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Abstract

When conducting a preliminary search across an
engineering design space using an evolutionary
search method such as the Genetic Algorithm
(GA) it is important to achieve the correct
balance between exploration and exploitation. If
search is too exploratitive, progress may rapidly
degenerate into a random walk where the
benefits of evolutionary search are quickly lost.
Conversely, if the degree of exploitation is too
high, premature convergence may result, with
significant areas of the search space remaining
largely under explored.  This paper introduces a
number of COGA strategies developed to better
explore and exploit the search space thereby
promoting its subsequent decomposition into
regions of high performance.  Each technique is
compared with Variable Mutation COGA
(vmCOGA) upon a multi-dimensional high
modality test function.

1 INTRODUCTION

COGAs support the rapid exploration of complex design
spaces and their subsequent decomposition into succinct
regions of high performance, thereby offering an
alternative to multi-modal optimisation.  The research
described here relates to the conceptual design
environment where design models tend to be coarse
representations of the engineering system, single peak
identification must therefore be treated with caution,
since such peaks may at best be indicative of local high
performance or at worst erroneous (Parmee, 1997).
Furthermore, design information such as variable
sensitivity may be extracted directly from the high
performance regions, eliminating the need for further
localised search.   The designer is therefore presented
with a series of high performance regions and a selection

of quantitative and qualitative performance
characteristics relating to each decomposed region.
Optimal design configurations may then be found by
selecting one or more regions for further local
exploitation.  A number of GA based multi-modal
optimisation (MMO) algorithms have been developed
which locate multiple optima.  In many cases significant
apriori knowledge relating to the search space is required
in order to tune the algorithm parameters.  This makes
the generic application to higher dimensionality models
problematic and severely limits the practical application
of such algorithms.  A further problem is an inability to
maintain stable niches within the population, increasing
the chances of eliminating useful design information
during search.

Research at the Plymouth Engineering Design Centre
(PEDC) (Parmee, 1996 and Parmee et. al., 1997) has
addressed these problems through the development of
COGAs.  COGAs consist of two parts: a diverse search
algorithm, which generates the solutions and an adaptive
filter, which dynamically extracts high performance
solutions during search.  With vmCOGA, search is split
into five sequential search stages, in this instance each of
25 generations in length.  During the initial stage a high
probability of mutation (0.08) promotes a diverse search
of the design space, at each subsequent stage the
mutation probability is reduced by 0.02, promoting the
convergence upon high performance regions.  After each
generational stage the fittest solutions within the
population are extracted by an adaptive filter and stored
in the Final Clustering Set (FCS).  When the population
is filtered, individual population fitnesses are normalised
in terms of the mean and standard deviation of the
overall population fitness.  Each chromosome within the
population is then checked against a predefined filtering
threshold (Rf).  If the scaled fitness of the chromosome is
greater than Rf, the solution is copied, with replacement
to the FCS.  To maximise the amount of extracted



information; during every search stage (excluding the
first) a solution also enters the FCS if its fitness exceeds
that associated with the previous filtering threshold.

It has been shown (Bonham et. al., 1998a), that that the
filtering threshold: controls the number and average
fitness of solutions in the FCS and eliminates both the
need to maintain stable niches within the population and
the need for apriori search space knowledge relating to
the fitness landscape of the design model.  Variable
mutation represented an initial approach to achieving the
correct exploration / exploitation balance.  Further
research has also investigated replacing variable
mutation with a collection of diverse search MMO
algorithms (Bonham et. al., 1998b).  This paper re-visits
this theme by presenting two novel approaches, Halton
Injection and Spatial Selection.

1.1 HALTON INJECTION COGA (HICOGA)

Replacing mutation by injecting randomly generated
strings has been addressed by Eshelman in his CHC
algorithm (Eshelman, 1991), where random
chromosomes are injected when search has stagnated to
some degree.  The best chromosome is used as a template
and a new population is generated by randomly flipping a
fixed percentage of the template bits.  Grefenstette
(Grefenstette, 1992) supplements mutation by replacing a
percentage of the population at each generation by
randomly generated chromosomes, called random
immigrants.  However, to have any effect upon the
evolving population the immigrants must be selected for
crossover, this possibility is reduced further if the relative
fitness of the immigrants is poor.  This drawback is
called the non-effect problem (Lin et. al., 1994).

HICOGA overcomes the non-effect problem by injecting
low discrepancy chromosomes directly into the crossover
phase.  Low discrepancy sequences (LDS) generate
points that uniformly fill an n-dimensional hypercube.
The LDS used here is the Halton Sequence Leaped
(HSL), which is an improved version the Halton
sequence (Kocis et. al., 1997).  The HSL is a quasi-
random sequence, this means that every generated
sequence of m numbers in n dimensional space will be
exactly the same.  A degree of randomness must
therefore be induced into each subsequent n× m HSL
sequence without disrupting the low discrepancy of the
points.  This is achieved by using a +wrap technique.
Firstly m points are generated in an n dimension unit
hypercube (each hypercube being wrapped around to
form a torous).  A single random number of the interval
[0,1] is generated and then added to every n component
of the m points.  This results in differing HSL sequences
being produced for each generation, whilst maintaining

the low discrepancy nature of the sequence overall.  Let
ncross be the total number of chromosomes mated at each
generation and nHI be the required number of HSL
injected chromosomes.  Then at every injection phase, nHI

HSL chromosomes are paired with nHI chromosomes
selected on a fitness basis.  The remaining (ncross - 2nHI)
chromosomes are all selected using objective function
fitness.

1.2 SPATIAL SELECTION COGA (SSCOGA)

At later stages of genetic search the evolving population
rapidly converges to a single optima.  The ability of a
niche to sustain solutions within the population is
dependent upon both the maximum fitness and the local
fitness landscape of the niche.  If an optima is highly
sensitive (large changes in fitness for small input
perturbations), it may only be able to sustain a handful of
solutions which constitute only a fraction of the overall
population.  As search continues, solutions from other,
more robust regions quickly dominate the evolutionary
process.  The subsequent elimination of the sensitive
peak from the gene pool is likely.  SSCOGA overcomes
this problem by utilising a dual selection scheme; where
nSS parents are selected using a local solution density
metric and paired with nSS parents selected in terms of
objective function fitness.  The remaining (ncross  - 2 nSS)
chromosomes are all selected using objective function
fitness.   Two local solutions density metrics are
presented;

1. Euclidean density - For a given chromosome (X1) its
local density fitness is the Euclidean distance
between itself and its nearest neighbour.

2. Hypersphere density - For a given chromosome (X1),
a hypersphere of radius r with centre at X1 is
constructed.  The local density count of X1 is the
total number of chromosomes (including X1) that lie
within the hypersphere.  The fitness of X1 is the
inverse of the local density count.

Unlike the first measure, the disadvantage of the second
metric is the need to select a value for r.  For a unit
search space, appropriate values of r are given by,
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rh1 is the hypersphere radius in a single unit plane.

2 THE TEST FUNCTION

Developing a multi-modal, high dimensionality test
function and specifying the regions of high performance
with the search space is not a simple matter.  In one or
two dimensions, the search space may be easily



visualised using techniques such as surface or contour
plotting.  However, as dimensionality is increased, the
visualisation and subsequent interpretation of the test
function becomes increasingly problematic.  Exhaustive
search offers a solution, but exponential runtimes and the
need to store each solution offline, quickly renders this
technique impractical as dimensionality increases.

The DeJong test suite (DeJong, 1975) consists of five
functions all possessing different characteristics.  DeJong
developed the suite to assess the performance of single
optima optimisation algorithms, they are therefore
impractical when assessing the performance of the design
space decomposition algorithms such as those presented
in this paper.  More specific multi-modal test functions
have been developed.  Goldberg discusses a massively
multi-modal deceptive function (Goldberg et. al., 1992)
where the fitness of a solution is dependent upon the

unitation of the bit string.  The MDO test suite (Padula,
et, al., 1996) consists of a number of “real world” test
functions, unfortunately only the position of the global
optima are stated, the local fitness landscape of the
optima are not discussed, this again renders the use of
techniques such as exhaustive search necessary.  We
overcome this problem by using a six dimensional test
function, consisting of three local, 2-dimensional planes
(figures 1-3) where,
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Figure 1:  Plane 1 (no added noise) Figure 2:  Plane 2 (no added noise) Figure 3:  Plane 3 (no added noise)

Figure 4:  Plane 1 high performance
regions (no added noise)

Figure 5:  Plane 2 high performance
regions (no added noise)

Figure 6:  Plane 3 high performance
regions (no added noise)

Global HP
Region

Planar HP Regions Global HP
Region

Planar  HP Regions Global HP
Region

Planar HP  Regions

1 1i 2i 3i 7 1ii 2i 3i 13 1iii 2i 3i
2 1i 2i 3ii 8 1ii 2i 3ii 14 1iii 2i 3ii
3 1i 2i 3iii 9 1ii 2i 3iii 15 1iii 2i 3iii
4 1i 2ii 3i 10 1ii 2ii 3i 16 1iii 2ii 3i
5 1i 2ii 3ii 11 1ii 2ii 3ii 17 1iii 2ii 3ii
6 1i 2ii 3iii 12 1ii 2ii 3iii 18 1iii 2ii 3iii

Table 1:  The global high performance regions (HP = High performance)



If the total (global) fitness of a solution, ftot is the
summation of the three planar fitnesses from each
individual plane z1, z2, z3.  It follows,
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In this sense each local plane acts as an individual level
of the overall global test function; in a similar manner to
Goldberg’s 30-bit function constructed by summating
five six-bit sub functions.  This technique not only
provides a more demanding optimisation task but also
allows the easy declaration of all local and global high
performance regions within the search space.

The three local planes can be seen in figures 1-3. The
first contains three peaks of varying sensitivity (1i, 1ii
and 1iii) and each of magnitude 0.5, ± 10% random
noise is added to the function.  Plane two contains two
diagonally opposed, highly multi-modal regions.  Region
2i has twice as many optima, which are twice as sensitive
as those contained within region 2ii.  Plane two also
contains two sub-optimal robust regions that distract
search away form regions 2i and 2ii.  The third plane
contains three discontinuous regions of high performance
(3i, 3ii and 3iii), ± 10% noise was also added to this
plane.

A solution is defined as being of global high performance
if its fitness lies within 90% of the optimal fitness, in this
case 1.35.  For a particular solution, it follows that if its
local planar fitnesses are all greater than 0.45 the
solution must lie within a high performance region.
However there are instances where a solution may lie
outside these planar boundaries, but may have a global
fitness of 1.35 or greater (a hypothetical example being
z1 = 0.5, z2 = 0.5, z3 = 0.35).  Local high performance
regions are therefore defined as areas where the local
planar fitness is greater than 0.35 (figure 4-6). However,
a further fitness check must be made since a proportion
of solutions lying within the local planar regions may not
be of global high performance, consider the example z1 =
0.35, z2 = 0.35, z3 = 0.35.  Consequently, for a solution to
be a member of a global high performance region, it must
first belong to a planar high performance region within
all three planes and posses a global fitness greater than
1.35.  This defines 18 global high performance regions,
which are shown in table 1.

3 PERFORMANCE MEASURES

When assessing the performance of a regional
decomposition algorithm a number of factors must be
taken into account.  Firstly global set cover (FCS size)
should be as large as possible coupled with a high
percentage of the FCS being in the defined global high

performance regions (Decomposition efficiency).
However, these measures by themselves do not detect if
premature convergence is present.  To overcome this we
also measure how many solutions lie in each of the
individual 18 global (HP) regions.  Furthermore, the
Average fitness of the FCS and the best fitness contained
within it are used to measure the degree of convergence
of each algorithm.  To increase accuracy, measurements
are averaged over 100 independent trials.  The standard
deviation is taken over these trials and is used to give a
measure of the sensitivity of each algorithm to the effects
of genetic drift.

4 DISCUSSION

4.1 SSCOGA1, SSCOGA2, HICOGA 1 and
HICOGA 2

It has been shown that the degree of convergence of a
COGA population may be ascertained to some degree by
the statistical nature of the FCS (Bonham et. al., 1998a),
whereby larger decomposition efficiencies and higher
average FCS fitnesses indicate higher levels of
convergence and a more exploitative search.  When
comparing the FCS characteristics (table 3) for
SSCOGA1-2 and HICOGA1-2, it can be seen that both
HICOGA algorithms produce results that suggest lower
states of convergence when compared with their
SSCOGA counterparts, suggesting that Halton injection
is a more disruptive operator than spatial selection.  As
expected, when the number of Halton injections or
Spatial selections is reduced (from HICOGA1 to
HICOGA2 and from SSCOGA1 to SSCOGA2
respectively) the degree of convergence increases.  In all
four cases the FCS sizes are smaller than that obtained
with vmCOGA, however in each case, excluding
HICOGA1, the decomposition efficiency is higher.  As a
consequence of this, in all but two of the HP regions (8
and 18) vmCOGA is outperformed by at least one of the
HICOGA, SSCOGA algorithms (figure 7). In general
SSCOGA2 gave the best performance outperforming all
other algorithms in 10 of the 18 HP regions (1, 2, 3, 4, 7,
9, 10, 12, 15 and 16).  HICOGA1 and HICOGA2

performed poorly over the majority of regions, however
in two of the most sensitive HP regions (14 and 17) the
more exploratitive HICOGA1 gave the best performance.

4.2 SSCOGA3, SSCOGA4 AND SSCOGA5

The replacement of the Euclidean density measure by the
hypersphere measure, appears to further slow down the
rate of convergence.  In all three cases (SSCOGA3,4 and 5)
the decomposition efficiency and average FCS fitness are
smaller than the equivalent Euclidean SSCOGA
algorithm (SSCOGA2). Of the three hypersphere density



SSCOGA algorithms, SSCOGA4 (rh1 = 0.25) appears to
promote the most diverse search.  Referring to figure 8, it
may be seen that in every one of the 18 HP regions at
least one of the hypersphere density SSCOGA algorithms
outperforms vmCOGA.  Furthermore, in the majority of
HP regions {2, 5, 7, 8, 10, 11, 12, 13, 14, 16, 17 and 18}
SSCOGA4 produces the better results.

4.3 HICOGA3, HICOGA 4 AND HICOGA 5

When higher numbers of Halton individuals (30) are
injected less frequently (every 5, 15 and 25 generations
for HICOGA3-5 respectively).  The decomposition
efficiency and average FCS fitness increases
dramatically. This result is an anticipated one since the
absence of mutation results in higher convergence rates
between the injection of Halton chromosomes. However,
caution must be exercised when comparing with
vmCOGA since the relatively high decomposition
efficiencies must be balanced by considerably smaller
FCS sizes.  Figure 9 gives a clearer indication of the
performance of these algorithms.  In the more robust

regions {1-6} HICOGA4 and HICOGA5 perform well,
since search is allowed to converge to a greater extent
due to the higher numbers of generations between Halton
chromosome injection.  In the more sensitive regions
{13-18} an increase in performance of HICOGA3 and to
a greater extent vmCOGA is noted, since the chances of
rapid convergence upon the more robust regions is
reduced by the application of mutation (vmCOGA) and
the more frequent injection of Halton chromosomes
(HICOGA3).

4.4 SSCOGA6, SSCOGA7 AND SSCOGA8

In a similar manner to the HICOGA3-5 cases (but to a
lesser magnitude, due in part to the use of mutation), the
degree of convergence increases as the number of
generations between spatial selections increases.
However, unlike the HICOGA cases, the general increase
in FCS size is less evident.  When looking at the regional
decomposition of each algorithm (figure 10), it can be
seen that vmCOGA outperforms all three SSCOGA
algorithms in only three HP regions {8,14 and 17}.

Algorithm Description
vmCOGA (Parmee, 1996)
SSCOGA1 (Euclidean density)    {25, 20, 15, 10, 5}
SSCOGA2 (Euclidean density)    {20, 15, 10, 5, 0}
HICOGA1 {25, 20, 15, 10, 5}    (no mutation)
HICOGA2 {20, 15, 10, 5, 0}    (no mutation)
SSCOGA3 (Hypersphere density)    {20, 15, 10, 5, 0}    rh1 = 0.35
SSCOGA4 (Hypersphere density)    {20, 15, 10, 5, 0}    rh1 = 0.25
SSCOGA5 (Hypersphere density)    {20, 15, 10, 5, 0}    rh1 = 0.15
HICOGA3 30 Halton injections every 5 generations    (no mutation)
HICOGA4 30 Halton injections every 15 generations    (no mutation)
HICOGA5 30 Halton injections every 25 generations    (no mutation)
SSCOGA6 (Euclidean density)    30 spatial selections every 5 generations
SSCOGA7 (Euclidean density)    30 spatial selections every 15 generations
SSCOGA8 (Euclidean density)    30 spatial selections every 25 generations

Table 2: The test algorithms, (unless otherwise stated, the five values in parenthesis relate to the number of spatial
selections or Halton injections made during every generation for each of the five generational stages.  An example
being SSCOGA1 where {25, 20, 15, 10, 5} indicates 25 spatial selections made for each generation during stage

one, 20 spatial selections made for each generation during stage two and so on.

Algorithm FCS size Decomposition efficiency Average fitness of FCS Best fitness within FCS
vmCOGA 285.72    (28.00%) 42.11%    (30.16%) 1.344 1.471
SSCOGA1 236.61    (34.03%) 44.59%    (34.93%) 1.358 1.470
SSCOGA2 231.05    (29.77%) 66.30%    (29.80%) 1.371 1.473
HICOGA1 202.29    (30.80%) 33.28%    (37.32%) 1.331 1.465
HICOGA2 218.12    (30.15%) 46.67%    (34.90%) 1.350 1.470
SSCOGA3 232.24    (33.45%) 59.02%    (30.40%) 1.363 1.473
SSCOGA4 251.97    (32.46%) 56.22%    (30.61%) 1.360 1.472
SSCOGA5 235.75    (29.32%) 59.84%    (29.03%) 1.365 1.473
HICOGA3 128.16    (31.51%) 72.71%    (27.22%) 1.378 1.470
HICOGA4 151.25    (42.13%) 89.04%    (17.45%) 1.405 1.476
HICOGA5 161.11    (43.14%) 95.67%    (9.86%) 1.420 1.477
SSCOGA6 194.94    (32.32%) 78.08%    (23.49%) 1.383 1.474
SSCOGA7 200.02    (34.19%) 85.91%    (18.58%) 1.395 1.476
SSCOGA8 177.02    (39.80%) 89.01%    (15.96%) 1.400 1.475

Table 3:  FCS characteristics (values in brackets are standard deviations as a percentage of measured value)
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Figure 7:  Regional decomposition results for vmCOGA,
SSCOGA1, SSCOGA2, HICOGA1 and HICOGA2
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Figure 9:  Regional decomposition results for vmCOGA,
HICOGA3, HICOGA4 and HICOGA5
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Figure 8: Regional decomposition results for vmCOGA,
SSCOGA3, SSCOGA4 and SSCOGA5
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Figure 10:  Regional decomposition results for
vmCOGA, SSCOGA6, SSCOGA7 and SSCOGA8



In all remaining regions vmCOGA is outperformed by at
least  one of the SSCOGA algorithms, furthermore in 12
regions  {1-7, 9, 10, 12, 13 and 16}  the  performance  of
vmCOGA is surpassed all three SSCOGA algorithms
simultaneously. SSCOGA7 generally gave the best
results, outperforming the remaining two algorithms in
10 regions, SSCOGA6 and SSCOGA8 gave the best
results within only one and four regions respectively.
These findings and the high and low average fitness of
the FCS for SSCOGA6 and SSCOGA8 respectively,
suggest that the number of generations between spatial
selections is either too short, SSCOGA6 (search too
exploratitive) or too long SSCOGA8 (search too
exploitative).  SSCOGA7 appears to be a compromise
between the two.

5 CONCLUSIONS

This paper has presented two novel COGA techniques,
SSCOGA and HICOGA, both designed to more
efficiently explore and exploit the search space. In each
case it has been shown that the degree of exploratitive or
exploitative search may be modified by altering either the
number of Halton chromosomes injected or the number
of spatial selections made.  A number of SSCOGA and
HICOGA algorithms are compared with vmCOGA on a
multi-dimensional, multi-modal test function.  In the
overwhelming majority of cases vmCOGA was
outperformed by both of the presented COGA algorithms.

To date, COGAs have only been used in the open loop
sense where parameters are set before execution and
remain unmodified during the COGA run.  This makes
the correct calibration of such parameters critical and
places emphasis on the designer who may not be familiar
with the either the search space under investigation or
the COGA tool being used.  Future work should therefore
address the possibility of using COGA in a closed loop
sense where convergence measures and the current
nature of the FCS are used to “feed back” information
which is used to modify the Halton injection or spatial
selection rates.  Furthermore, the designer may select
“investigation profiles” where the nature of search is
defined and controlled accordingly.  For example
preliminary runs may use a more exploratory COGA
algorithm allowing maximum information relating to the
whole search space to be extracted.  At later stages of the
design process where global domain knowledge is high
more detailed runs may be controlled during search to
give a more exploitative search thereby maximising the
amount of local information generated.
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