A Multilevel k—way Partitioning Algorithm for Finite Element
Meshes using Competing Ant Colonies

A.E. Langham
Department of Computer Science
University of Wales Swansea
Singleton Park, Swansea, SA2 8PP, U.K.
csjim@swansea.ac.uk

Abstract

The self-organizing properties of ant colonies
are employed to tackle the classical combi-
natorial optimization problem of graph par-
titioning. Structural information from the
graph is mapped onto an environment upon
which a number of colonies compete for re-
sources. Using Genetic Programming, a For-
aging Strategy is evolved which when exe-
cuted by the ants in each colony leads to a
restructuring of the global environment cor-
responding to a good partition. Multiple
colonies allows for simultaneous k—way par-
titioning which can provide better partitions
than current algorithms which are based on
recursive bisection.

1 INTRODUCTION

Scientific Computation, such as simulation of fluid flow
using finite element meshes, can be mapped onto a
graph problem where each vertex in a graph repre-
sents a node in the mesh, whilst an edge in the graph
represents the need for communication between two
nodes. To distribute the task over several proces-
sors, the graph must be broken into approximately
equal size sub—domains with as little communication
between domains as possible. Hence partitioning in-
volves balancing the computational load, with approx-
imately equal number of nodes assigned to each pro-
cessor, whilst minimizing the communication between
processors with as few edges crossing between proces-
sors as possible. Most mesh partitioning is done with
standard graph partitioning algorithms as described
below.

Partitioning is an NP-complete problem and therefore
we are looking for a near optimal partition in rea-

P.W. Grant
Department of Computer Science
University of Wales Swansea
Singleton Park, Swansea, SA2 8PP, U.K.
p-w.grant@swansea.ac.uk

sonable time. Most partitioning methods employ re-
cursive bisection which can often provide a partition
which is far from optimal (Simon and Teng, 1993) as
regards minimizing the number of edge cuts. What
seems optimal at the top level of recursion may pro-
vide a poor partition at lower levels given the bene-
fit of hindsight. Recursive Spectral Bisection exploits
the relationship between eigenvectors of the Laplacian
Matrix of the graph and the structural information of
the graph (Simon, 1991) and are highly effective com-
pared to alternative methods. However little work has
been done on the comparison of recursive bisection ver-
sus producing simultaneous multiple partitions (k-way
partitioning) which take a more global view. Recently
many spectral based methods have been generalized to
partition a graph into more than two sets at each stage
of recursion (Hendrickson and Leyland, 1995), how-
ever results have not been as promising as recursive
bisection methods. Multilevel recursive spectral bisec-
tion methods have been shown to outperform single
level approaches (Hendrickson and Leyland, 1993b).
Partitioning is first done on a very coarse represen-
tation of the graph and gradually improved at less
coarse—grained levels using the Kernighan Lin heuris-
tic (Kernighan and Lin, 1970) for local improvement.

Swarm based methods use the concept of stigmergy
introduced by Grasse (Grasse, 1959) whilst study-
ing the building behaviour of termite colonies. He
demonstrated that only indirect communication be-
tween workers through the environment is needed to
perform certain global tasks. Kuntz and Snyers used
a clustering technique based on brood sorting in ant
colonies to partition graphs for VLSI design (Kuntz
et al., 1997) with a colony of ant-like agents.They also
used a swarm colonization technique (Kuntz and Sny-
ers, 1994) with coadapting colonies of animats com-
peting for territory by occupying nodes in the graph
to be partitioned. Such methods have shown good
results on small graphs. Applications of Genetic Al-

- - - - - -
¢ e | @ B
- o | | | -
o | F B | s
S| [o] |2 | o] 2] 5| o
#la o] || | x =
@ o (o] -] (o] T
- | ﬁ‘F # - | 2 :‘l
@ |o | HF| e - - =

Figure 1: Grid Environment with two ant colonies
competing for food.

gorithms (Laszewski, 1991) to graph partitioning have
the disadvantage that a solution must be evolved for
each new graph and are hence slower than conventional
methods. Results are promising when compared to
Kernighan Lin but lack of global information means
that they do not compete favourably with multilevel
spectral methods.

The ML-FS is a multilevel partitioning method. The
basic method for partitioning is produced using Ge-
netic Programming (Koza, 1992) and multilevel meth-
ods are applied to make the algorithm efficient for large
graphs. Results are compared with Recursive Bisec-
tion (RSB) and Multilevel Kernighan Lin (ML-KL) as
implemented in the package Chaco 2.0 (Hendrickson
and Leyland, 1993a).

2 THE APPROACH

2.1 COMPETING COLONIES METAPHOR

Initially consider the bisection case in which two
colonies of ants are used to split the graph into two
partitions by competing for food. A diagrammatic
representation is shown in Figure 1. Each colony is
centered around a fixed cell, in a grid which represents
the environment in which the ants can navigate. The
ants must learn to forage for food, where each piece of
food on the grid represents a node in the mesh which
is being partitioned. The ants must find all the food
and place in the appropriate nest such that the set of
nodes represented by the food in Nest; forms a set
V7 and the set of nodes in Nesty forms a set V5. The
mesh partitioning problem is equivalent to a graph bi-
section problem, where given a graph G = (V, E) with
vertices V' equivalent to nodes in the mesh and edges
FE equivalent to connected nodes in the mesh, a parti-
tion V = V; UV, must be found such that Vi NV, = 0,

[Vi| = |V5| and the number of cut edges |E,| is mini-
mized, where:

E. = {(v1,v2) € Elvy € V1,03 € Va}

Each colony has a fixed number of ants which must
cooperate with each other to collect the food. When
an ant tries to pick up food the weight of the food
determines how many ants are needed for the task.
The weight is calculated by finding the number of cut
edges created by assigning the associated node to the
partition associated with the nest of the current ant.
Initially the food is not assigned to any colony and
therefore a piece of food will not make any cuts in the
graph unless the connected nodes have been assigned
to another colony. The weight of each piece of food is
determined by the size of the partition it will produce
and the number of cuts. If the food is too heavy for
one ant to carry it sends out a help signal which can
be detected by other ants of the same colony within
a given radius. Assigned food in another colony can
be picked up with probability related to the change
in number of cuts produced. Once an ant has found
food and picked it up the ant secretes pheremone to
act as a trail for other foraging ants. An ant can only
distinguish pheremone of an ant from the same colony.
Hence each colony must display an emergent self orga-
nization to coordinate this task.

2.2 MULTILEVEL PARTITIONING

Partitioning takes place at different levels of granu-
larity. Starting with a coarse—grained representation
of the original graph, a series of of ever finer—grained
graphs are produced until the original fine—grained
graph is used. To map a large graph onto a small
one, each node in the small graph represents a cluster
of nodes in the large graph. This graph is then made
progressively more fine—grained by splitting the nodes
in each cluster into two clusters, hence each level dou-
bles the number of nodes in the graph until each clus-
ter contains only one node making it equivalent to the
original large graph. The original fine—grained graph
G, is divided into the required number of clusters C'
which represent the nodes in the coarse—grained graph
Gcy. To produce these clusters the original graph is
marked with distinct nodes. Consider graph G,, which
contains N nodes numbered from 1... N, node 1 is a
distinct node and all other nodes are distinct if they
are not connected to any other node which is distinct.
Nodes are checked in order 1 to N. The required num-
ber of nodes for the initial coarse graph is C. To
form C clusters, C distinct nodes are randomly cho-
sen which form the basis of the clusters. The rest of

the distinct nodes are then allocated to the nearest
cluster. Nearness is measured by the shortest path to
the first distinct node in a cluster. If two clusters are
equally near, the one containing the least nodes is cho-
sen. When all distinct nodes are placed in a cluster the
rest of the nodes are placed. Each non distinct node is
connected to approximately three distinct nodes each
belonging to a cluster. If two or more of these dis-
tinct nodes are in the same cluster the non distinct
node is added to this cluster. Otherwise it is added
to the cluster with the least elements. The equivalent
graph is produced by treating each cluster as a node
and calculating the connections between the clusters.
The weight of each connection between nodes in Ge
is equal to the total number of edges which cross be-
tween the corresponding clusters in G,,. To produce
a more fine—grained graph the clusters in the current
graph are split in two to produce a graph with twice
the number of clusters. To split each cluster roughly
in two the nodes in each cluster are sorted using quick
sort on the x coordinate. The sorted set is then split in
two as equally as possible. If the x coordinate is equal
for all nodes in the cluster it is sorted using the y coor-
dinate. Our multilevel method uses a maximum of four
levels of coarse—grained graphs, Ge; ...Gcey , then the
fine—grained graph G,,. However if one of the coarse—
grained graphs Gc; ... Gcs has more nodes than N/2,
partitioning proceeds to the node level straight away.

2.3 THE GRID ENVIRONMENT

The Grid Environment consists of a collection of cells
on a square grid. Each cell can contain a list of food
pieces where each piece represents a cluster of nodes.
Clusters from the coarse-grained graph are mapped
onto the grid in a manner that represents the struc-
tural connectivity of the graph. Each cluster from this
graph is mapped onto a cell in the grid. The aver-
age position of nodes in each cluster is calculated and
used to find the average position of all clusters Cy,,.
The nearest cluster to this point is considered to be
roughly the centroid of the coarse—grained graph and
is placed at the centre of the grid and connected clus-
ters are placed in the surrounding cells according to
their relative geometrical positions. Each connected
cluster then has its connected clusters placed and this
is repeated recursively in a breadth-first fashion un-
til all clusters are placed on the grid. Once the food
has been placed the nests for each colony are placed
at the centre of an equal number of food pieces. This
is done using a recursive bisection technique. The me-
dian position of food on the grid is used. Consider
the bisection case, using a grid of size G, * G, nests
are placed at (zo,y1) and (x3,y2). If 21 represents

the median x position of food between 0 and G, then
o represents the median x position of food between
0 and z; and x3 represents the median x position of
food between x; and G,. y; and yo are the median y
positions between 0 and G, in the regions 0 to x; and
x1 to G. This can be applied recursively to place any
number of nests.

2.4 FUNCTIONS AND TERMINALS

Table 1: Functions for Genetic Programming

if food_here

if food_ahead

if food_left

if food_right
if_in nest_locus

if_carrying food

if _help_signal

if _tired_of _foraging
if nest_full
if_heavy_food_here

Table 2: Terminals for Genetic Programming

move_forward move_to_help

turn_right move_to_nest

turn_left move_to_away_pheremone
pick_up_food move_to_strong forward pheremone
drop_food move_random

All ants are placed on the cell representing the colony
nest at time t=0. They are initialized to face a ran-
dom direction i.e North, South, East or West. During
each time step an ant can move only to a surrounding
grid square. move_forward causes an ant to move one
grid square in the direction it is facing. turn right
causes the ant to change the direction it is pointing
by rotating clockwise 90 degrees. Therefore an ant
which is originally facing North will then face East.
Similarly, turn_left causes the ant to rotate its di-
rection by 90 degrees in an anticlockwise direction.
move_random causes the ant to point in a random di-
rection and move forward one grid square in that di-
rection. When an ant tries to move off the grid it is
forced to turn left or right with equal probability. By
preventing the ants from wrapping around to the other
side of the grid a colony will be less likely to collect
food corresponding to a disconnected partition of the

graph which is mapped structurally onto the grid. To
partition the graph each colony must collect a set of
food pieces such that the associated nodes assigned to
each colony correspond to a good global partition of
the graph. To do this ants must forage for food and
bring it back to the nest. When food is picked up
it disappears off the map. It can only be dropped if
the ant is near the nest, if_in_nest_locus is True if
an ant is within a distance of 2 grid squares from the
colony nest. drop_food causes the food to reappear
on the map, it is placed around the nest cell using a
clockwise search to find the first cell with enough space
to hold the nodes corresponding to the food piece.

To coordinate the activity of each colony pheremone
trails are used, which act as implicit communication
signals. Pheremone is dropped only when an ant is
carrying food, hence other ants can follow trails to
find regions of the grid containing a high-density of
food. Pheremone decays at a rate of 5 percent each
time step and hence trails must be reinforced or they
disappear. An ant can only detect pheremone trails
laid by ants from the same colony.

There are two functions associated with pheremone
trails, move_to_strong_forward_pheremone causes an
ant to move one square either in a forward direction,
to the right or to the left with a probability propor-
tional to the amount of pheremone in each square.
move_to_away_pheremone causes an ant to move away
from the nest. If more than one direction will move the
ant away from the nest the probability of movement in
a particular direction is proportional to the amount of
pheremone in the grid square of each away direction.
An ant can pick up food if the function if food_here
is True. This occurs when there is food on the current
grid square which has not already been collected and
assigned to the ants colony. This stops ants trying to
pick up food already assigned to that colony. Ants can
pick up both unassigned food which has not yet been
picked up and assigned food which has been placed
in another colony’s nest. These two eventualities in
pick_up_food are governed by different rules and are
known as foraging and raiding.

Unassigned food is given a weight corresponding to the
number of cuts which will be caused if the associated
nodes are assigned to the ants colony. To calculate
this, consider the case where each food piece repre-
sents 1 node. The total number of cuts depends upon
which colonies the connected nodes in the graph have
been assigned to. If all connected nodes are unassigned
there are no cuts created. All edges will have a weight
of one, if more than half the edges will be cut, i.e. have
nodes assigned to different colonies the ant cannot pick

it up. A typical regular triangular meshes has 6 nodes
and hence six edges connected to each node. Hence if
more than three of these edges will be cut the node
cannot be picked up. If only 1 edge will be cut the
food is given a weight of 1, if 2 edges will be cut the
weight is 2 and 3 edges cut gives a weight of 3. This
weight indicates how many ants are needed to pick up
and carry the food. Hence the less cuts the easier it is
for the ants to collect a piece of food. In a multilevel
implementation each piece of food can represent a clus-
ter of more than one node. The weight of each edge
between two connected clusters C'; and C5 is equal
to the number of edges with one node in C; and the
other in C5. Hence the total number of cuts possible
between a cluster and all connected clusters is equal to
sum of all connected edge weights. If the total number
of cuts created is greater than half the number possi-
ble then the food cannot be picked up. Otherwise the
proportion of cuts caused, p. = numCuts/totalCuts,
determines the weight of the food.

1 ifp.=0.16
Weight = 2 if p. =0.33
3 if p. =0.50

where, numCuts is the number of cuts caused by pick-
ing up the food piece and totalCuts is the total pos-
sible number of cuts. If a weight of greater than 1 is
assigned to a food piece an ant must send out a help
signal, which is equivalent to a vibration which can be
detected by other ants from the same colony with the
function if_help_signal is True if there is a signal
within a locus of 2 grid squares. The help signal is
used to attract other ants as food can only be picked
up if the appropriate number of ants are present to
support its weight. The function if heavy_food here
relates to food that has a weight greater than 1.

Assigned food is always given a weight of 1, the prob-
ability of pick-up is dependent on the change in the
number of cuts caused when a piece of food is re-
assigned to another colony. As with the unassigned
food, the cuts are calculated as a proportion of the
total possible cuts and an ant can pick it up with a
greater probability if the proportion of cuts decreases
when food is reassigned. If the proportion of cuts will
increase it can be picked up with a much lower prob-
ability. The reason for this is to encourage a better
partition by making it easier for ants to pick up food
which decreases the number of cuts. However, if the
ants can only reassign food which reduces the number
of cuts the system could easily get stuck in local min-
ima, so moves which increase the number of cuts are
allowed with a low probability to improve the search
mechanism. Hence the probability of picking up an
assigned piece of food is related to dp., the change in

the proportion of total possible cuts which is caused
by reassigning the food. dp, is equal to the current p.
minus the new pe.

1.0 if dp. > 0.0
Probability = 8:8 i gic. < (18.33

1.0/(2.0 % (6p.)?) if dp. > —0.33

Unsuccessful pick-up leads to move-random. The pos-
sible size of each partition is bounded by an upper
bound U and a lower bound L. The lower bound de-
termines the amount of food which must be present in
a colony before ants from another colony can reassign
the food thus raiding the colony. L is 60% of the op-
timal size of each set V,,;, where V,,; is the number
of nodes divided by the number of partitions. This
is rounded up to the nearest integer. U is equal to
Vopt and is used in pick up food. If the number of
nodes in a colony is greater than U an ant from that
colony will be unsuccessful picking up food. U stops
one colony from collecting too much food, hence pro-
ducing disconnected regions. Similarly L prevents one
colony from collecting the food from around another
colony forcing that colony to forage further afield and
hence producing disconnected regions with more likeli-
hood. Disconnected regions tend to produce a greater
number of cuts and are therefore discouraged.

Ants can sense food in the immediate and ad-
jacent squares using the functions, if _food here,
if _food_ahead, if _food_right and if_food_left
which all return True if food is located in the appro-
priate square. It is assumed that they have memory of
whether the nest is full. if nest_full returns True if
the number of food pieces in the nest is greater than or
equal to V,,;. Each ant also has a memory of how long
ago it last encountered a piece of food. It can check
this using if tired_of foraging which is True if no
food has been encountered for 2xn where n is equal to
the side of the grid. It is also assumed that they can re-
member the position of the colony nest. move_to nest
makes an ant move one step towards the nest using the
following heuristic

if (|Nest.x-x| > |Nest.y-yl)
then if (x > Nest.x) then dir
else dir = EAST
else if (y > Nest.y) then dir = SOUTH
else dir = NORTH

WEST

where (Nest.x,Nest.y) is the position of the colony nest
and (x,y) is the current position of the ant. An ant can
also move towards a help signal using move_to_help
which moves the ant one step towards the nearest help
signal in a similar fashion.

2.5 EVOLVING AN EFFICIENT ANT
FORAGING STRATEGY

To evolve a Genetic Program, a small mesh of 18 nodes
and 40 edges with a known optimal bisection of 7 cuts
is used. The GP system must find a program which
executed by the ants in each colony will lead to the
optimal bisection of the corresponding graph by as-
signing nodes to a colony. The best partition found
during execution is stored and used to calculate the
fitness. Here the best partition corresponds to that
with the least number of cuts. If two partitions have
the same number of cuts, then that with the most
equal sized sets is stored. A relatively large grid (21
by 21) is used compared to the amount of food to pro-
mote an efficient foraging strategy. Nests are placed
at (5,10) and (15,10) and the food is placed in three
blocks each equidistant from the two nests, centered at
(10,5), (10,10) and (10,15). Food is randomly assigned
to one of the blocks and is placed around the block in
a clockwise fashion similar to placing food around the
nest in drop-food. Hence ants must use pheremones
to collect the food and must raid the other nest to find
the optimal partition, as nodes are assigned randomly
to food blocks each colony will have difficulty pick-
ing up nodes in a connected region. A population of
3000 is used with each member being run for 300 time
steps. Each colony consists of 20 ants and each time
step involves one evaluation of the Genetic Program
for each ant in each colony, unless the ant is helping to
carry food. The fitness function is optimal when the
optimal bisection is reached with equal sized sets of
the desired size (9 nodes) within ¢,,;, time steps. The
standardized fitness fs is given below.

Fo=1.0—(0.5% fo+0.3% fop + 0.2 f;)
fer = (VI = Zocnan | IVal = Vopel /IV]
ft =1.0- ((tend - tmzn)/(tmaw - tmzn))

where, N is the required number of partitions, V,, is
the number of nodes assigned to partition n, V,,; is
the desired size of each partition, |V|, |E| are the to-
tal number of nodes and edges in the mesh and |E,|
is the number of cuts produced by the current par-
tition. Here, any edge containing an unassigned node
produces a cut, otherwise programs can achieve a stan-
dard fitness of 0.5 without any foraging activity. The
max number of time steps tq. is 300 and the min-
imum t¢,,;, is 100, with t.,q being the time to reach
the optimal number of cuts. If t.,q4 is less than 100 * f;
is given a fitness of 1.0. The GP is run for 100 gen-
erations with a crossover probability of 0.89, a repro-
duction probability of 0.1 and a mutation probability
of 0.01. Tree size is limited to 50 nodes and all other

parameters are as for Koza (Koza, 1992).

2.6 THE MULTILEVEL ANT FORAGING
STRATEGY

The ML-FS uses a grid of 21 by 21 cells each holding
a list of clusters which represent sets of nodes. Bi-
section uses populations of 100 ants, quadrisection 50
and octrisection 25 ants per colony. Initially all ants
are located in the grid cell representing the colony nest
pointing in a random direction North, South, East or
West. A maximum of five different levels of graph
are used with the first representing the initial coarse—
grained graph Gc¢; and the fifth representing the initial
fine—grained graph G,,. At the coarse—grained levels
food pieces represent clusters of nodes, at the fine—
grained level food pieces represent single nodes. The
number of clusters in graph Gc; is proportional to the
number of nodes in the fine—grained graph. Graphs
with less than 1000 nodes use 50 clusters, those with
less than 3000 use 100 clusters and those with greater
than 3000 use 200 clusters. Each coarse—grained level
is run for 1000 time steps, where each time step repre-
sents one evaluation of the Genetic Program for each
ant in each colony. At the end of each coarse—grained
level, the state of the grid corresponding to the best
partition found so far is reset. A new coarse—grained
level is produced by splitting each cluster into two new
clusters which are placed in the same position as the
original cluster. Whilst partitioning is at a coarse—
grained level, ants can pick up only one piece of food
from a list of food pieces. Each piece has an equal
probability of being picked up. At the fine—grained
level ants can pick up a maximum of 10 pieces of food.
The number of time steps used at the fine—grained level
is proportional to the number of nodes in the graph.
2000 time steps for under 1000 nodes, 4000 time steps
for over 1000 nodes and 6000 time steps for over 3000
nodes. If the number of food pieces on the grid is
greater than 1000 the system is reset to the best parti-
tion so far, every 300 time steps, to stop search getting
lost. The final partition is the best partition stored
during execution.

3 RESULTS

The Foraging Strategy (FS) evolved is shown below.
This best of run individual achieves the optimal par-
tition with 2 sets of 9 nodes within 100 time steps.
Results for ML-FS are compared with RSB and ML~
KL in Table 3. Figures represent the number of cuts
produced by the resulting partitions. ML-KL uses the
same number of clusters in the initial coarse—grained
graph.

(if-in-nest-locus
(if-carrying-food (drop-food)
(if-food-here (pick-up-food)
(move-to-away-pheremone)))
(if-carrying-food (move-to-nest)
(if-food-here (pick-up-food)
(if-nest-full
(if-food-ahead (move-forward)
(move-to-strong-forward-pheremone)))
(if-food-ahead (move-forward)
(if-food-right (turn-right)
(if-food-left (turn-left)
(if-help-signal (move-to-help)
(move-to-strong-forward-pheremone))))))))

Table 3: Partitions for 4 Meshes over 2,4 and 8 Sets

Edges Nodes k RSB ML-KL ML-FS
1046 286 2 29 28 28
4 91 88 87
8 176 164 160
3081 1068 2 8 65 61
4 167 119 119
8 266 239 236
6049 2067 2 98 104 94
4 214 205 206
8 388 360 350
13,722 4720 2 116 119 92
4 258 236 235
8 468 393 396

4 DISCUSSION

Bruce and Hendrickson report that both structural in-
formation and local improvement strategies are needed
to provide a good partitioning scheme. The Foraging
Strategy produces good partitions because the method
incorporates both global structural information and a
local improvement technique. Global structural in-
formation is provided by mapping the structure of
the graph onto the grid environment and then plac-
ing colony nests at the median of an equal number of
food pieces. Hence a rough partition is provided by
each colony foraging in the local environment. Local
Improvement is then provided by raiding other colony
food piles and reassigning food with high probability

if the number of cuts will decrease. To discourage dis-
connected regions within a partition set, each colony is
placed around an equal number of food pieces and can-
not raid another colony food pile until that pile is at
least 60% of the optimal set size. Hence, ants must for-
age most of the food from the local environment rather
than raiding, which is used to improve the initial par-
tition. It should be noted that our method is tailored
specifically to FEM meshes which are equivalent to
sparse graphs in which each node is only connected to
others which are physically local.

The Genetic Program evolved (F'S) utilizes pheremone
trails to coordinate the movements within a colony.
Initially ants follow trails away from the nest. Once
outside the nest locus they must follow the strongest
trail in a forward direction. This stops each ant hav-
ing to forage randomly each time it leaves the nest. It
can follow existing trails which are only reinforced if
food has recently been found. When moving around,
an ant first checks for food in the current square. If
there is none, it checks whether the nest is full. If the
nest is full, F'S uses a strategy which favours foraging
by searching the local environment and using help be-
haviour. Otherwise, FS favours raiding by following
strongly reinforced trails to other nests and returning
to the colony nest if no food is encountered within 2n
steps, thus making raiding more efficient.

The FS contains structural and global information
which encourages a good partition and cuts down the
search space. This can be seen by considering two
swarm based partitioning methods by Kuntz and Sny-
ers (Kuntz and Snyers, 1994). Colonization is faster
as the environment represents the structure of the
graph, whereas Clustering starts with nodes mapped
randomly onto the environment. FS incorporates the
structure of the graph in the environment and also
incorporates global information by setting L and U
to limit the size of each set. This stops unnecessary
search involving sets which are unbalanced. Further-
more, nests are placed around an equal number of
food pieces to provide an initial partition, hence cut-
ting down on search time. Therefore FS needs a rel-
atively small population. Multilevel methods provide
further structural information. A rough initial par-
tition is done on a much smaller graph hence vastly
cutting down search time. Further levels of multilevel
partitioning refine this rough partition, with each level
starting from the best partition found in the last level.

5 CONCLUSIONS

The foraging strategy, described in this paper, pro-
duces high quality partitions because it incorporates

structural information leading to a rough initial parti-
tion and a local improvement technique which is prob-
abilistic and therefore stops the system from sticking
in local minima. Results show that k—way partition-
ing can provide a better partition as it is not depen-
dent on partitions at a higher level of recursion. Since
other k-way partitioning methods based on spectral
methods show relatively poor results, distributed ap-
proaches to k—way partitioning warrant further inves-
tigation. We are currently analysing the performance
of this algorithm on a set of graphs found in FEM ap-
plications and the adaption of multilevel methods to
larger graphs found in industrial problems.

References

P. Grasse (1959). La reconstruction du nid et les co-
ordinations interindividuelles; la théorie de la stig-
mergie. Insectes Sociauz, 35:41-84.

B. Hendrickson and R. Leyland (1993a). The chaco
user’s guide, version 2.0. Technical report, Sandia
National Laboratories.

B. Hendrickson and R. Leyland (1993b). A multilevel
algorithm for partitioning graphs. Technical report,
Sandia National Laboratories.

B. Hendrickson and R. Leyland (1995). An improved
spectral graph partitioning algorithm for mapping
parallel computations. SIAM Journal of Scientific
Computing, 16.

B.W. Kernighan and S. Lin (1970). An efficient heuris-
tic procedure for partitioning graphs. Bell Systems
Technical Journal, 49:291-308.

J.R. Koza (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-
tion. MIT Press, Cambridge, MA.

P. Kuntz, P. Layzell, and D. Snyers (1997). A colony of
ant-like agents for partitioning in vlsi technology. In
Fourth European Conference on Artificial Life, July.

P. Kuntz and D. Snyers (1994). Emergent colonization
and graph partitioning. In Third International Con-
ference on Simulation of adaptive behaviour: From
Animals to Animats 3, July.

G. Laszewski (1991). Intelligent structural operators
for the k-way partitioning problem. In Fourth Inter-
national Conference on Genetic Algorithms, July.

H.D. Simon (1991). Partitioning of unstructured prob-
lems for parallel processing. Computer Systems in
Engineering, 2:135-148.

H.D. Simon and S.H. Teng (1993). How good is recur-
sive bisection? Technical report, Systems Division,
NASA, CA.

