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Abstract

The use of evolutionary algorithms for calcula-
tion of the optimal control of the states of a
greenhouse system will be presented. The inte-
grated model employed (greenhouse climate,
crop growth, outside weather conditions and
control equipment) predicts temperature, air hu-
midity and CO2 concentration in a time interval
of 15-60 minutes (short time-scale model). The
paper presents the optimization of the control of
the greenhouse climate to maximize the profit
under certain constraints (for instance, prevention
of stress for the crops) using evolutionary algo-
rithms. By incorporation of problem specific
knowledge into the evolutionary algorithm better
results were produced in a shorter time. The re-
sults of optimization for optimal control using
real world weather data are shown.

1 INTRODUCTION

The efficiency of plant production in greenhouses depends
significantly on the adjustment of optimal climate growth
conditions to achieve high yield at low expense, good
quality and low environmental load. To achieve these
goals several components (temperature, air humidity and
CO2 concentration) must be controlled optimally given
certain criteria through heating, ventilation and CO2 in-
jection. The continually changing optimal state must be
maintained over the full growth period. Thus, a high di-
mensional optimization task must be solved.

Solutions based on non-linear optimization employing
yield models (cucumber, tomato) for discretization inter-
vals of several days were presented in, for instance, [1],
[8] and [11]. These solutions represent dynamic long time-
scale controls, that should be supplemented by short time-
scale controls (minutes, hours). The long time-scale con-
trol is the high level control defining the valid control do-
main for the low level short time-scale control.

This paper presents the optimization of temperature, air
humidity and CO2 concentration employing an integrated
greenhouse climate model ([6]) for short time-scale pre-
diction (15-60 minutes). This model can be employed for
short time-scale control tasks such as maximization of
crop growth and the prevention of stress. Modified evolu-
tionary algorithms were used to solve the optimization
task. Two evolutionary algorithms are outlined and the
advantages and disadvantages of each are discussed. Real
world weather data were used for the optimization.

Section 2 briefly describes the greenhouse climate model.
In Section 3 the optimization algorithms used are outlined.
The optimization results are presented in Section 4. Sec-
tion 5 gives concluding remarks and some directions for
further investigations.

2 GREENHOUSE CLIMATE MODEL

The greenhouse climate model, Figure 1, describes the
dependence of temperature, air humidity and CO2 con-
centration inside the greenhouse on the outside weather
conditions and the control equipment using 3 nonlinear
differential equations of first order.

The 3 differential equations of the model are the balance
equations of the greenhouse interior for 1) energy
(temperature, TEMI [°C]), 2) vapor, DDI [g/m3] (air hu-
midity), and 3) CO2 (CO2 concentration, CI [ppm]). The
short time-scale crop growth model consists of 2 equations
for 1) transpiration, trans [g/m2·h] and 2) CO2 gas ex-
change, gawe [g/m2·h] ([7]). We use the crop growth
model for sweet pepper throughout the whole paper.

The greenhouse climate can be influenced by 4 control
components: 1) heating, Q [W/m²], 2) ventilation, LR
[m³/(m²·h)], 3) CO2 enrichment, W [g/(m²⋅h)] and 4) vapor
injection, RM [g/(m²⋅h)].

The outside weather conditions to be measured are 1) so-
lar radiation, IGLOB [W/m2], 2) air temperature outside,
TEMA [°C], 3) air humidity outside, FA [% r.F.], 4) CO2



concentration outside, CA [ppm] and 5) wind speed, U
[m/s].

The greenhouse model uses only one compartment
(interior of the greenhouse including plants). Thus, addi-
tional input values have to be considered: 1) floor tem-
perature, TEMB [°C] and 2) cover temperature, TEMG
[°C]. Both values can be measured. Another possibility
(used here) is the derivation of these values from the out-
side weather conditions and the inside climate through a
regression model.

The temperature used in the balance equations is deter-
mined by the specific heat capacity of air and plants in the
greenhouse. Thus, the temperature is the average of air
and plant temperature.

The model uses a number of physical constants, green-
house parameters, and coefficients for the description of
transpiration and CO2 gas exchange by models and plant
parameters. Due to space limitations this paper only

briefly outlines the model. For an extended description of
all parameters and equations as well as an explanation of
all variables refer to [6], [7] and [9].

The profit, PROFIT [0.01 DM/(m²⋅h)] is represented by:
1) biomass, BIOM, 2) fruit price, PR1, 3) cost of CO2 en-
richment, PR2, and 4) cost of heating, PR3.

PROFIT=YIELD PR W PR Q PR⋅ − ⋅ − ⋅1 2 3 (1)

The dried fruit biomass, BIOM, is calculated by the CO2
gas exchange of the plants, gawe. The biomass is con-
verted into YIELD by multiplying the biomass with the
percentage of yield (55%) and dividing with the percent-
age of dried fruit mass (8.5%). The cost of CO2 enrich-
ment is calculated from the price of CO2 and the cost of
heating from the price of oil.

The standard constraints of the controls are defined by the
boundaries of the domain of the control variables: heating
[0...150 W/m2]; air ventilation [2...100 m3/(m2·h)] and
CO2 enrichment [0...10 g/(m2·h)]. Vapor injection is not
currently used.

The states of the greenhouse climate are constrained to
prevent stress of the plants. Currently we employ con-
straints for the temperature in the greenhouse. The tem-
perature should always be above 16°C and if possible not
higher than 36°C.

Figure 2 provides an overview of the interdependencies
between all elements of the integrated greenhouse climate
model and the dependencies used to calculate the profit.

The greenhouse climate model is a set of first-order dif-
ferential equations. Using the initial values of the vari-
ables of the differential equations the system has a solu-
tion for a final point. The integration of these equations
solves the system over a given time period. We used an
embedded RUNGE-KUTTA method of 4th(5th) order for the
integration of the greenhouse climate model.

3 DESCRIPTION OF THE OPTIMIZA-
TION ALGORITHM

For the greenhouse climate model a control should be cal-
culated. Thus, methods of optimization of dynamic sys-
tems must be used.

Evolutionary algorithms were used as optimization algo-
rithm, an alternative to deterministic optimization algo-
rithms. Evolutionary algorithms differ from deterministic
search methods (for instance gradient methods) mainly in
the manner in which variables are changed. Whereas gra-
dient methods change the variables according to determi-
nistic rules, evolutionary algorithms are based on random
transition rules. Thus, evolutionary algorithms do not de-
pend on special properties of the objective function. The
design of the objective function is not constrained by spe-
cial requirements. This allows straightforward implemen-
tation and use of the evolutionary algorithm for optimiza-
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tion of large and complex systems. For a further discus-
sion of evolutionary algorithms refer to [10].

3.1 PARAMETERS OF THE EVOLUTIONARY
ALGORITHM

For optimization we employed two evolutionary algo-
rithms: the Multi Strategy Competition Evolutionary Al-
gorithm (MSCEA) and the Evolution Strategy Evolution-
ary Algorithm (ESEA). Both algorithms are part of the
Genetic and Evolutionary Algorithm Toolbox for use with
MATLAB [10], which was used for all computations.

The following operators and parameters were used for the
MSCEA:
• 4 subpopulations with 50 individuals over 100-250

generations,
• fitness assignment by linear ranking (selective pres-

sure: 2),
• elitest truncation selection, generation gap: 0.9,
• discrete recombination and line recombination,
• real valued mutation, mutation rate: 1/(number of

variables per individual), different precision (rough,
middle, fine) and range settings (large, middle, small),

• unrestricted migration every 20 generations,
• competition between subpopulations every 8 genera-

tions.

The MSCEA represents a global search algorithm. Every
subpopulation implements a different search strategy,
from a rough search (large mutation steps) to a fine and
local search (small mutation steps). All these different
search strategies work at the same time. However, suc-
cessful strategies get additional resources (these sub-
population grow in size) and less successful strategies
loose resources. At the beginning of an optimization run,
the broad search is often successful and quickly finds
promising areas. Later, the finer search strategies are bet-
ter suited and the resources are redistributed in favor of
these strategies.

The following operators and parameters were used for the
ESEA:
• 3 subpopulations with 2 individuals over 200-400

generations,
• no fitness assignment between individuals (selective

pressure: 1),
• every individual produces 6 offspring (generation

gap: 6),
• best two offspring of every subpopulation replace

parents forming new subpopulations,
• no recombination,
• mutation by mutation operator of an evolution strat-

egy [5] using different initial sizes of individual mu-
tation steps (large, medium and small).

The ESEA represents a local search algorithm. The muta-
tion operator adapts individual step sizes. After a number

of generations, a more directed search can be executed.
However, the operator needs a number of generations
(depending on the number of variables) to adjust these
step sizes. The ESEA is able to follow a direction and can
thus handle correlated variables. The choice of the initial
step sizes is important for the success of the ESEA. To
make the algorithm more robust different initial step sizes
were employed using the principle of different strategies
for each subpopulation. Because ESEA is a local search
strategy it could become trapped in local minima.

Both algorithms are able to solve the problem at hand.
Because of their different properties each algorithm excels
at different points of the optimization. The MSCEA is best
suited for initial optimization to find promising areas for
the following searches or to gather and adjust problem
specific knowledge. The MSCEA is a robust search and
produces good results all the time. The ESEA is very good
at searching in a smaller area, because of the local search
properties. At the later stages of the optimization the
problem often incorporates correlated variables - a condi-
tion much easier for ESEA than for MSCEA.

Both algorithms were used during the optimization proc-
ess. The initial optimizations were mostly carried out us-
ing the MSCEA. In later stages of the optimization proc-
ess, when problem specific knowledge was incorporated
into the search, the ESEA was mainly used. However,
without the MSCEA it would have been difficult to gather
all this problem specific knowledge.

3.2 REPRESENTATION OF INDIVIDUALS AND
COST FUNCTION

Each individual in the evolutionary algorithm represents
the control variables of the simulation period. As shown in
Section 2 the greenhouse climate model can be controlled
employing 4 control variables. Currently we are using 3
control variables: heating, ventilation and CO2 enrich-
ment. Vapor injection is set to zero all the time.

The control variables are discretized at equidistant time
points. For the simulation a first order hold is employed to
obtain control values between the discretization points.
The number of variables per individual can be obtained
using equation 2:

NumVar
SimTime

ControlStep
NumControl

ControlStep h

NumControl
= +







 ⋅

=
=

1
0 25

3
;

. (2)

A control step every 15 minutes is small enough for the
simulation and keeps the number of variables as small as
reasonable. Thus, for a simulation time of 4 hours an indi-
vidual consists of 51 variables.

To keep the number of variables and the optimization time
acceptable a simulation period of 4 hours was normally
employed. To optimize longer time periods the optimiza-
tion was divided into 4-hour-pieces and the end states of
one simulation were used as start values of the next pe-



riod. Thus, arbitrarily long simulation periods could be
computed using standard hardware (PC Pentium 200
MHz, 96MB RAM).

The cost function used in the model is the maximization of
profit, equation 1, under fulfillment of all constraints. As
the Genetic and Evolutionary Algorithm Toolbox opti-
mizes by minimization in equation 3 the profit is multi-
plied by -1. To enforce the constraints the cost function
assigns a penalty to individuals which do not meet the de-
fined constraints.

Cost PROFIT dt Penalty
T

T

S

E

= − +∫ (3)

For the penalty function a weighted sum was utilized,
equation 4. Val is either one of the state variables of the
greenhouse climate or a control value, Constr the corre-
sponding constraint. In choosing the weights W the im-
portance of every constraint can be defined.
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3.3 INCORPORATION OF DOMAIN SPECIFIC
KNOWLEDGE

First optimizations of the greenhouse climate model were
done without using any problem specific heuristics. How-
ever, the computation could be accelerated considerably
by incorporating domain specific knowledge.

In a standard evolutionary algorithm the initialization of
the individuals is done uniformly at random in the domain
of every variable. Here, a special initialization function
was employed. The initialization of the variables of the
individuals was restricted to a small band of the domain.
This band was defined by good control strategies for stan-
dard weather conditions of the respective time of year.
Using the MSCEA, solutions for every month of the year
were calculated. These good solutions formed the center
of the initialization area. Not only a good solution for the
respective month was used as initialization base. Addi-
tionally, good starting solutions of the previous and fol-
lowing two months were included. The rationale for this is
that these days are similar under different weather condi-
tions. A cold day in June could be very similar to a normal
day in April and a hot day in June is similar to a normal
day in August.

Another area of incorporation of problem specific knowl-
edge is changing the domain of the variables depending on
the time of year. For example, in winter the range of ven-
tilation is much smaller than in summer. The converse is
true for heating. Thus, the search could be further nar-
rowed down and the guiding of the evolutionary algorithm
enhanced. However, this method is very specific and
could not be generalized for other problems. For every

month of the year boundaries for all three control vari-
ables were defined. The boundaries were further specified
down to one hour of a day. During optimization the re-
combination and mutation operators worked over this spe-
cifically defined domain of the variables.

Another possibility is the use of other heuristics known
from practice. If heating is high, ventilation is not really
useful, the same is true for CO2 enrichment and vice versa.
However, at the moment such heuristics are not used.

Using the special initialization and the specification of the
search domain for every month better solutions for the
control values could be obtained in a smaller number of
generations. Additionally, using problem specific knowl-
edge the search was more robust and reached consistently
better results, even compared to a much longer running
uninitialized evolutionary algorithm.

All this shows that the evolutionary algorithm is only one
part of the optimization algorithm. In particular, if online
response time requirements in practical use of the model
and optimization should be met, all possibilities for en-
hancing the control must be used.

4 EXPERIMENTAL RESULTS

In this section an example of the results of simulation ex-
periments using the greenhouse climate model, evolution-
ary algorithms and problem specific knowledge is pre-
sented. The weather data used in this report are measured
weather data for Großbeeren (Berlin), Germany in 1995.

The optimizations were carried out for all available
weather data, April - September 1995. Because of space
limitations one example is presented only. This example
gives a good impression of the possibilities and power of
the presented system.

The four graphs in figure 3 show all relevant data from the
simulation of the system using the optimized control val-
ues. All graphs employ the same time scale, day of the
year. The fourth graph contains the real world weather
data. The most important information is the value of the
solar radiation, IGLOB. The solar radiation is high on all
days except the third. The third day shows almost no solar
radiation. The third graph shows the optimized control
values over the whole time scale. The third day is striking:
high heating and only a short period of CO2 injection are
used. The top graph presents the resulting states of the
greenhouse climate. The second graph shows the cumula-
tive biomass production and the resulting profit according
to equation 1. All four graphs together give a compact
overview of the states of the system.

Some results are similar for all five days. Heating is on
overnight to maintain the lower constraint, 16°C, for the
inside temperature, TEMI. The heating is not higher than
is necessary to keep this temperature. During the day CO2

injection is on to increase the CO2 concentration.



Further simulation results for other days (not presented
here) show further characteristics. If ventilation is on, no
or less CO2 is injected, because the cost to maintain a
higher CO2 concentration with ventilation on is higher
than the increased yield. When the inside temperature gets
too high, due to high solar radiation, ventilation is opened.

It is difficult to compare the calculated control strategies
to strategies derived using different models or optimiza-

tion techniques. At the moment we are looking for a com-
parable system or implementation. One possibility could
be a strategy that computes optimal controller set points
for day and night or every hour, as is often employed in
current greenhouse control systems. However, these
strategies must still be implemented and calculated.
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Figure 3: Results of Optimization of the Greenhouse Climate Model under Real World
Weather Conditions over Five Consecutive Days in May 1995



5 CONCLUDING REMARKS

In this paper experiments on control of greenhouse cli-
mate were presented. The results show the applicability of
evolutionary algorithms for calculation of the optimal
control. The calculated control strategies for heating, ven-
tilation and CO2 injection to adjust optimal climate inside
the greenhouse depending on real world weather condi-
tions agree with experience and theoretical knowledge.

The integrated greenhouse system is regarded as one
complete system for the optimization. The greenhouse
climate model used and the crop growth model integrate
all necessary components of the system. Any changes in
one of the parameters or equations is without any further
adjustments and immediately effective. The evolutionary
algorithms used provide a direct application, compared to
classical optimization methods. The adaptation to new
greenhouses or different plant models is straightforward.
No special adjustment of the optimization task is neces-
sary. Another advantage is the detailed and easy definition
of the cost function. Problem specific knowledge can di-
rectly be incorporated. All this ensures easy usage.

This paper presented one example of optimization results
for the control of the greenhouse climate using real world
weather conditions. The results showed the fine grained
reaction of the optimization to changing weather condi-
tions, during one day or from day to day. The experiments
presented are just one small example of the experiments
carried out. The optimization was done for all available
weather data of 1995, April to September.

All this justifies the further development of the underlying
optimization method and its application to specific tasks
of control of greenhouse climate. However, to use the
method for online optimization, the current computing
times (30-45 minutes for a simulation interval of 4 hours)
should be reduced further. Promising directions are the
further enhancement of the evolutionary algorithm and the
incorporation of an extended repetitive optimization strat-
egy.

In future research we will consider the incorporation of
long time-scale models and strategies to define the actual
best climate conditions and the constraints for various
states. The plant models will also be enhanced.
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