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Abstract

A self-adaptation of arbitrary normal muta-
tion distributions within the concept of muta-
tive strategy parameter control (MSC) using a
newly formulated mutation operator is intro-
duced. The coordinate system independent
formulation ensures the invariance of the al-
gorithm towards arbitrary linear transforma-
tions, which is a novelty for self-adaptation
within the concept of MSC. To enable a sen-
sible adaptation, the population size must
scale quadratically with the problem size N
— according to the number of adapted strat-
egy parameters. Because the adaptation time
(number of generations) also scales with N2,
the overall adaptation expense amounts to
N* function evaluations.

1 Introduction

The essential feature of self-adaptation within evolu-
tion strategies (ESs) can be implemented using dif-
ferent basic concepts. Mostly common is the well
known concept of mutative strategy parameter control
(MSC) (Rechenberg 1973; Schwefel 1981; Rechenberg
1994; Schwefel 1995). A different approach is repre-
sented by the derandomized step-size control (DSC),
suggested by Ostermeier et al. (1994). In both adap-
tation schemes the adaptation of arbitrary normal dis-
tributions has been realized. On the one hand Schwe-
fel (1981) proposed an adaptation within the concept
of MSC, which we will call rotation angle adapta-
tion (RAA). On the other hand the covariance ma-
trix adaptation (CMA) proposed by Hansen and Os-

Nikolaus Hansen
Technische Universitat Berlin, Sekr. ACK 1
Fachgebiet fiir Bionik und Evolutionstechnik
Ackerstr. 71-76, 13355 Berlin, Germany
e-mail: hansen@bionik.tu-berlin.de
phone:+30 / 314 72666, fax:+30 / 314 72658

termeier (1996) utilizes the concept of DSC.

Apart from the different underlying adaptation con-
cepts, RAA and CMA respond completely different to
linear transformations of the object parameter space.
Invariance against such linear transformations is of
major importance, because it enables generalization
of performance measurements obtained on test or real
world objective functions. The CMA can be shown to
be invariant towards arbitrary linear transformations
of the object parameter space (apart from initializa-
tion). The RAA does not show this invariance.

The aim of this paper is to introduce the self-
adaptation of arbitrary normal mutation distributions
within the concept of MSC realizing invariance prop-
erties comparable to the CMA. This allows to compare
the two different adaptation concepts in a more sensi-
ble way and offers answers to the questions:

1. Can self-adaptation with the mentioned invari-
ance be successfully applied within the concept
of MSC?

2. Can the mutative concept compete with the de-
randomized approach?

In this paper we mainly intend to answer these two
scientifically interesting questions — we do not intend
to introduce a new ES-algorithm to solve real world
problems faster or more reliably.

2 The Concept of Mutative Strategy
Parameter Control

The basic idea of the concept of mutative strategy pa-
rameter control (MSC) is to deal with the strategy
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parameters that are controlling the mutation distribu-
tion in a comparable way as with the object param-
eters. Strategy parameters are added to the genome
of the individuals and are subjected to mutation and
recombination like the object parameters.

The mutation of an individual is carried out in two
steps:

e First, the mutation distribution (concerning the
strategy parameters) is mutated.

e Second, this variated (mutated) distribution is
used to generate the mutation of the object pa-
rameters.

The fitness selection of the individuals of course only
depends on the object parameter setting. Therefore
the selection of better mutation distributions is only
possible, if these actually produced the more successful
object parameter variations.

2.1 The (Normal) Mutation Distribution

Concerning the adaptation of one general step-size or
N individual step-sizes (mean variations in the axes
of the given coordinate system) the concept of MSC
proves to work!, not taking into account the gener-
ally observed phenomenon, that the overall variance
of the mutation distribution is adapted systematically
too small by MSC. The self-adaptation of arbitrary
normal mutation distributions in the concept of MSC
has failed up to now. The rotation angle adaptation
(RAA) (Schwefel 1981) indeed is able to produce arbi-
trary normal mutation distributions (Rudolph 1992),
but does not really adapt the mutation distribution to
different target topologies of the fitness function. One
reason for this is the coordinate system dependent for-
mulation of the rotation procedure. As a result the
algorithm shows for instance a totally different behav-
ior on different linear transformations of the fitness
function hyper-sphere.

Generating arbitrary normal distributions is equiva-
lent to linear transformations of a given normal dis-
tribution and equivalent to a linear transformation of
the object parameter space (and object parameter vec-
tor accordingly). An algorithm, that adapts arbitrary
normal mutation distributions should be invariant to-
wards arbitrary linear transformations of the object
parameter space (apart from initialization).

!Choosing suitable population size and recombination
scheme.

2.2 The Mutation Operator

To realize a self-adaptation of the mutation distribu-
tion within the concept of MSC, the mutation op-
erator on the strategy parameters is of outstanding
importance. If only one general step-size has to be
adapted (the shape of the mutation distribution re-
mains constant) the formulation of the mutation op-
erator is quite simple. In this case the mutation of
the mutation distribution is carried out by multiply-
ing the variance of the mutation distribution with a
properly chosen random factor. Multiplicative varia-
tion ensures the invariance of the algorithm towards
linear transformation of the object parameter space
of the form x — c¢x, where ¢ € Rs¢. An additive
variation of the mutation variance would not ensure
this invariance. Comparably the adaptation of indi-
vidual step-sizes can be realized by multiplying the
axes-parallel variances of the normal mutation distri-
bution with independently generated random factors.
Such algorithms will be invariant towards linear trans-
formations of the object parameter space of the form
x — Dx, where D is a N x N diagonal matrix.

At this point the interesting question is, how to for-
mulate a mutation operator, that allows to produce
and self-adapt an arbitrary normal mutation distribu-
tion in a way, that the resulting algorithm is invariant
towards any linear transformation of the object pa-
rameter space. Of course, as mentioned before, the
invariance depends on the choice of the initial muta-
tion distribution. With different initializations usually
a distinct adaptation phase will occur. In any case
the optimization process should be completely inde-
pendent of linear transformations if object parameter
space and initialization of the algorithm are equally
transformed.

A mutation operator that produces the features de-
scribed above defines a sensible generalization of global
and individual step-size adaptation because it yields
the corresponding invariances.

3 The Coordinate System
Independent Mutation Operator

In this section we describe a mutation operator for the
mutation distribution, that produces arbitrary nor-
mal mutation distributions according to the invariance
requirements mentioned above. Consider drawing a
sample of N points from the mutation distribution.
Such a sample of N vectors can be used to constitute
a new, mutated distribution in a very simple manner:
Multiply all the vectors with independently normally
distributed random numbers and add up the resulting
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random vectors. While this procedure is per se in-
dependent of any given coordinate system the chosen
starting distribution can be interpreted as such depen-
dency. Because the mutation process is repeated in an
iterated sequence the dependency on the initial dis-
tribution vanishes with increasing generation number.
This can be interpreted as the adaptation process.

Figure 1a and 1b illustrate the mutation operator.
In the upper left corner a two-dimensional initial
(parental) mutation distribution is shown. The fol-
lowing eleven distributions are generated using N = 2
random vector realizations of the parental distribution
each time. In figure la the parental distribution is
isotropic; figure 1b gives an example of an anisotropic
parental distribution. In contrast to figure 1, that
shows the mutation distributions of parent and descen-
dants of one generation, figure 2 shows a generation
sequence. Here every distribution is generated using
the preceding one. The degeneration of the distribu-
tion into one dimension is important to notice. In the
situation shown here, this degeneration is inevitable.
It happens in the ES, if random selection takes place.
Under non-random selection this will be prevented by
choosing a sufficiently large parent number y combined
with an intermediate recombination scheme.

4 Algorithm: The (u/p, \)-ES

We formulate the algorithm for the (u/1p, A)-ES — an
evolution strategy with p parents, A descendants and
Intermediate multi-recombination of p out of u par-
ents. Every individual in the population consists of
the object parameter vector x € RY and the strat-
egy parameters 0 € R and C € RN x R", where o
can be interpreted as step-size, while C is a symmetric
and positive definite covariance matrix. The transition
from generation g to g + 1 is defined by the following
equations:

For descendant £k =1,...,)\

where P(6 =0.4) =P({ =-04) =1/2
CEt = 3 aal, @
i=1
where z; ~ N(O, 5 Yjers Cg-g)) iid.

— 1 Z Xz(g) + o.l(cg‘i‘l)N(O’ ngg‘i‘l)) (3)
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I Ze; is the index set of the p (parent-)individuals of gen-
eration g selected for recombination for descendant k.
If p = p, it holds If?; =...= If\?;. Equation (2) facil-
itates the mutation operator introduced above. m in
(2) determines the mutation strength for C. Large m
means small mutation strength, because a large sam-
ple z;,...,2z, gets closer to the original distribution

than a small one. For m < N the N(O,ngﬂ)) dis-

tribution becomes singular. We choose the “natural”
value m := N (see below).

Equation (1) provides an additional mutation of the
overall variance, using the geometric mean of the p
parent step-sizes. This additional adaptation of the
global step-size can be very useful, because it facili-
tates a faster change of the overall variance than (2).
The actual distribution of £ in (1) is of lower relevance,
if the given variance and its zero mean is retained. In
view of this paper (1) can be removed without signifi-
cant qualitative influence on our results.

5 Choice of Strategy Control
Parameters

Using a (uAp, A)-ES with self-adaptation of arbitrary
normal mutation distributions arises the question of
how to choose the strategy control parameters. Of
predominant importance are the population size and
the mutation strength of the here newly formulated
mutation operator.

The mutation operator described above has a defined
mutation strength, because m = N. A natural way
to vary its mutation strength is to use more than N
random vectors to generate a mutated random distri-
bution. The more vectors are used, the smaller is the
variation of the mutation distribution. Larger varia-
tions can be realized by using less than N random vec-
tors or by repeatedly applying the mutation operator.
All these methods have practical disadvantages. We
use a different method to vary the mutation strength:

Smaller variations are realized by mixing the mutated
distribution with the parental distribution by aver-
aging the corresponding covariance matrices. Larger
variations are realized by multiplying the N generated
random vectors each one with independent log-normal
random numbers?.

Firstly, we look at the loss of progress depending on
the mutation strength to be tuned. Figure 3 shows

2The square sum of these random numbers has to be
normalized to N in order to leave the overall variance of
the mutation distribution unchanged.
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Figure 1: Parental (upper left) and eleven mutated distributions. The arrows are realizations from
the parental distribution and are the vectors, the new distribution is constructed with. The ellipsoids
indicate the one-o line of the normal distributions.
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Figure 2: Sequence of distributions, respectively generated by realizations of the preceding distribu-
tion. The ellipsoids indicate the one-o line of the normal distributions, the arrows the realizations
due to the preceding distribution. The degeneration is inevitable.

serial progress rates® of the algorithm described above
on the 5, 10 and 20-dimensional fitness function hyper-
sphere, x — />, z7. The simulations are carried
out with 4 = 0.5N2; N?;2N2. The population size is
always chosen to be A = 4u.

For values < 1 the mutation strength on the ab-
scissa of figure 3 corresponds to the mixing ratio be-
tween mutated and parental distribution in the form
(1 —2)Chrarental + ZCmutated, Where z < 1 and C is the
covariance matrix of the distribution. For mutation
strength one the mutation operator with m = N vec-
tors is solely used as described above. For mutation
strength zero no variation of the mutation distribu-
tion takes place. For mutation strength values larger
one no mixing takes place and the N vectors are mul-
tiplied with exp(N(0,0?)) i.i.d. random factors with

3The term serial progress rate indicates the progress
rate per generation divided by the number of descendants.

o=10""1-1¢€[0,9] for z € [1,2].

The diagrams show continuously decreasing serial
progress rates with increasing variations of the mu-
tation distribution (mutation strength). This results
from increasing deviations of the mutation distribu-
tion from the optimal isotropic shape. With increas-
ing mutation strength progress becomes zero because
of a degenerating mutation distributions. This result
implies an upper bound of the mutation strength. On
the other side variations of the mutation distribution
should be as large as possible, because the correct se-
lection depends on differences between descendant dis-
tributions and the speed of the adaptation process is
principally limited by the mutation strength. In the
case of changing topology of the fitness function or
poor initialization of the mutation distribution, small
variations of the mutation distribution will lead to long
adaptation periods. This turns out to be a decisive
factor with respect to the applicability of adaptation
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Figure 3: Serial progress rate on the hyper-sphere:
E[log(R9~1)/R®] /X, where R denotes the distance
to optimum, verse mutation strength. For mutation
strength zero the serial progress rate is almost propor-
tional to A~! (because of A o< p > N). The symbols
indicate simulation results. The lines are smoothed
interpolations.

algorithms.

According to figure 3 the mutation strength can be
chosen 0.25 for u = 0.5N2, one for 4 = N2 and 1.5 for
pu = 2N? without substantially reducing the (serial)
progress rate on the hyper-sphere. This choice leads
to a progress reduction by a factor 0.6 compared to
using very small variations of the distribution and by
a factor 0.4 compared to using the optimal isotropic
mutation distribution.

The choice of the population size A = 4u repre-
sents a comparable problem as the mutation strength:
Small populations (z = 0.5N?2) facilitate larger se-
rial progress rates for the constant topology of the
hyper-sphere — but only without or with little vari-
ations of the mutation distribution. Large popula-
tions lead to smaller serial progress rates*, but allow
larger variations of the mutation distribution. Fig-
ure 4 shows optimizations on the hyper-sphere with
population sizes p = 0.5N2, 4 = N? and u = 2N?2.
The mutation strength (variation of the mutation dis-
tribution) is chosen according to the population size
0.25, 1 and 1.5 (see above). A very bad initialization
of the mutation distribution with condition 10® (axis
ratio 10%) leads to a distinct adaptation phase. The
diagrams show the number of generations on the ab-
scissa. As expected, the adaptation phase reduces with
increasing mutation strength. But taking the differ-
ent population sizes into account the adaptation phase
takes about

I feval
0.5N2 | 4.4-10°
N2 | 1.0-108
2N2 | 1.4-10°

With respect to function evaluations the medium pop-
ulation size y = N? facilitates the fastest adaptation.

The results of this section suggest to choose p = N2
and mutation strength one. Mutation strength one
denotes the “natural” mutation strength of the intro-
duced mutation operator. That is: A variated mu-
tation distribution is generated by N random vector
realizations of the parental mutation distribution.

6 Testing Invariance and Scaling

The decisive aspect formulating the self-adaptation of
arbitrary normal mutation distributions in the concept
of MSC, introduced in this paper, is the invariance of

ATheoretical results (Beyer 1996) that the serial
progress rate should not decrease with increasing popu-
lation size are only valid for A (considerably) smaller N
and do not hold here.
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Figure 4: Simulation on the hyper-sphere fitness func-
tion with a “wrong” start distribution (condition 10)
for 4 = 0.5N? (above), N? (middle) and 2N? (below).
Shown are fitness (‘Q’), step-size (crinkled graph) and
the variances of the principle components of the mu-
tation distribution ellipsoid (‘eigenvalues’).
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Figure 5: Simulation on the hyper-sphere with a wrong
start distribution (above) and the same simulation
with a linear transformation of both object parameter
space and start distribution (below), which transforms
the start distribution into an isotropic one. Shown are
fitness (‘Q’), step-size (crinkled graph) and the vari-
ances of the principle components of the mutation dis-
tribution ellipsoid (‘eigenvalues’).

the algorithm towards linear transformations. This
feature is ensured by the coordinate system indepen-
dent formulation of the mutation operator. Figure 5
gives an example of this invariance: Figure 5a shows
an optimization on the hyper-sphere using a badly
scaled initialization of the mutation distribution (con-
dition 10%). Transforming the fitness function and the
initialization of the mutation distribution identically,
leads to the situation shown in Figure 5b. Here an

hyper-ellipsoid, x ~ \/Eéil 1065’;—11.1’12, is optimized
using an isotropic initialization of the mutation dis-
tribution. The graphs of fitness and general step size
are identical apart from stochastic effects. Eigenval-
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ues and object parameters differ by the applied lin-
ear transformation. Arbitrary rotations of the fitness
model do not influence the results.

The self-adaptation from an isotropic mutation sphere
to an ellipsoid with condition 10%, as shown in fig-
ure 5 for N = 40, has been carried out for dimen-
sions 5, 10, 20, 40. The adaptation takes about 150,
600, 2500, 10000 generations respectively. The results
clearly point out a quadratic dependency of the adap-
tation time (in generations) from the problem dimen-
sion. Taking into account, that the necessary popula-
tion size also scales quadratically with the dimension
N, the number of function evaluations needed for the
self-adaptation of an arbitrary mutation ellipsoid here
scales with N*4.

7 Conclusion

In this paper the concept of mutative strategy param-
eter control (MSC) is applied to the adaptation of all
parameters of a N-dimensional normal mutation dis-
tribution with zero mean. As shown in simulations the
presented algorithm properly rescales a linear trans-
formation of the hyper-sphere fitness function yielding
optimal progress after an adaptation phase. Decisive
is the invariance of the new algorithm towards arbi-
trary linear transformations of the object parameter
space (apart from initialization). The practical worth
of the algorithm is limited because of its bad scaling
with the problem dimension. In comparison, the co-
variance matrix adaptation (Hansen and Ostermeier
1996; Hansen and Ostermeier 1997), which utilizes the
derandomized adaptation paradigm instead of MSC,
yields comparable invariance qualities. The necessary
function evaluations roughly scale with N2 (or even
better) there compared to N* for the algorithm intro-
duced here. The comparison supports the observation
that derandomization can be a very efficient mecha-
nism to speed up self-adaptation. The advantage is
mainly due to the small population size, which can be
chosen independently of the problem size N in deran-
domized schemes. The other way around, the disad-
vantage of MSC is due to the fact that a large popula-
tion size does not reduce the adaptation time signifi-
cantly — while scaling of p with the number of strategy
parameters to be adapted seems to be inevitable for
MSC. To conclude we answer the two questions raised
at the beginning:

1. Self-adaptation of arbitrary normal mutation dis-
tributions within the concept of MSC can be done
successfully and with invariance towards linear
transformations of the object parameter space.

2. The concept of MSC cannot compete with the de-
randomized approach, mainly because the parent
number y must scale quadratically with the prob-
lem size.
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