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ABSTRACT

This paper examines some of the reporting and re-
search practices concerning empirical work in genetic
programming. We describe several common loop-
holes and offer three case studies—two in data mod-
eling and one in robotics—that illustrate each. We
show that by exploiting these loopholes, one can
achieve performance gains of up two orders of mag-
nitude without any substantiative changes to GP. We
subsequently offer several recommendations.

1 INTRODUCTION

That researchers desire to improve genetic programming (GP)
has not been in question. In the three Genetic Programming
Conferences (GP’96 [Koza, et al. 1996], GP’97 [Koza, et al.
1997], GP’98 [Koza, et al. 1998]), 194 papers on genetic pro-
gramming were published. Of these papers, many of them
have proposed new operators, new approaches, and new para-
digms. For GP’98 alone, 50 out of 67 papers published have
proposed as much. That number represents 50 new and dis-
tinct enhancements that claim to improve the performance of
GP— and this is just for one conference last year. We do not
expect that trend of increasing numbers of published improve-
ments to change anytime soon.

There is nothing intrinsically wrong about papers that propose
new operators, new approaches, and new paradigms—that is part
of trying to advance a field. However, given the number of
new publications that claim improvements, it is inevitable that
papers begin to argue for improvements that improve the prior
improvements. It is also inevitable that somewhere along the
way, people would need to compare their improvements with
others’. Of course, comparisons nowadays are done in the spirit
of the No Free Lunch (NFL) Theorem [Wolpert and Macready
1997]: there is no one method that is universally better than
others. Because of NFL, arguments have shifted to either dem-
onstrating application to new problem domains, or showing
ways to improve on previous results. In any case, critical com-
parisons are inevitable, and we would argue, necessary, be-
cause the logical alternative is untenable. (The logical alterna-
tive is this: to adopt and program all new improvements when-
ever they are published.)

Our investigation, therefore, has focused on the GP
community’s reporting and publication standards. At issue is
the following question: Are current reporting standards rigor-
ous enough to allow for verification, repeatability, and mean-

ingful comparison? In this paper, we argue that they are not, if
only because one can achieve performance gains of up two
orders of magnitude without any substantiative changes to GP.

1.1 GIBSON’S MAGIC

Our term—Gibson’s Magic—refers to magic not of the meta-
physical brand, but of the craft and art of illusion. By showing
that common reporting practices in the field of GP allow for
the existence of magic, we argue that we need to re-examine
our reporting standards. By showing that magic is possible,
we argue that our field is vulnerable to malicious disinformation
and manipulation. By showing that magic is easy, we argue
that researchers can commit magic even if unintended.

James Gibson, for whom we named our term, wrote in “Eco-
logical Physics, Magic, and Reality,”

Nevertheless, someone who knows how to manipulate and con-
trol the information available to an observer for perceiving events
can make [an observer] perceive such an impossibility.… The
magician does so by suppressing…information for what really
happened or by preventing the observer from picking it up…
[Gibson 1982, p. 219]

Dariel Fitzkee, in Magic by Misdirection, wrote that an
audience’s astonishment is

…caused by concealing important facts or factors or by obscuring the
issues… Since bafflement and its various shades of meaning, in-
cluding mystification, mean frustration by confusion—by con-
cealment of important factors and by making intricate—success-
ful deception is exactly the act of doing these things plus blocking
the spectator from penetrating through them to solution of the
problem. [Fitzkee 1945, p. 124]

We argue, as Tufte and Swiss did for visual communication,
that the practice of magic in GP is especially relevant to our
reporting practices.

To create illusions is to engage in disinformation design, to cor-
rupt… information, to deceive the audience. Thus the strategies
of magic suggest what not to do if our goal is truth-telling rather
than illusion-making. [Tufte and Swiss 1997, p. 55]

1.2 ABOUT THIS PAPER

In this paper, we present three case studies. In each of these
case studies, we present two different methods: Old and New.
In each case study, New represents a significant improvement
over Old: better than 40% improvement in one case and one



to two orders of magnitude improvements for the other cases.
In each case, we show that these substantial improvements are
not because of changes in GP, but because we have exploited
loopholes in the field’s current reporting practices.

Each case study is organized as follows: a problem is described;
a solution is proposed; results from Old and New are given
plus claims that could be made based on those results; and a
discussion is offered that reveals how it was done. In each of
these case studies, we specifically examine the proceedings of
GP’98 [Koza, et al. 1998] and show how the reporting prac-
tices of a substantial number of those papers suffer from the
weaknesses demonstrated in this paper. In Section 5, we dis-
cuss and place these case studies in the broader context of GP
research practices. Section 6 lists our recommendations. Sec-
tion 7 concludes our paper.

2 THE FIRST CASE STUDY

The first case study presents an argument for a new and im-
proved version of GP called GP-SR7.2, a version of GP that
has been specifically designed to work with problems concern-
ing data modeling and symbolic regression.

2.1 (GIBSON) PROBLEM DESCRIPTION

The problem is defined as follows: fitness cases are 50 points
generated from the equation f(x)= 1 + 3x + 3x2 + x3. The ob-
jective of this problem is to derive a data model that fits these
points (symbolic regression). Raw fitness score is the sum of
absolute error. A hit is defined as being within 0.01 in ordi-
nate of a fitness case for a total of 50 hits. The stop criterion is
when an individual in a population first scores 50 hits. Ad-
justed fitness is the reciprocal of the quantity one plus raw
fitness score.

The function set is {+, –, ×, ÷}, which corresponds to arith-
metic operators addition, subtraction, multiplication, and pro-
tected division (defined to return one if the denominator is
exactly zero). A terminal set is a subset of {X, R}, where R is
the set of ephemeral random constants (ERCs).

The GP parameters are identical to those mentioned in Chap-
ter 7 [Koza 1992a]: population size = 500; crossover rate =
0.9; replication rate= 0.1; population initialization with ramped
half-and-half; initialization depth of 2–6 levels; and fitness-

proportionate selection. Other parameter values are maximum
generations = 200 and maximum tree depth = 26 (Note: these
last two parameters differ from those presented in [Koza
1992a], which specifies a maximum number of generations =
51 and a maximum depth = 17. Part of the reason we ex-
tended these parameters was to mitigate against possible ef-
fects that occur when GP processes individuals at these lim-
its.)

2.2 (GIBSON) CLAIMS AND PROCEDURE

GP-SR7.2 is a new and improved version of standard GP
(which is described in [Koza 1992a]). It has been specifically
formulated to work with symbolic regression and has enhanced
features that allow for a manual specification of an initial popu-
lation.

To demonstrate the power of our new GP-SR7.2, we compare
and contrast its performance with that of standard GP on the
simple problem described in Section 2.1. Furthermore, to en-
sure statistical legitimacy, we run 600 trials of this problem
using GP-SR7.2 and another 600 trials using standard GP.
Our results will show that the performance of GP-SR7.2 is
vastly superior to that of standard GP.

2.3 (GIBSON) RESULTS AND CONCLUSIONS

Figure 1 shows the distribution of hits for the best-of-trial in-
dividuals. A perfect hit score is 50; a higher score is a better
score. Note that the results have been plotted on a log scale.

The results show that GP-SR7.2 found perfect hit-score indi-
viduals on 219 out of 600 trials. In contrast, standard GP
found just 3 perfect hit-score individuals. The performance of
GP-SR7.2 over standard GP is 7200%, which represents 1.9
orders of magnitude improvement.

We have shown conclusively that for this instance of symbolic
regression, GP-SR7.2’s performance is superior to that of stan-
dard GP. Furthermore, given the very simple nature of the test
problem, we believe strongly that this performance is repre-
sentative of GP-SR7.2’s performance on other regression prob-
lems. Unfortunately, because of the limitations of space, we
leave the testing of other problems for future work.

2.4 HOW IT WAS DONE

In one sense, GP-SR7.2 was a “new” and “improved” version
of GP. The actual system used was one that has been featured
in [Daida, et al. 1999a]. However, for this case study, these
improvements were not relevant, especially given that the na-
ture of the improvements was to facilitate data analysis—and
not to improve performance. In other words, the kernel for
GP-SR7.2 was functionally equivalent to that in standard GP.

Furthermore, GP-SR7.2 and standard GP were identical, ex-
cept for one parameter value. That one parameter value—ERC
range—was solely responsible for the difference in perfor-
mance. For GP-SR7.2, ERCs were uniformly distributed over
the range [-1, 1]. For standard GP, ERCs were uniformly dis-
tributed over the range [-1000, 1000].

The loophole in standard reporting practice that we exploited
is that the parameter value for ERC range does not need to be

Figure 1. Hit Distribution Histograms from the First Case Study. GP-SR7.2
outperforms standard GP by a wide margin.
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reported. For example, of the 14 in GP’98 that involved both
data modeling and ERCs, 36% did not report ERC range.

3. THE SECOND CASE STUDY

The second case study presents a revised argument for GP-
SR7.2.

3.1 (GIBSON) PROBLEM DESCRIPTION

This problem description is the same as in Section 2.1, with
the additional specification that ERCs that are uniformly dis-
tributed on the interval [-1, 1].

3.2 (GIBSON) CLAIMS AND PROCEDURE

The claims and procedure are the same as noted in Section
2.2.

3.3 (GIBSON) RESULTS AND CONCLUSIONS

Figure 2 shows the results from the experiment and shows the
distribution of hits for the best-of-trial individuals. A perfect
hit score is 50; a higher score is a better score. Note that the
results have been plotted on a log scale.

As in the previous case study, the results show that GP-SR7.2
found perfect hit-score individuals on 219 out of 600 trials.
In contrast, standard GP found just 18 perfect hit-score indi-
viduals. The performance of GP-SR7.2 over GP is 1117%,
which represents 1.0 orders of magnitude improvement.

We have shown conclusively that for this instance of symbolic
regression, GP-SR7.2’s performance is superior to that of stan-
dard GP.  Furthermore, given the very simple nature of the
test problem, we believe strongly that this performance is rep-
resentative of GP-SR7.2’s performance on other regression
problems. Unfortunately, because of the limitations of space,
we leave the testing of other problems for future work.

3.4 HOW IT WAS DONE

GP-SR7.2, as mentioned in Section 2, was technically a “new”
and “improved” version of GP. As before, the actual system
used was one that has been featured in [Daida, et al. 1999a].
Likewise, as before, the kernel for GP-SR7.2 was functionally
equivalent to that in standard GP.

In particular, GP-SR7.2 and standard GP were identical, ex-
cept for one part of the problem specification. That one speci-
fication—interval over which the fitness cases were taken—
was solely responsible for the difference in performance. For
GP-SR7.2, the fitness cases were taken over the interval [-1,
0). For standard GP, the fitness cases were taken over the in-
terval [0, 1).

The loophole in standard reporting practice that we exploited
is that the interval over which fitness cases are taken does not
need to be reported. This shortfall was much more prevalent
than the failure to note ERC ranges in GP’98. Of the 27 pa-
pers that involved data modeling and fitness-case intervals,
63% did not report the interval over which the fitness cases
were taken.

4. THE THIRD CASE STUDY

The third and final case study presents an argument for a new
and improved version of GP called GP-AGENT, a new ver-
sion of GP that has been specifically designed to work with
problems concerning agent programming and evolutionary
robotics.

4.1 (GIBSON) PROBLEM DESCRIPTION

This problem is Koza’s wall following robot problem [Koza
1992b], which is an adaptation of Mataric’s work on a real
robotics system [Mataric 1990]. The objective of this prob-
lem is to derive a program that would allow a simulated robot
to follow the perimeter of an irregularly shaped room. We fol-
low the problem specification exactly as is described in Koza
with only two exceptions—we do not use on-the-fly
redimensioning and the robot is located at a (13.8, 13.8) in-
stead of (12, 16). (The specification covers several pages, but
we recap some of those details here.) We assume that the ro-
bot is cylindrical in shape and is girded by 12 sonar sensors
that allow the robot to measure the distance of each sensor to
the nearest wall. Each sensor covers an area of 30°. The robot
can move forward 1.0 ft, backward 1.33 ft, turn left 30° and
turn right 30°. Koza and Rice’s room has an irregular shape
with protrusions on the south and east walls.

The terminal set consists of 12 sonar measurements [S00,
S01,…, S11] ; derived minimum of measurements [SS] ;
minimum safe distance and preferred edging distance from
wall [MSD, EDG] ; and primitive motor functions [MF,
MB, TR, TL] .

The function set includes the If-Less-Than-Or-Equal-To macro
[IFLTE(arg1, arg2, arg3, arg4)]  (i.e., IF (arg1
≤ arg2) then arg3, else arg4); connective function
[PROGN2(arg1, arg2)]]  (i.e., eval arg1 return eval
arg2).

The fitness cases are represented by Koza’s irregular room with
an initial starting location near the middle of the room (13.8,
13.8) and an initial facing direction of south (270°). A hit is
defined when the robot touches a 2.3 ft2 tile that exists along
the walls of the room; there are 56 hits possible. Raw fitness is
the number of hits in 400 time steps. Standard fitness is the
total number of wall tiles minus the number of hits. The stop
criterion is when the robot scores 56 out of 56 possible hits.

Figure 2. Hit Distribution Histograms from the Second Case Study. Again,
GP-SR7.2 outperforms standard GP by a wide margin.
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The GP parameters are identical to those mentioned in Chap-
ter 13 [Koza 1992a]: population size = 1000; crossover rate =
0.9; replication rate= 0.1; population initialization with ramped
half-and-half; initialization depth of 2–6 levels; fitness-pro-
portionate with overselection; maximum generations = 57; and
maximum tree depth = 17.

4.2 (GIBSON) CLAIMS AND PROCEDURE

GP-AGENT is a new and improved version of standard GP as
described in [Koza 1992a]. It has been specifically formulated
to work with problems concerning agent programming and
evolutionary robotics. To demonstrate the power of our new
GP-AGENT, we compare and contrast its performance against
standard GP using the simple problem as described in the pre-
vious section. Furthermore, to ensure statistical legitimacy, we
run 600 trials of this problem using GP-AGENT and another
600 trials using standard GP. Our results will show that GP-
AGENT demonstrates excellent performance over that of stan-
dard GP.

4.3 (GIBSON) RESULTS AND CONCLUSIONS

The results show that GP-AGENT found 52 perfect hit-score
individuals. In contrast, standard GP found just 37 perfect
hit-score individuals. The performance of GP-AGENT over
standard GP is 41%.

We have shown conclusively that for the wall-following robot
problem, GP-AGENT’s performance is superior to that of stan-
dard GP. We believe strongly that this performance is repre-
sentative of GP-AGENT. Unfortunately, because of the limi-
tations of space, we leave the testing of other problems for
future work.

4.4 HOW IT WAS DONE

As before in both Sections 2 and 3, GP-AGENT was techni-
cally a “new” and “improved” version of GP. The actual sys-
tem used was one that has been featured in [Daida, et al.
1999a]. However, for this case study, these improvements were
not relevant, especially given that the nature of improvements
was to facilitate data analysis—and not to improve perfor-
mance. Again, the kernel for GP-AGENT was functionally
equivalent to that in standard GP. Again, GP-AGENT and
standard GP were identical systems with the exception that
GP-AGENT used RANDU for a random number generator
(see [Press, et al. 1992]) and that standard GP used the
Mersenne Twister [Matsumoto and Nishimura 1998] for a
random number generator. (Note: a statistical treatment is cov-
ered in Section 5.)

The loophole in standard reporting practice that we exploited
is that the random number generator used does not need to be
reported. Of the 65 papers in GP’98 that presented empirical
results, 100% did not report the random number generator
that was used to generate those results.

5. Discussion

We presented three different case studies that have illustrated
Gibson’s Magic. The first case study showed how one could

exploit the loophole of unreported parameter values, often
deemed unimportant anyway. The second case study showed
how one could exploit the loophole of unreported initial con-
ditions, which in our case amounted to what interval the fit-
ness cases were taken. The third case study showed how one
could exploit the loophole of unreported random number gen-
erators. We have shown that these three loopholes exist in 65
of the 67 papers published in GP’98. Of those papers, 16 ex-
hibit more than one loophole.

We do not claim that any of these papers have taken advantage of
any of these loopholes. We do, however, claim that the potential
for error exists, particularly when another person seeks to verify,
compare, or make meaningful comparisons with any of those
publications. Furthermore, we have shown that the magni-
tude of error can be significant—up to almost two orders of
magnitude in the first case study. To put that figure in per-
spective, we note that many papers argue that several tens of
percent improvement represents significance.

◆
Suppose that the GP community moved ahead and addressed
every one of those loopholes: either by amending reporting
practice or by rendering a loophole inconsequential because
there are better ways of doing things. (For example, [Evett
and Fernandez 1998; Raidl 1998] suggest alternative meth-
ods for handling numerical constants.) Does this mean, then,
that our problems have been solved?

We would argue, no, probably not. The significance of the loop-
holes that we have addressed are not only that they exist, but that
they point to larger problems in the field. Because GP represents
a nonlinear, bottom-up system that creates programs out of
low-level structures, it is exceptionally difficult to determine
in advance what is and what is not important in reporting. It
is highly possible that a paper may omit what may turn out to
be a crucial value, not because of malicious intent, but more
likely because the authors just did not know of that value’s
importance.

There are a number of values and specifications that are needed
to replicate a result. Koza [1992a] indicated that for (stan-
dard) GP, there are 19 control parameters. That number in-
cludes “2 major numerical parameters, 11 minor numerical
parameters, and 6 qualitative variables that select among al-
ternative ways of executing a run.” [Koza 1992a, p. 114]. This
number does not include any of the preparatory specifications
or control parameters associated with the problem-specific
code. Even for a simple symbolic regression problem like that
posed in Sections 2 and 3, there are 8 specifications (i.e., ob-
jective, terminal set, function set, fitness cases, raw fitness, stan-
dardized fitness, hits, success predicate) and 5 parameters (num-
ber of fitness cases, distribution of fitness cases, interval of
fitness cases, ERC range, hit criterion). The number goes up
dramatically (several orders of magnitude) for more involved
problems like the wall following robot, which in the early 1990s
represented one of the highest-end applications for GP. For
example, just in specifying the sonar-sensor maps for the wall
following robot problem, an investigator needs to generate
120,000 values. Current real-world applications push the num-
ber of problems-specific parameter specifications beyond even
that number.



◆

We strongly argue that because of the relative ease by which
Gibson’s Magic can occur in GP, we should take greater care
not only in our reporting practices, but in our research prac-
tices as well. Zelkowitz and Wallace [1998] wrote a recom-
mended article in IEEE Computer that took a critical look at
the kinds of articles published in computer science. Their ar-
ticle, “Experimental Models for Validating Technology,” raised
questions similar to the ones offered in this paper. Just how
does one determine the effectiveness of proposed theories and
methods? How do we experiment? To answer their questions,
Zelkowitz and Wallace surveyed and categorized several years
of the following publications: IEEE Transactions on Software
Engineering, IEEE Software, and Proceedings of the International
Conference on Software Engineering. One of their categories of
papers carries the label assertive.

An assertive paper is one in which authors propose their own
technology, and then proceed to show the efficacy of that tech-
nology (empirically). While Zelkowitz and Wallace acknowl-
edge that papers as these do have a place in the literature, such
papers do not constitute the strongest measure of validation.
Part of the reason is that “the experiment [in an assertive pa-
per] is often a weak example favoring the proposed technol-
ogy over alternatives. [Zelkowitz and Wallace 1998, p. 26].”
Another part of the reason is because such papers are unavoid-
ably biased.

We can see how such bias can be introduced by considering a
hypothetical example. Our hypothetical example consists of
the following: a real-world application of GP, say involving
the design of adaptive beamforming algorithms for the con-
trol of satellite-based millimeter wavelength solid-state phased-
array antennas. Each of the terms—adaptive, beamforming,
control, satellite-based, millimeter wavelength, solid-state phased-
array, antennas—implies a significant amount of graduate-level
domain-specific knowledge that an average GP researcher
would likely not possess. Each of these terms has an associated
subfield in engineering. The application would likely require
a substantial amount of mathematics and numerical methods,
if the application is typical of designs in applied
electromagnetics. The technologies involved in adapting GP
to this application alone may be substantial and may have re-
sulted in several new methods that could contribute to ad-
vancing GP as a field. The dilemma faced by these hypotheti-
cal authors is one faced by us: there are only so many pages in
which to describe their work. Out of all the material they used
to design their application, they must select only those they
believe are important and essential to a GP audience. Therein
lies bias that not even editors can root out.

To address bias in assertive papers, Zelkowitz and Wallace have
noted categories involving independent verification, in which
authors do not propose any of their own technology. Instead,
such categories of papers concern analysis of others’ proposed
technologies (e.g., those categories include repeated experi-
ment, synthetic environment experiments, dynamic analysis,
simulation). There is value in verifying others’ work, if only to
root out possible biases in assertive papers. Apparently, other
publications in computer science acknowledge this value—
i.e., only 28% of the 152 papers that were published in 1995

and that were studied by Zelkowitz and Wallace were classi-
fied as assertive. Zelkowitz and Wallace considered that per-
centage to be on the high (and undesirable) side. If last year’s
proceedings is any reflection, GP has even further to go: about
three quarters of all the GP papers published in GP’98 were
assertive.

◆

Gibson’s Magic provides a negative example of what one should
not do in the reporting and research practices of the field. In-
deed, that has been the primary focus of this paper. Still, we
would like to explore further the consequences of our sug-
gested alternative of investigators actively seeking out oppor-
tunities in which to verify others’ technologies. We acknowl-
edge that this alternative may not seem very palatable—after
all, are not the authors whose work is being verified the ulti-
mate reapers of fame? In the second half of this discussion, we
offer the flip side of Gibson’s Magic: that which makes magic
possible can lead to insight, even discovery.

◆

The first two case studies featured a symbolic regression prob-
lem that involved the target function f(x)= 1 + 3x + 3x2 + x3.
While somewhat typical of some of the other examples that
have been cited in the literature (e.g., [Koza 1992a]), this par-
ticular polynomial has several mathematical properties that
can be exploited for use in GP theory. We have called the sym-
bolic regression problem involving f(x) as the binomial-3 prob-
lem.

As it turns out, the binomial-3 problem is tunably difficult
and that the tuning parameter is ERC range. (For another
example of tunable problems, see [Soule, et al. 1996]. An ex-
tended list of tunable problems can be found in [Daida, et al.
1999b].) That the range of ERCs can affect problem difficulty
is not new. Both [Gathercole and Ross 1996; Evett and
Fernandez 1998] have noted such a phenomenon in their work.
However, we have shown in [Daida, et al. 1999a; Daida, et al.
1999b] that by varying ERC range, a user can increase how
GP-hard the problem is without increasing its corresponding com-
binatorial search space. Further, tuning yields definite patterns
in individual size and shape.

Explaining why these patterns arise has proven to be a rich
area for investigation. In an invited paper for Advances in Ge-
netic Programming 3, we showed how these patterns relate to
issues concerning building blocks and indicated how these
patterns are not fully accounted for by GP theory [Daida, et
al. 1999a]. In another paper, we showed how these patterns
relate to notions of adaptive landscapes and how the meta-
phor and corresponding formalisms of adaptive landscapes may
not necessarily apply to GP [Daida, et al. 1999b]. These are
not the only investigations possible. For example, one could
ask other questions like: how do these patterns change using a
different operator? Is this pattern indicative of other problems?
What is necessary in turning a difficult problem back into an
easy one? What constrains these patterns? We note that these
are only a few of the questions that arise from just the first
case study.

The impetus for the second case study arose when we were
algebraically simplifying the best-of-trial individuals for the



binomial-3 problem. We noted common problem-solving
strategies, that instead of solving for polynomial coefficients,
GP was solving for factors, i.e., (x + 1). As it turns out, a com-
mon problem solving strategy for GP to employ was root find-
ing. In retrospect, that made sense. Root-finding is a classical
method for data modeling. By finding a root, GP guarantees
that at least that part of the fit works. Reward (selection pres-
sure) occurs when a root is located near fitness cases. Removal
of those fitness cases that do represent roots, as the second
case study showed, severely degrades GP performance. What
has led to Gibson’s Magic in the second case study now sug-
gests the following general principles in using GP for data mod-
eling: ensure that fitness cases include roots; for those models
without roots, do a variable transformation such that the trans-
formed model has roots. An investigation of these general prin-
ciples would have great utility, given that at last year’s confer-
ence about 40% of the GP papers published involved some
sort of data model.

◆

The third case study featured the wall following robot prob-
lem, which we considered in our first “Challenges” paper
[Daida, et al. 1997]. To briefly recapitulate, that paper de-
scribed our efforts to replicate Koza’s wall-following robot. As
we mentioned earlier, the wall following robot represented one
of the highest-end applications of GP in the early 1990s. Koza
published several papers on the subject with co-author Rice,
in addition to an extended treatment in [Koza 1992a]. What
was to have been a short, two-month porting exercise for us
turned out to be a long and extended lesson on verification,
repeatability, and meaningful comparison. (Koza’s code was
written specifically for a Texas Instruments Explorer, a spe-
cialized workstation that ran its own flavor of LISP. When we
had approached Koza and Rice to see if we could perhaps bor-
row or use the code, there was little we could use—the code
ran only on a then defunct workstation. If we wanted to do
the wall-following robot, the better alternative was to com-
pletely rewrite and reconstruct the code from the published
record. Rice greatly helped in clarifying the published ac-
counts.) We ended up developing our own code for the wall
following robot problem (actually three separate programs)
based on Koza’s published accounts (e.g., [Koza 1992a]) and
Rice’s clarifications. One of the problems in replication and
repeatability, as we subsequently identified in [Daida, et
al.1997], concerned the random number generators used in
GP.

The issue of random number generators turns out to be an
involved investigation for which there are no clear-cut answers.
That random number generators can significantly alter results
is a point that we have demonstrated in [Daida, et al. 1997].
In this paper’s third case study, we used two additional ran-
dom number generators: RANDU and the Mersenne Twister.
The infamous RANDU random number generator has been
demonstrated to be not very random at all—arguably the worst
of the commercial releases [Press, et al. 1992]. On the other
hand, the recent Mersenne Twister [Matsumoto and Nishimura
1997; Matsumoto and Nishimura 1998] represents the other
end of the spectrum and has an enormous periodicity of 219,937

- 1, as opposed 231 - 2 for some generators. The Mersenne
Twister has been shown to be equidistributed randomly for

623 dimensions. In contrast, RANDU fails at 3. The first “sur-
prise” is that a poor random number generator resulted in
“better ” GP performance than an excellent one. The second
“surprise” is shown in Figure 3, which shows the distributions
of hit scores for the wall-following robot for RANDU and the
Mersenne Twister, respectively.

Unlike what we have shown in [Daida, et al. 1997], what we
have shown in this paper is an instance where the distribution
of hit scores are quite similar, even though intuitively one might
guess otherwise.  A Mann-Whitney U test of the two distribu-
tions indicate that the distributions in Figure 3 are different,
but only at a confidence level of 0.51. According to this test, the
cited performance gain in Section 4 was not statistically signifi-
cant. Sampling these two distributions so that the sampling
size is compatible with that presented in [Daida, et al. 1997]
results in similar results of statistical significance. The Park-
Miller random number generator and ran3 resulted in statisti-
cally different distributions (Mann-Whitney U test at 0.15
confidence level); while RANDU and the Mersenne Twister
resulted in statistically similar distributions.

To interpret these results, we refer the reader to [Hellekalek
1997; Hellekalek 1998]. Hellekallek pointed to the crux of
the problem with random number generators and quoted
Compagner, saying, “Monte Carlo results are misleading when
correlations hidden in the random numbers and in the simu-
lation system interfere constructively [Compagner 1995] [ital-
ics ours].” The same problem also appears to hold true for
genetic programming as well. That every random number gen-
erator has idiosyncrasies that results in correlated sequences is
known and cannot be bypassed [Compagner 1995; L’Ecuyer
1997]. For example, RANDU fails when three or more ran-
dom numbers from a sequence are taken at a time. Other ran-
dom number generators may fail when parallelized [Hellekalek
1998]. The failure of a random number generator to yield
random numbers, however, is consequential only if the system
in which it is used constructively (destructively) interferes with
that failure. (Not all problems exhibit this. See [Meysenburg
and Foster 1999].) In our earlier paper [Daida, et al. 1997],
either the subtractive generator or the Park-Miller construc-
tively interfered with the GP system that contained the wall-

Figure 3. Hit Distribution Histograms from the Third Case Study. Although
RANDU and the Mersenne Twister random number generators differ greatly
in the quality of random number sequences delivered, their overall perfor-
mance in GP differed only slightly, but in favor of RANDU. In other work,
we have shown that this is not this always the case, using different random
number generators.
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following robot problem. In this paper, we show that perhaps
neither RANDU nor the Mersenne Twister constructively in-
terfered with the GP system implementing the wall-following
robot (likely) or that both RANDU and the Mersenne Twister
constructively interfered in approximately the same way (less
likely).

◆

The evidence of these two papers suggests three items. First,
that GP performance can be sensitive to the type of random
number generator used. Second, that GP might be able to
exploit idiosyncracies associated with a random number gen-
erator to enhance performance. Third, that analysis of just
these random number generators alone does not serve as a
predictor for their use in a GP implementation. These three
items have two further implications. First, that empirical in-
vestigations of GP theory need to be done carefully, since pat-
terns that may arise may be more an artifact of a random num-
ber generator than being representative of phenomena in GP.
Second, that certain applications might be able to benefit from
using a “loaded” random number generator. Of course, impli-
cations and insights as these have presented themselves not
because the task of verification was thankless, but because the
task has proven value in and of itself.

6. RECOMMENDATIONS

We offer the following recommendations based on our dis-
cussion of Gibson’s Magic. (We note that the fifth recommen-
dation is a recapitulation from our first “Challenges” paper
[Daida, et al. 1997].)

1. Report the limits and initial conditions to the problem under
investigation. For data modeling problems this includes items
like the interval over which the fitness cases were taken.

2. For those problem applications using ephemeral random con-
stants (ERCs), identify the range and the distribution of these
ERCs. We have shown that ERCs can have a substantial ef-
fect on GP performance.

3. State the random number generator that was used. For some
problems, which random number generator could have a
bearing on performance. Furthermore, it should also be
stated as to whether the random number generator was run
in parallel (threaded) since parallization of random num-
bers generators can introduce significant correlations.

4. Practice defensive reporting. Assume that someone else will
independently verify your work. Given that someone else
may not be serving your best interests, it behooves one to
exercise care in reporting. We would even suggest that de-
fensive reporting also includes ancillary reports, data, and
even some version of code to be available through one’s
website.

5. Consider the use of electronic appendices. The need to report
as many specifications and parameters as is possible is usu-
ally balanced by a physical page limit. For that reason, we
encourage authors to consider on-line publication of elec-
tronic appendices. Such appendices would cover in detail
that which could not be discussed in a paper, but may have

value in aiding others to replicate a paper’s work.

6. Recognize the value of independent verification. There are at
least two scenarios in which independent verification has a
place. One involves including some level of independent
verification in an assertive paper. The other (and arguably
better) scenario involves crafting an entirely separate and
nonassertive paper. We have discussed how Gibson’s Magic
should be used to evaluate for possible bias. We have also
noted that there exists an significant and worthwhile value
to engaging in this endeavor. We have indicated that GP as
a field has a high (perhaps too high) percentage of assertive
papers. We have further argued that there is a value for GP
researchers to diversify their empirical work, starting first
by practicing independent verification.

7. CONCLUSIONS

This paper is the second of our “Challenges” series and the
third (the other was [Haynes 1998]) that examines the report-
ing and research practices in GP.

In this paper, we have described Gibson’s Magic, and how
Gibson’s Magic is ripe to occur within the field because of its
current reporting standards. We shown examples of how we
can take advantage of Gibson’s Magic and substantially im-
prove GP performance for little or no substantiative changes
to GP. We have shown performance gains of one- to two-or-
ders of magnitude. We have demonstrated that the loopholes
that have allowed for Gibson’s Magic to occur are pervasive, as
evidenced by the numbers of papers in last year’s publication
that exhibit at least one loophole.  We have noted that the sig-
nificance of these loopholes is not only that they exist, but that they
point to larger problems in the field.

We have listed five recommendations for amending the re-
porting standards of the GP community and a sixth that en-
courages a change in research practice.

We have given an extended argument of why independent
verification has intrinsic value to GP researchers. We have of-
fered examples that have shown how Gibson’s Magic could be
used to gain insight, even discovery. We have argued that ad-
vances in GP could come not always by offering yet another
technological improvement to GP, but through careful review
of others’ work.

◆

In the process of demonstrating Gibson’s Magic, we conducted
three numerical experiments. The first represented subset of
experiments involving a broad numerical study on a tunably
difficult problem (i.e., the binomial-3 problem). The results
of this study have been featured in [Daida,  et al. 1999a; Daida,
et al. 1999b]. We have noted that in-depth analyses of this
tunable problem has yielded insights on GP dynamics and
that this problem is rich for further study.

The second indicated two general principles on applying GP
for use in applications of data modeling: ensure that fitness
cases include (known) roots; for those models without roots,
do a variable transformation such that the transformed model
has (known) roots. We have shown that the failure to supply



root information to GP can significantly degrade the perfor-
mance of a GP solving a data modeling problem.

The third represents the most extensive numerical experiment
on the wall following robot problem. The numerical experi-
ment described in this paper for the wall following robot is
over twice the size of previous experiments. The number of
trials for this experiment (1200) has resulted in the highest
resolution probability distribution of scores for this problem
to date. As it has turned out, the wall following robot has
served a bellwether for interactions between a random num-
ber generator and the rest of a GP system. The results from
this experiment have indicated that empirical investigations
of GP theory need to be done carefully, since patterns that
may arise may be more an artifact of a random number gen-
erator than being representative of phenomena in GP. The
results from this experiment have also indicated that certain
applications might be able to benefit from using a “loaded”
random number generator.

◆

For more information (other papers and code), please see our
research group’s site at www.sprl.umich.edu/acers.
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