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Abstract

This paper reports an investigation of GA based
techniques that allow the search to move outside
of its pre-defined limits.  Using a hybrid coarse-
grained / fine-grained GA, dynamic fitness
sharing techniques are presented that encourage
sub-populations to explore differing high
performance areas of the search  space. Such
techniques when coupled with a migration
typology provide a realistic mechanism for
moving a GA based search to unspecified areas
of the search space.

1 INTRODUCTION
The aim of  the research underlying this paper is the
development of adaptive search techniques to assist the
designer at the conceptual stage of the design process. It is
at this stage that neither the problem space and hence the
solution space are fixed:

• Design objectives may change either through their
weightings / importance or through the removal or
addition of objectives.

• The initial limits assigned to the design variables
are subject to change with the relaxation of
variable limits and thus the necessity to search
outside the initial pre-defined bounds.

Many researchers (i.e. Goldberg, 1989, Maher et al 1995)
have recognised the power of GA based techniques for the
exploratory nature of conceptual design, and more recent
research (i.e. Gero and Kazakov, 1998, Parmee and
Bonham, 1998) have employed GA based technique

where the search progresses outside of the initial design
variable limits. This paper builds on this research by
investigating the use of a real-valued representation and
an independent geographically structured multi-
population technique.

Given that design spaces are high-dimensional and multi-
modal, it is argued that a multi-search technique needs to
be adopted whereby a collection of relatively independent
sub-populations progressively evolve across differing
areas of the search space, locating regions of potential
high performance marking as found and then moving on
to areas outside their current search limits. Thus it is
envisaged that this is a dynamic situation and suitable
adaptive search techniques need to be developed to meet
this.

Initial research within a fixed design variable environment
(Beck 1996, Beck and Parmee 1997) suggested that the natural
emergent characteristics of an EcoGA  (i.e. Davidor et al, 1993)
could suit the problem at hand.

Essentially an EcoGA is a technique whereby a large
population can be can be structured into a series of smaller
sub-populations by placing one individual at each location on a
toroidal 2-dimensional grid. With each individual assigned this
way the grid locations are not necessarily related to the
individuals' solutions rather they are arbitrary designations
used to perform selection.

For the purposes of evolution an individual is randomly
selected from the grid and a sub-population is defined as that
individual plus its eight immediate neighbours. This sub-
population is then evolved in  similar fashion to that of a steady
state GA (Syswerda 1989): Roulette wheel selection is used to
select two individuals for mating and mutation, each resulting
offspring then competes against an individual randomly
selected from the parent sub-population for a place in that sub-
population. The outcome of this ‘tournament’ is decided
deterministically with the fittest individual winning.



Using an EcoGA many authors (i.e. Davidor et al 1993,
McIlhagga  et al, 1996, Parmee and Beck 1997) have
reported the establishment of relatively stable genetic diversity
through the emergence of  demes: Clusters of genetically
similar individuals. Moreover a local search occurs within a
deme and new regions are explored through the recombination
of individuals at the edges. These demes are not stable, and
while uniform crossover with a high mutation rate may slow
convergence (Spiessens and Manderick 1991), the tendency is
towards single deme dominance.

To reduce the onset of single deme dominance, previous
work (Beck 1996) maintained search diversity by
detecting converging sub-populations and re-initialising
when they reached a convergence criterion. The bounds of
the converged region was then marked as tabu, and the
fitness of individuals entering a tabu area was reduced.

The convergence criterion employed in both the previous
work and in this paper is  defined as some ratio  λ,  λ ∈
(0, 1), of the mean distance between the individuals and
their sub-population centroid at initialisation to their
current distance. Thus if  dist t+1 <= λ * dist0  then the sub-
population is said to have converged.

For the present problem it was intended to re-assign the
converged sub-population an area outside the current
search bounds. A difficulty with this however is that the
sub-population consisted of only nine individuals and
further individuals are needed to make a GA based search
meaningful. Identifying candidate individuals that are
close to the converged sub-population in terms of both
geographical distance and phenotypic / genotypic distance
was problematic.

To overcome this, a more structured EcoGA model is
adopted in the form of a hybrid coarse / fine grained GA.
As per the EcoGA a toroidal 2D grid is divided into a
series of cells each with one individual occupying one
cell. Cells are then designated as belonging to one sub-
population such that the number of individuals / cells
within each sub-population is equal. Thus figure 1, below,
shows a part of a 16 x 16 grid of 4 x 4 sub-populations
each with 16 individuals each.

This hybrid approach, termed here a DemeEcoGA,
allows for two types of evolution: Firstly, sub-population
evolution, in this instance only those individuals within
the sub-population evolve. Secondly, boundary evolution,
as individuals are geographically located only those
individuals at the ‘edges’ of the sub-population are
allowed to undergo recombination. This being illustrated
by the greyed area of figure 1.

By utilising such a model it is reasoned that:  Firstly,
implementation of a steady-state GA within the sub-
populations will lead to rapid exploitation of optima,  and
secondly, the extent to which sub-populations move to
differing areas of the search space then an exploratory
search is developed by means of the boundary evolution.
Moreover the exploitation-exploration balance can, to
some extent, be determined by the ratio of sub-population
to boundary evolutions.

Whilst the sub-population evolution is fairly
straightforward; it is a small population GA. The nature of
the boundary evolution is more complex and proceeds as
follows:

• Randomly select a sub-population (sub-pop1) and
randomly select a parent  individual (P1) from the
bounds of sub-pop1. Now randomly select parent
P2 from those individuals that are directly adjacent
to P1. (see Figure  2)

• Recombine P1 & P2 to give C1 & C2.

• Although a fitness based  tournament based
replacement strategy is employed, whereby C1 &
C2 compete for occupancy of the cells currently
occupied by P1 & P2, a further criteria is added
such that the child chromosomes are placed within
the closest sub-population. Closeness being defined
as the Euclidean distance from Ci to the centroid of
Sub-popi.
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Figure 2: Selecting Parents for mating
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Figure 1: Structure of DemeEcoGA



2 EXPANDING THE SEARCH SPACE
Expanding the bounds of the search space raises two
fundamental questions: Firstly, what should be the nature
of the representation? and secondly, in which ‘direction’
should the search progress?

With regard to the first question, if this was a single
population based search then the usual binary
representation would present few problems: As the
population reaches a convergence criteria the whole
population can be reinitialised within a newly defined
range. Unfortunately, however the nature of multi (sub)
population based search may preclude such a binary
representation. Thus if the representation of two
individuals undergoing recombination is defined over
differing but overlapping ranges then the number of bits
they have in common may be limited and effectiveness of
exchanging bit alleles may be of questionable utility.

A representation  that does lend itself more naturally to
the problem at hand is that of real valued chromosomes.
While the initial population may be initialised within
some pre-defined bounds, this representation does allow
recombination of individuals of any value.

Using intermediate recombination (Muhlenbein. and
Schlierkamp-Voosen, 1993) offspring are reproduced
according to the rule:

Moreover intermediate recombination is capable of
producing new offspring within a slightly larger hyper-
cube than that defined by the parents.

With regard to the second question, the work of Hajela
and Lee (1996) may be a useful approach. In Hajela’s
work, a clustering algorithm is employed to group design
regions with similar characteristics, a neural network is
then trained using this region as training data. Finally by
examining the weight matrices of such networks the effect
of the input variables over the output objectives can be
quantified. Thus the search should be expanded along
those variables that are more likely to effect the design
objectives.

While the above is both fascinating and relevant work, a
more simpler approach is adopted here. As a sub-
population reaches convergence then new search bounds
are defined plus or minus some value of the current sub-
population centre. Thus, to the extent that this
convergence has occurred close to the current limits of the

search space then a new search will be initialised outside
the current search area and within a region of relative high
performance. The technique adopted here for setting this
new search range is to use the  upper and lower limits of
the initial search to set the bounds, and for the sub-
population centre the centroid is used. Table 1 presents an
example of this technique, where a converged sub-
population is centred on (2.0, 2.6).

2.1 FITNESS SHARING

While it is advanced that multi-population based searches
will explore differing areas of the search space. In reality
there is no guarantee that this will actually occur, and
moreover as the search progresses genetic drift will pull
the sub-populations to one optima. Hence to encourage an
exploitatory based search of multiple-optima, two fitness
sharing techniques are examined.  For brevity these are
termed sharingA and sharingB respectively.

The underlying rationale for both sharing techniques
differs from the more usual approach of fitness sharing
between individuals: In this study an individuals fitness is
decreased by a function of its encroachment into each sub-
populations current ‘search area’. Thus the focus is upon
fitness sharing between sub-populations, and it is the
definition of a sub-populations ‘search area’ that
distinguishes the two techniques under investigation.
While the first, sharingA, is similar to that of the classic
work of Deb and Goldberg (1989), a major problem with
sharing functions is the setting of an appropriate ‘niche
radius’. This being further complicated in this instance as
sub-populations are reinitialised they are at differing
stages of  evolutionary search, and the ‘niche radius’
metric needs to take account of this.

Thus a dynamic niching technique is adopted: Each sub-
populations ‘search area’ is defined as the mean Euclidean
distance of all individuals within that sub-population to
the sub-populations centroid. This mean distance acts as
the niche radius, and an individuals fitness is reduced by
the extent that it has entered the ‘search area’ of any sub-
population. The consequence being that as a sub-
population converges then the niche radius will also
decrease.

C1 = P1 x α(P2 – P1) 

Where:  α is a scaling factor over some interval
usually [-0.25, 1.25]

P1, P2 are the parent chromosomes

Table 1: Definition of new search bounds

Initial Search
Centre : (0.0, 0.0)

New Search
Centre : (2.0, 2.6)

lower
bounds

upper
bounds

lower
bounds

upper
bounds

x1 -3.0 3.0 -3.0 + 2.0 3.0 + 2.0

x2 -3.0 3.0 -3.0 + 2.6 3.0 + 2.6



More formally, the sharing function is now defined as:
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Where:

 d(i, Centroid j ) is the Euclidean distance between
individual i and the centroid of sub-population j

σshare is the mean distance of all individuals of sub-
population j to the centroid of sub-population j

While this mean distance decreases as a sub-population
converges, upon re-initialisation the mean distance will be
high and it is not appropriate to penalise possibly fit
individuals simply because they occupy the niche of a
randomly generated sub-population. Hence a linear
scaling factor is introduced that reduces the niche radius
for newly re-initialised sub-populations until they reach
some stage in the evolutionary cycle. Thus σshare now
becomes:

σshare = σshare * Scaling
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Where:

NEvol = number of evolutions the sub-population has
undergone since initialisation

MaxEvol = Pre-defined constant, currently set at 50

For the second fitness sharing technique, sharingB, the
‘search area’ is defined as the sub-population centroid
plus or minus one standard deviation of the position of the
individuals in the search space. Again as in the case of the
first approach the ‘search area’ is dynamic with the
standard deviation of the position of the individuals
decreasing as the sub-population evolves.

An individuals fitness is reduced by a linear decreasing
function of its niche count, where ‘niche count’ is defined
as the number of sub-population search areas that an
individual occupies.

Fit(i)’ = Fit(i)  - Fit(i) * NCount/ NumSubPop

Where:

Fit(i) = Un-scaled fitness of individual i

NCount =  Niche count

NumSubPop = total number of sub-populations

Thus this technique defines a hyper-cube, and is more
concerned with a head count of individuals located
anywhere inside the hyper-cube. Whereas the first
technique will define a hyper-sphere, and once inside the
hyper-sphere fitness will decrease by the extent of
intrusion.

3 TESTING THE TECHNIQUES

To examine the effects of boundary evolution and  both
fitness-sharing techniques five tests are conducted across
single and twin objective cases.

3.1 SINGLE OBJECTIVE

The first test function (F1) is a single-objective, two
variable multi-modal function. A surface plot is shown in
figure 3, and  although the function is shown over the
range [-10..10] for both x1 and x2, the initial search space
is over a much small region of [-3..3], as illustrated by the
dashed square area.

1 2 3 4

5 6 7

Figure 3: Surface plot of test function F1,top, and
contour plot, lower,  showing initial search area
(dotted line) and the seven pre-defined numbered
regions.



3.2 TWIN OBJECTIVE

The second test function (F2) is a twin objective three
variable multi-modal function. this being constructed by
combining  two other two-variable functions, F2a and
F2b. Surface plots and contour plots of these latter two
functions  are shown in figures 4 and 5. More specifically
one variable, x1, is common to all functions, such that:

F2(x1, x2, x3) = F2a(x1, x2) + F2b(x1, x3)

As in the case of function F1 although figure 4 and 5
illustrates the functions over the range [-10..10] for x1, x2
and x3, the initial search space is over a much small
region of [-3..3].

The aim of these functions is to provide not only an
increase in dimensionality, but they are constructed so as
to form a deceptive problem for the techniques under
investigation. Thus while F2 has a global optimum (F2opt)
centred at (6.00, 6.50, 6.53), F2a and F2b have local
optima running along a ridge illustrated  by the dotted line
in both contour plots (figures 4 & 5).

It is these local optima ridges which act as the deceptive
part of the function which will tend to direct the search
along the local optima and away from F2opt .The region of
F2opt can be found however if  the fitness sharing
techniques moves the sub-populations along the ridges

thus allowing  cross-over between individuals of differing
sub-populations to place new chromosomes with that
region (see figure 6).

3.3 THE TESTS

Effects of both sharing techniques and boundary evolution
are examined over five experimental conditions for each
of the two test functions (F1 and F2). These are
summarised in table 2, overleaf.

Figure 5: Surface plot of function F2b, top,
and contour plot, lower, showing initial
search area (dashed square) and local optima
ridge (dotted line).

F2opt

Figure 6: Recombination between individuals of
dispersed sub-populations.

Figure 4: Surface plot of function F2a, top,
and contour plot, lower,  showing initial
search area (dashed square) and local optima
ridge (dotted line).

F2opt



The DemeEcoGA consists of 16 sub-populations of 16
individuals each, as illustrated in figure 1. Probability of
cross-over is set at 0.7 and probability of mutation at 0.01.
The convergence criterion, λ, described in section 1 is set
at 0.4.

The performance metric employed is number of
individuals that are located in the regions of the pre-
defined high performance. Seven such regions are defined
for function F1 (figure 3) and one for F2 (figures 4 & 5).
Each test is run for a maximum of 15000 function
evaluations (this being equivalent to 150 generations of a
standard GA with population size of 100), and a region
population count taken every 500 evaluations. The results
are then averaged over 20 test runs.

4 RESULTS

4.1 SINGLE OBJECTIVE

Examining tests 1.1 and 1.2, the effects of fitness sharing
combined with a boundary evolution, figures 7 and 8
illustrate that not only are all regions populated during the
course of the run, but there is a characteristic rise and fall
in regional population as regions are identified and the
search progresses to other regions.

These results however cannot be attributable to either
fitness sharing or boundary evolution alone. Thus in the
condition of no fitness sharing, test 1.3, the results shown
in figure 9 illustrate a dramatic rise in region  6 population
with little or no corresponding population across the other
regions. Similarly in the fitness sharing but no boundary
conditions, tests 1.4 and 1.5, the results of figures 10 & 11
show that while there is a more diverse regional
population, it does not significantly encompass all pre-
defined regions. Moreover the shapes of the graphs
suggest that the regions are beginning to be populated and
thus the search has not progressed as far as that
experienced in figures 7 & 8.

This latter observation is more succinctly illustrated when
the mean total regional count is examined. Thus in figure
12 it can be seen that conditions 1.2 and 1.3 achieve a
peak regional population within 7000 function evaluations
whilst the other conditions are still climbing to a possible

summit. Finally, examining results between the two
sharing techniques it can be seen that the effects of
sharingA is a more progressive region identification, with
two regions being identified earlier in the search followed
by the remaining five regions (figures 7 and 8). In contrast
sharingB is characterised by a more uniform region
identification although the number of individuals within
those regions is reduced (figures 7, 8 and 12).

Table 2: Summary of tests used

TEST NUMBER CONDITION
Sharing Boundary

1.1 2.1 sharingA yes
1.2 2.2 sharingB yes
1.3 2.3 None yes
1.4 2.4 sharingA no
1.5 2.5 sharingB no

Test 1.3: Mean number of individuals 
across regions 
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Figure 9: Test 1.3

Test 1.1: Mean number of individuals 
across regions 
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Figure 7: Test 1.1

Test 1.2: Mean number of individuals 
across regions 

0

2

4

6

8

10

12

14

16

18

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

Number Evaluations x 100

M
ea

n 
N

um
be

r 
of

 In
di

vi
du

al
s

1 2 3 4

5 6 7

Figure 8: Test 1.2



4.2 TWIN OBJECTIVE

The results of the single objective case are echoed in the
twin objective situation. Reference to figure 13 shows that
in both conditions where a fitness sharing technique is
coupled with a boundary evolution (tests 2.1 and 2.2) then
the optima region of F2 is populated more densely than
fitness sharing alone (tests 2.4 and 2.5).

The result of evolution without a sharing technique (test
2.3) is far more dramatic with F2opt not being located at all
in any of the 20 trials, (consequently this has not been
presented graphically).

Examining the effects between sharing techniques, similar
results are found as those of function F1. Thus generally it
can be seen that sharingA, test 2.1, both identifies the
region sooner and results in a higher mean regional
population  density than that  of sharingB (figure 13).

The superiority of fitness sharing+boundary evolution is
also reflected in the results of the mean maximum fitness
obtained at each of the 500 function evaluation snapshots.
Results of figure 14 show that although conditions
without a boundary evolution achieve a higher mean
maximum fitness at the start of the search, the
sharing+boundary conditions results in a final superior
fitness score through the location and population of region
F2opt.

This cross-over in fitness performance is directly
attributable to the steady-state nature of sub-population
evolution finding the local optima faster without being
slowed by the exploratory pressure of the boundary
evolutions.

Test 1.4: Mean number of individuals 
across regions 

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150

Number Evaluations x 100

M
ea

n 
N

um
be

r 
of

 In
di

vi
du

al
s

1 2 3 4

5 6 7

Figure 10: Test 1.4

Test 1.5: Mean number of individuals 
across regions 
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Figure 11: Test 1.5

Mean total number of individuals 
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Figure 12: Mean total regional population across
regions

Mean total  number of individuals within 
region F2opt across function evaluations 
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Figure 13: Tests 2.1 – 2.5
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Figure 14: Mean maximium fitness across tests for
function F2



5 CONCLUSION

Overall the results of the techniques are encouraging:
Given that a search is initially defined within  some pre-
defined  limits, then it is possible to move the bounds of
the search to find possibly better regions outside of such
limits.

In doing so however it has been shown necessary to
incorporate techniques that facilitate this process. Thus
while the exploratory nature of either a boundary
evolution or a fitness sharing technique per se may to
some extent promote the identification of high
performance regions away from the initial search area, it
is only through the utilisation of both techniques in
tandem that acceptable results can be claimed.  No
technique, however, is implemented without some
computational expense and in this light it is reassuring
that the simpler niche technique achieved marginally
better results in terms of a uniform regional identification.

There are however improvements that need to be made to
the approach Thus for example re-initialising a converged
sub-population around its current centroid is rather
simplistic and makes no account of either its location in
the search space nor the location and search areas of the
other sub-populations. It is believed that by incorporating
a more sophisticated information exchange between sub-
populations an important reduction in the number of
function evaluations will be achieved.
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