered neural networks which were
evolved using a novel hybrid algorithm which

combines Genetic Algorithms (GA's) and a
training algorithm, based on the localized
Extended Kalman Filter (EKF), known as Multiple
Extended Kalman Algorithm (MEKA). The
MEKA is described in detail in [Shah et. al.,
1992]. The task of the proposed modified genetic
algorithm is to evolve a population of MLP neural
networks and find a near optimum network
architecture (considering the number of inputs, the
number of hidden units, etc.) that solves a specific
problem, while, at the same time the Kalman
training algorithm is used to train these networks.
The novelty of this effort depends on, apart from
the combination of evolution programs with the
Kalman training algorithm, the capability of the
proposed method to search, not only for the
optimal number of hidden units, but also, for the
number of inputs needed for the problem at hand.
As far as we know this is the first attempt in the
relevant literature to evolve simultaneously the
numbers of hidden and input neurons of a network.
The above method, but in a simpler version, was
used successfully for system structure
identification, using single layer neural networks
in [Adamopoulos et. al., 1998] and for exchange
rates forecasting in [Likothanassis et. al, 1998].

The rest of the paper is organized as follows.
Section 2 describes the hybrid algorithm, while the
numerical experiments are presented in section 3.
Finally, section 4 discusses the concluding
remarks.

2 THE HYBRID ALGORITHM

The proposed modified GA maintains a population
of individuals (Neural Networks) for each
generation, having random structure in the hidden
region. The MEKA algorithm is employed for the
training of each network for just one epoch.
Performance is measured with the fitness function,
which is a function of the MSE and the size

(number of nodes) of the network. Then a new
population is created, by selecting the more fit
individuals according to their fitness (select step).
Some members of the population undergo
transformations by means of genetic operators to
form the new individuals. We use a mutation
operator that changes, randomly, the structure of
the network in order to preserve diversity. Also,
there is a crossover operator, which creates new
individuals by combining parts from two
individuals. After some number of iterations the
program converges at a near-optimum solution.
The steps of the algorithm are briefly described in
the following:

Step1, Initialization: An initial population of
randomly generated individuals (random number
of inputs and hidden neurons) is created.
Generally a large population size is preferable, but
in our experiments we need to compromise with
the computer limitations, so a population of fifty
individuals was used in all of the conducted
experiments. The connection weights are
initialized to random values in [-1,1], using
uniform probability distribution.

Step2, Selection: Selection is an essential
operation in genetic algorithms; it constructs a new
population with respect to the probability
distribution based on fitness values of the
individuals of the previous population. In our
experiments a variation of the classic Roulette
Wheel Selection Operator [Michalewicz, 1996]
was used. In this variation we save the best ever
individual in a place outside the population and in
the selection operation we make sure that at least
one copy of this individual will pass to the next
generation (elitism).

The fitness function that is used in the selection
phase takes in mind the performance of the
network on the test set and its size and has the
following form:

Fitness = 1/(1 + MRE + size_par*MRE*SIZE) (1)

Where size_par is a parameter that controls the
importance of size in the evaluation of fitness
function. The objective is for size_par to take
values that will lead to individuals with small
sizes, maintaining though good forecasting ability.
The term (size_par*MRE*SIZE) allows for the
importance of the network’s size to decrease
accordingly to the decrease of MRE.

Step 3, Crossover: The crossoveroperator is
applied to the new population. Generally it works
as follows: it selects two parents and generates one
or two offspring by recombining parts of them.
The offspring take the place of their parents in the
new population. In the proposed algorithm
crossover operates precisely as follows:

Let assume that we have the two parents: I1H1O
and I2H2O where I, H and O are the numbers of
input, hidden and output nodes, respectively. Next
we generate the random numbers:

i1= a uniform random number in [0,I1],
i2= a uniform random number in [0,I2],
h1= a uniform random number in [0,H1],
h2= a uniform random number in [0,H2].

Then we create a child with (i1+i2) input notes,
(h1+h2) hidden nodes and O output nodes. If (i1+i2)
= 0 then we set the number of input nodes to 1; if
(h1+h2) = 0 we set the number of hidden nodes to
1. The weights of the child are initialized
randomly in the same interval that was used in the
initialization phase. The second child is created in
the same manner.

Step4, Mutation: The mutation operator that was
used, works as follows: it selects in random a
neural network (individual) from the population
and changes its number of inputs and/or its
number of hidden neurons by adding or deleting a
random number (selected uniformly from a given
interval) of inputs and/or hidden neurons.

3. NUMERICAL EXPERIMENTS

In this section we present the results of the
experiments that were conducted in order to
evaluate the algorithm’s performance. As stated in
the introduction our initial intention was to test the
prediction ability of the proposed algorithm for the
case of MEG recordings of epileptic patients. Our
work was split in two different directions. First, we
examine the ability of the algorithm to produce
networks that can predict accurately MEG
recordings using different predicting horizons.
Second, we tried to check how the choice of the
size_param value influences the size of the
produced networks for the problem of short term
(next value – predicting horizon=1) prediction of
MEG recordings.

In all the experiments we used the same parameter
values (for comparison reasons) except of course
of the size_param value for the second set of
experiments. So, we used a population size of 50
neural networks, probability of crossover equal to
0.15, probability of input mutation equal to 0.2
and probability of hidden node mutation equal to
0.2. For the training of the networks we used 1024
data samples (corresponding to a four seconds
epoch of the MEG) while for the testing we used
512 data samples (corresponding to a two seconds
epoch of the MEG). The algorithm was left to run
for 3000 generations.

In order to evaluate the forecasting capability of
the produced networks we used three well-known
error measures, the Normalized Root Mean

Squared Error (NRMSE), the Correlation
Coefficient (CC) and the Mean Relative Error
(MRE).

The NRMSE is calculated using the root-mean-
squared-error (rmse) given by

() () ()[] 2
1

2,, TtxTtxT actpred −=∆σ (2)

where T is the number of samples being predicted.
The RMSE is normalized by the RMSE deviation
of the data

producing the normalized error 1506(1û�	��1x.
If NRMSE=0 then predictions are perfect;
NRMSE=1 indicates that prediction is no better
than taking xpred equal to the x-mean.

Prediction was also tested using the correlation
coefficient (CC) between the actual and predicted
series. The CC measures the ability of the
predicted samples to follow the upward or
downward jumps of the original series.

The MRE is given by the formulae:

∑
=

−
=

n

i i

ii

d

do

n
MRE

1

1
 (3)

where oi is the output of the network and di is the
desired value when pattern i is presented, and n is
the total number of patterns. MRE shows the
percentage of the accuracy of predictions
expressing it in a stricter way, since it focuses on
the sample being predicted. Thus, we are able to
estimate prediction error as a fraction of the actual
value.

In the following Tables we can see the architecture
(That has the form: inputs – hidden nodes -
outputs) and the errors on the training set (Table
1) and on the test set (Table 2), of the best
network, generated by the evolutionary algorithm
for the case of MEG prediction using varying
predicting horizon.

As stated above one of the directions of our
research was to examine how the choice of
size_param value influences the architecture (size)
of the generated network. So we ran the algorithm
for several size_param values, keeping the other
parameters constant, for the problem of MEG
prediction using predicting horizon equal to 1. The
results are exhibited in the following tables for the
case of training set (Table 3) and test set (Table
4).

The following Figures depict the performance of
the generated networks, at the end of the
algorithm’s run, on the test set and how the MRE
and the architecture of the best network are
changing through the generations.

Table 1. MEG forecasting with varying Predicting Horizon - Errors on the Training Set
Predicting
Horizon

Architecture
(I-H-O)

NRMSE C.C. MSE RMAE

1 4-8-1 0.2608 0.9654 0.0004736 0.0359
2 4-3-1 0.4130 0.9141 0.0012 0.0561
3 4-15-1 0.4486 0.8961 0.0014 0.0614
4 5-2-1 0.5681 0.8327 0.0022 0.0747
5 4-6-1 0.6291 0.7911 0.0027 0.0846

Table 2. MEG forecasting with varying Predicting Horizon - Errors on the Test Set
Predicting
Horizon

Architecture
(I-H-O)

NRMSE C.C. MSE RMAE

1 4-8-1 0.2001 0.9798 0.000401 0.0403
2 4-3-1 0.3064 0.9525 0.000937 0.0627
3 4-15-1 0.3654 0.9310 0.0013 0.0740
4 5-2-1 0.4299 0.9054 0.0018 0.0855
5 4-6-1 0.4990 0.8719 0.0025 0.1025

() 2
1

2
xx −=∆σ

Table 3. MEG forecasting with Horizon =1 - Errors on the Training Set
Size

Parameter
Architecture

(I-H-O)
NRMSE C.C. MSE

× 10-4
RMAE

0.004 4-9-1 0.2540 0.9674 4.4915 0.0350
0.008 3-3-1 0.2913 0.9581 5.9108 0.0386
0.012 4-5-1 0.2564 0.9672 4.5789 0.0357
0.016 3-2-1 0.2967 0.9557 6.1316 0.0411
0.026 3-3-1 0.2705 0.9656 5.0886 0.0369
0.035 3-4-1 0.2655 0.9645 4.9101 0.0361

Table 4. MEG forecasting with Horizon =1 - Errors on the Test Set
Size

Parameter
Architecture

(I-H-O)
NRMSE C.C. MSE

× 10-4
MRE

0.004 4-9-1 0.1971 0.9805 3.8921 0.0403
0.008 3-3-1 0.2189 0.9757 4.8351 0.0438
0.012 4-5-1 0.2063 0.9786 4.2656 0.0434
0.016 3-2-1 0.2309 0.9733 5.3838 0.0466
0.026 3-3-1 0.2177 0.9765 4.7830 0.0446
0.035 3-4-1 0.2111 0.9775 4.4978 0.0429

� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

���

$FWXDO��� YV 3UHGLFWHG���

Figure 1. MEG forecasting with Horizon =1

� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

���

$FWXDO��� YV 3UHGLFWHG���

Figure 2. MEG forecasting with Horizon 2

� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

���

$FWXDO��� YV 3UHGLFWHG���

Figure 3. MEG Forecasting with Horizon=3

� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

���

$FWXDO��� YV 3UHGLFWHG���

Figure 4. MEG forecasting Horizon=4

� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

���

$FWXDO��� YV 3UHGLFWHG���

Figure 5. MEG forecasting with Horizon=5

� ���� ���� ���� ����
����

�����

����

�����

(
UU
R
U

*HQHUDWLRQV

� ���� ���� ���� ����
�

�

�

�

,Q
SX
WV

*HQHUDWLRQV

� ���� ���� ���� ����
�

�

��

��

��

��

+
LG
G
H
Q
1
H
XU
RQ
V

*HQHUDWLRQV

� ���� ���� ���� ����
�

��

��

��

��

��

1
H
WZ
RU
N
6
L]
H

*HQHUDWLRQV

Figure 6. MEG forecasting with Horizon=1

� ���� ���� ���� ����
����

�����

����

�����

����

�����

(
UU
R
U

*HQHUDWLRQV

� ���� ���� ���� ����
�

�

�

�

�

,Q
SX
WV

*HQHUDWLRQV

� ���� ���� ���� ����
�

�

��

��

+
LG
G
H
Q
1
H
XU
RQ
V

*HQHUDWLRQV

� ���� ���� ���� ����
�

��

��

��

1
H
WZ
RU
N
6
L]
H

*HQHUDWLRQV

Figure 7. MEG forecasting with Horizon=2

� ���� ���� ���� ����
�����

�����

�����

����

�����

�����

(
UU
R
U

*HQHUDWLRQV

� ���� ���� ���� ����
�

�

�

�

�

,Q
SX
WV

*HQHUDWLRQV

� ���� ���� ���� ����
�

�

��

��

+
LG
G
H
Q
1
H
XU
RQ
V

*HQHUDWLRQV

� ���� ���� ���� ����
�

�

��

��

��

1
H
WZ
RU
N
6
L]
H

*HQHUDWLRQV

Figure 8. MEG forecasting with Horizon=3

� ���� ���� ���� ����
�����

�����

�����

����

�����

�����

(
UU
R
U

*HQHUDWLRQV

� ���� ���� ���� ����
�

�

�

�

�

,Q
SX
WV

*HQHUDWLRQV

� ���� ���� ���� ����
�

�

�

�

+
LG
G
H
Q
1
H
XU
RQ
V

*HQHUDWLRQV

� ���� ���� ���� ����
�

�

�

��

��

��

1
H
WZ
RU
N
6
L]
H

*HQHUDWLRQV

Figure 9. MEG forecasting with Horizon=4

� ���� ���� ���� ����
���

�����

����

�����

����

�����

(
UU
R
U

*HQHUDWLRQV

� ���� ���� ���� ����
�

�

�

�

,Q
SX
WV

*HQHUDWLRQV

� ���� ���� ���� ����
�

�

�

�

�

��

+
LG
G
H
Q
1
H
XU
RQ
V

*HQHUDWLRQV

� ���� ���� ���� ����
�

�

�

�

��

��

1
H
WZ
RU
N
6
L]
H

*HQHUDWLRQV

Figure 10. MEG forecasting with Horizon=5

� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

���

$FWXDO��� YV 3UHGLFWHG���

Figure 11. MEG forecasting with Horizon =1 and
Size_Param = 0.004

� ���� ���� ���� ����

����

�����

����

�����

(
UU
R
U

*HQHUDWLRQV

� ���� ���� ���� ����

�

�

�

�

,Q
SX
WV

*HQHUDWLRQV

� ���� ���� ���� ����

�

�

��

��

+
LG
G
H
Q
1
H
XU
RQ
V

*HQHUDWLRQV

� ���� ���� ���� ����

�

��

��

��

1
H
WZ
RU
N
6
L]
H

*HQHUDWLRQV

Figure 12. MEG forecasting with Horizon =1 and
Size_Param =0.004

4. CONCLUSIONS

In the present work was examined the ability of
evolutionary neural networks to predict the MEG
of epileptic patients. The utilized algorithm
combined a genetic algorithm and a training
method based on the localized Extended Kalman
Filter applied on Multi-Layer-Perceptrons neural
networks. In addition to the MEG predictability,
the method was used to investigate the influence of
the architecture (size) of the network on its
performance.
In the large number of numerical experiments
done considering the task of investigating the
ability of MEG prediction, different predicting
horizons were used. The results of these
experiments (some representative of them are
listed on Tables 1 and 2) indicated that the smaller
the value of the predicting horizon a better
prediction of the MEG signal is obtained.
Especially for the cases of values of predicting
horizon equal to 1 and 2, the prediction can be
considered very satisfactory. For larger values of
the predicting horizon (4, 5) the error of
prediction is larger and a disability of the
algorithm to follow the strong peaks of the original
MEG timeseries is observed. This is pictorially
presented in Figs. 4 and 5 which correspond to the
predicted signal for predicted horizons 4 and 5.
On the other hand, considering the second task of
this work which referred to the investigation of the
influence of the size of the produced networks the
obtained results are summarized on Tables 3 and
4. The results shown on that tables indicated that
the smaller the size_par the larger and more
complicated the structure of the produced
networks, which in accordance to the previous
results led to more accurate prediction of the
signal.
In conclusion, the results of this work indicated
that the MEG signals of epileptic patients are

predictable by the method presented above. The
method presented here is of general purpose and
can be used in a wide variety of signals. In future
work we will attempt to use this method on
different types of biomagnetic signals such as the
magnetoencephalogram (MEG) and the
magnetocardiogram (MCG) of fetuses as well as
adult subjects.

References

Adamopoulos, A., Georgopoulos E., Manioudakis,
G. and Likothanassis, S. “An Evolutionary Method
for System Structure Identification Using Neural
Networks” Neural Computation ’98.

Anninos, P. Jacobson, J. Tsagas, N. Adamopoulos,
A. (1997). Spatiotemporal Stationarity of Epileptic
Focal Activity Evaluated by Analyzing
MagnetoEncephaloGraphic (MEG) data and the
Theoretical Implications. Panminerva Med. 39,
189-201.

Likothanassis, S. D., Georgopoulos, E. F. and
Manioudakis, G., “Currency Forecasting Using
Genetically Optimized Neural Networks”,
HERCMA Athens September 1998.

Michalewicz, Z., “Genetic Algorithms + Data
Structures = Evolution Programs”, Springer-
Verlag, 1996.

Shah, S., Palmieri, F. and Datum, M., “Optimal
Filtering Algorithms for Fast Learning in Feed-
Forward Neural Networks”, Neural Networks,
Vol. 5, pp. 779-787, 1992.

