Genetic Approach to Feature Selection for Ensemble Creation

César Guerra-Salcedo
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523 USA
(970) 491-1943
guerra@cs.colostate.edu

Abstract

Ensembles of classifiers have been shown to
be very effective for case-based classification
tasks. The vast majority of ensemble con-
struction algorithms use the complete set of
features available in the problem domain for
the ensemble creation. Recent work on ran-
domly selected subspaces for ensemble con-
struction has been shown to improve the ac-
curacy of the ensemble considerably. In this
paper we focus our attention on feature se-
lection for ensemble creation using a genetic
search approach. We compare boosting and
bagging techniques using three approaches
for feature selection for ensemble construc-
tion. Our genetic-based method produces
more reliable ensembles and up to 80% in
memory reduction on the datasets employed.

1 INTRODUCTION

The ability to extract interesting information from
large datasets is becoming increasingly important. Ac-
curate classification of data is a key issue for its
correct utilization. Classification systems deal with
methods for assigning a set of input objects to a
set of decision classes. The objects are described by
a set of characteristics (such as color, temperature,
melting point, etc.). The classification task is car-
ried out by assigning the input instances to a class
or classes commonly described by a set of features.
There exists an implicit function F(features) = class
that maps each object to a class based on the fea-
tures present in the object. Automatic classifica-
tion systems become an important topic when talk-
ing about data mining and knowledge acquisition
for expert systems. Classifiers ensembles have been

Darrell Whitley
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523 USA
(970) 491-5373
whitley@cs.colostate.edu

shown to be very effective in combining the predic-
tion of multiple classifiers to produce a more accurate
composite classifier [Quinlan, 1996],[Dietterich, 1998].
Traditionally the only difference between one clas-
sifier from the rest of the ensemble has been the
cases employed for its training. Several meth-
ods for ensemble construction have been proposed,
among them are Bagging [Breiman, 1994] and Boost-
ing [Freund and Schapire, 1996]. The main difference
between them is the way they choose the cases to be
used as training examples. Bagging selects its cases
resampling them (with replacement) from the original
training set. On the other hand, boosting employs a
more sophisticated weighting mechanism. Both bag-
ging and boosting make use of the complete set of fea-
tures available in the problem domain for each single
classifier construction.

Optimal feature extraction has been studied for years
[Aha and Bankert, 1995] as a central topic of research
in the Machine Learning Community. The selection
of relevant features, as well as the elimination of ir-
relevant ones, play a central role in machine learning
applications. Reducing the set of features considered
for a specific task could improve the accuracy of a
prediction or the speed of processing input data for
specific manipulation. Reducing the number of fea-
tures used for classification is desirable for a number
of reasons [Bankert, 1994]. There can be redundant
or irrelevant information among the whole set of fea-
tures; there can also be estimation errors in the sys-
tem parameters used to measure the features. The
problem of feature subset selection involves finding a
“good” set of features under some objective function
[John et al., 1994]. In other words, the goal is to find
a set of relevant features, which when presented to the
classifier, maximizes its performance (accuracy).

Recently Tin Kam Ho [Ho, 1998b], [Ho, 1998a] has
presented a method for systematic construction of
classifiers ensembles based on feature selection. Her

method relies on the fact that combining multiple clas-
sifiers constructed using randomly selected features
can achieve better performance in classification than
using the complete set of features for the ensemble cre-
ation. Our principal motivation for this research is to
find accurate subsets of features that could be suit-
able for ensemble creation. The main goal is to have
improvements in accuracy as well as savings in stor-
age space. Storing classifiers using the complete set of
features is very costly in terms of memory usage.

In this paper we compare Ho’s idea of randomly select-
ing subspaces to construct ensembles of table-based
classifiers with the accuracy of ensembles constructed
using features previously selected with a genetic search
engine. Also we compared traditional boosting and
bagging methods (using the complete set of features)
with Ho’s method and our method. Over the set of
experiments our method show better performance and
much better use of the storage space.

The paper is organized as follows. First a background
review of the material involved in the research is pre-
sented. The experimental set up and results are de-
tailed in section 3. In section 4 a brief discussion is
presented.

2 BACKGROUND REVIEW

Many researchers have investigated techniques of
combining the predictions of multiple classifiers to
produce an ensemble of them. Most of the
time the ensemble is more accurate than a sin-
gle classifier. Two methods for ensemble construc-
tion have been widely used in recent years, Bag-
ging [Dietterich, 1998] [Breiman, 1994] and Boost-
ing [Dietterich, 1998],[Maclin and Opitz, 1996] (par-
ticularly AdaBoost.M1 [Freund and Schapire, 1996]).

2.1 BAGGING

Bagging (Bootstrap aggregating [Breiman, 1994])
constructs ensembles of T classifiers from bootstrap
samples of N instances. N is the number of instances
available in the training data file, each instance be-
longs to one of Cl classes. Bagging creates an ensem-
ble of classifiers by training each individual classifier
C; (1 <1 < T) with a random redistribution of the
training set (resampling with replacement). Each par-
ticular classifier is trained with NN elements resampled
from the train file. Given the fact that Bagging uses
resampling with replacement, many instances may be
repeated and many may be left out. When the en-
semble is used for classification of an instance z, each
single classifier votes on the possible class for 2. The

class with the most votes is used as the class predicted
by the ensemble (ties are solved arbitrarily). Given
the fact that in a Bagged ensemble all the classifiers
are independent, bagging can generate each C; in an
ensemble in parallel.

2.2 BOOSTING

Boosting is a method for ensemble construction that
instead of drawing a succession of independent boot-
strap samples from the original cases (as bagging
does), boosting maintains a weight for each instance.
Boosting generates classifiers sequentially, changing
the weights for each instance after a single classifier is
created. Like bagging, boosting selects a training set of
size N for classifier i in the ensemble. Given an integer
T specifying the number of trials, T weighted training
sets S1,52,..97 are generated in sequence and T clas-
sifiers C1, Ca, .., Cr are built. Initially the probability
of picking an instance is 1/N and is recalculated after
every trial. Boosting gives more weight for trial ¢ to
instances misclassified in trial ¢ — 1 (¢ > 1). The prob-
abilities for the next trial are generated by multiplying
the probabilities of C;’s incorrectly classified instances
by the factor f; = (1 — €;)/€; and then renormalizing
these probabilities so that their sum equals 1; ¢; is the
error of the i single classifier when tested on the origi-
nal training set. The boosted classifier C* is obtained
by summing the votes of the classifiers C1..Cr, where
the vote of the classifier C; is worth log(1/3%) units.

2.3 RANDOM SUBSPACE METHOD

The random subspace method for ensemble construc-
tion [Ho, 1998b], [Ho, 1998a] was originally conceived
for tree-based classifiers. The method relies on a
pseudorandom procedure that selects a subset of fea-
tures (a random subspace of features) from the fea-
ture space. All samples in the dataset are projected
to this subspace and a decision tree is constructed us-
ing the projected training examples. For every feature
space of dimension n there are 2™ possible selections
that can be made. With each selection a decision
tree can be constructed. Ho suggested to construct
the trees forming an ensemble using a random selec-
tion of n/2 features from the complete set of features
[Ho, 1998b], [Ho, 1998a]. The method was originally
conceived for tree-based ensembles with very good re-
sults. Ho was able to find more accurate tree-based
ensembles than ensembles constructed using the com-
plete set of features. However, in Ho’s research nei-
ther bagging nor boosting were employed for ensem-
bles constructed with the subspace method. The en-
semble is supposed to be created by independently

constructing each classifier using the complete set of
training instances and a particular random subset of
features. To classify an unseen case z, each clas-
sifier votes on the class for 2. The class with the
most votes is the class predicted by the ensemble.
For this research we apply the ideas of random sub-
space selection to the construction of ensembles whose
base-classifier is a table. Table-based classifiers are
widely used, among them are classification algorithms
such as k-means clusters [Dillon and Goldstein, 1984],
decision tables [Kohavi, 1995], nearest-neighbor clas-
sifiers [Punch et al., 1993]. Ho empirically demon-
strated that the random subspace method for ensemble
construction is better than using the complete set of
features for the ensemble. Ho compares her method
with bagged and boosted ensembles constructed using
the complete set of features. In this research we ob-
tain similar results using Ho’s method for table-based
classifiers. Also, we extended Ho’s work by using her
method for “bagged” and “boosted” ensembles.

2.4 FEATURE SELECTION USING
GENETIC ALGORITHMS

In a typical problem of case-based classification, in-
stances (objects) need to be classified according to
similar characteristics. The characteristics describ-
ing an instance could be from very different do-
mains. For example, in a cloud classification prob-
lem [Aha and Bankert, 1994] [Aha and Bankert, 1995]
[Bankert, 1994] [Bankert and Aha, 1996] there are 204
different characteristics to describe a cloud. These
characteristics come from spectral, textural and phys-
ical measures from each sample area [Bankert, 1994
[Bankert and Aha, 1996].

Searching for an accurate subset of features is a dif-
ficult search problem. Search spaces to be explored
could be very large. In a cloud classification prob-
lem in which each cloud is defined by 204 features
there are 2294 possible features combinations. Search
strategies such as Hill-climbing and Best-first search
[Kohavi, 1995], among others, have been used to find
subsets of features with high predictive accuracy.

For this type of application, traditionally each chro-
mosome in the population represents a possible sub-
set of features that is presented to the inducer.
The fitness of the chromosome is based on the ac-
curacy of the evolved subset of features to predict
class values for unseen cases. Different fitness func-
tions for this task have been studied. In Bala et
al. [Bala et al., 1995] [Bala et al., 1996], Vafaie et
al. [Vafaie and Jong, 1994] [Vafaie and Imam, 1994]
and Turney [Turney, 1997] a decision tree generator is

used, in [Guerra-Salcedo and Whitley, 1998] a variant
of a decision table is used and in [Punch et al., 1993
the authors used a modified version of K-nearest neigh-
bor. In every case the fitness function is an inducer
that classifies cases according to the features presented
in a particular chromosome. We do not know of any
application involving GA’s and ensemble creation; in
all of the references cited before the final product is a
single classifier.

Guerra and Whitley show a comparison between GEN-
ESIS and CHC as genetic engines for feature selection
problems [Guerra-Salcedo and Whitley, 1998]. Part of
their results empirically demonstrated that CHC was
better search algorithm for feature selection problems
than GENESIS.

For the experiments reported here we combine the
outputs of several runs of a GA-inducer system in
one ensemble of classifier. The GA used for our ex-
periments is an implementation of Eshelman’s CHC
[Eshelman, 1991].

2.4.1 CHC

CHC [Eshelman, 1991] is a generational genetic search
algorithm that uses truncation selection. The CHC al-
gorithm randomly pairs parents, but only those string
pairs which differ from each other by some number of
bits (i.e., a mating threshold) are allowed to repro-
duce. The initial threshold is set to I/4, where [is the
length of the string. When no offsprings are inserted
into the new population during truncation selection,
the threshold is reduced by 1. The crossover opera-
tor in CHC performs uniform crossover that randomly
swaps exactly half of the bits that differ between the
two parent strings.

No mutation is applied during the recombination
phase of the CHC algorithm. When no offspring can
be inserted into the population of a succeeding gener-
ation and the mating threshold has reached a value of
0, CHC infuses new diversity into the population via a
form of restart known as cataclysmic mutation. Cata-
clysmic mutation uses the best individual in the pop-
ulation as a template to re-initialize the population.
The new population includes one copy of the template
string; the remainder of the population is generated
by mutating some percentage of bits (e.g 35%) in the
template string.

2.5 TABLE-BASED CLASSIFIERS
EMPLOYED

For this research we employed two table-based clas-
sifiers, Euclidean Decision Tables (EDT) as proposed

by Guerra [Guerra-Salcedo and Whitley, 1998] and a
modified version of a k-means classifier (KMA). The
main characteristic of EDTs is that they use a Eu-
clidean distance measure as the measure between an
unseen case and a case presented in the table. They
also are constructed using a hashed-based table in
which instances with same values are grouped and a
majority-class approach is used. The algorithm for
creating and using EDTs is presented next.

e For any feature subset construct a Euclidean
Decision Table by simply projecting all given
training examples using the feature subset as
criteria for projection.

e For all “after projection” identical examples
count class frequencies and assign the majority
class to every entry.

e When classifying new examples, look up the
projected example in the decision table using
the Euclidean distance measure. Return as the
classification result, the appropriate majority
class of the entry with the minimum Euclidean
distance between the entry and the unseen case.

A modified version of k-means algorithm used
for our experiments is based on the description
of the k-means clustering algorithm presented in
[Dillon and Goldstein, 1984]. In its original version k-
means clustering assumes N individuals with j features
each and p different classes. K clusters are defined over
the complete set of cases (each case belongs to a par-
ticular class p). The elements are distributed among
the K clusters according to their attribute values us-
ing a Euclidean distance measure. The procedure for
clustering is as follows. Search for a partition with
small error component F by moving individuals from
one cluster to another until no transfer of an individ-
ual results in a reduction in E. At the end each cluster
has j attributes. Each attribute represents the mean of
the values of all the cases considered in the cluster for
that particular attribute. Using this approach, cases
belonging to different classes could be part of the same
cluster. In order to compute the class of the cluster
a majority-class membership approach is used. Our
modify version allows us to define the number of el-
ements e that make up of each cluster. Clusters are
created on a single-class basis. The number of clusters
belonging to a particular class depend on the number
of elements for that class and e. This modification al-
lows us to avoid elements from different classes being
mixed in one cluster.

Table 1: Dataset employed for the experiments. In the
DNA dataset the attributes values are 0 or 1. In the
Segment dataset the attributes values are floats. In
the LandSat dataset the attribute values are integers.

[Dataset | Features [Classes | Train Size | Test Size |
LandSat 36 6 4435 2000
DNA 180 39 2000 1186
Segment 19 7 210 2100

3 EXPERIMENTAL SETUP

A series of experiments were carried out using
publicly available datasets provided by the Project
Statlog ' and by UCI machine learning repository
[C. Blake and Merz, 1998]. Table 1 shows the datasets
employed for this research.

3.1 ENSEMBLE RELATED SETUPS

Our main objective is to compare the accuracy of en-
sembles constructed using three different methods for
feature selection: first, features selected using a genetic
algorithm; second, features selected using the random
subspace method; third, ensembles constructed using
the complete set of features available. For each method
four ensemble creation schemes were used.

e Simple ensemble creation in which an ensem-
ble is formed by classifiers and trained with the
complete set of training elements. For this ap-
proach a majority-class voting scheme is used
for class prediction (in tables referenced as Nor-
mal).

e Bagged ensemble creation using the Bagging al-
gorithm described in previous sections.

e Two versions of Adaboost.M1 that we called
Adaboost.M1.1 and Adaboost.M1.2 (Boost. 1
and Boost. 2 on the tables).

3.1.1 Adaboost.M1.1

In boosting the initial weight wqo(z;) of an instance
i is 1/N (for all i, N is the train-file size) and it is
recalculated after every trial. The weights are calcu-
lated using the following: if a class for a test case y;
(1 €4 < N) is predicted correctly

wyy1(yi) = we(y:)/(2(1 — €)) (1)
otherwise

wiy1(yi) = we(yi)/(2€;) (2)

where ¢; is the error of the ¢ single classifier when
tested on the original training set. The number of

Htp.ncc.up.pt: pub/statlog/datasets

times an instance z; (1 <4 < N) has to be present in
a particular classifier Cy;1 represented by ;41 (x;) is
based on wy(z;) and N. For Adaboost.M1.1 we calcu-
late ny41(z;) as

Ne1(2i) = [NV - wi(23)] (3)

If A =73%IN*w(z;))] <N, N— A elements are
still needed to complete N elements for classifier Cy4q.
Those elements are picked one by one by first sorting
the instances according to their N * w;(z;) values and
then selecting one of each N — A sorted instances. For
each instance selected, its value 741 (x;) is increased
by one.

3.1.2 Adaboost.M1.2

In our second version of AdaBoost.M1 the num-
ber of copies of z; to be present at Cpy; are as-
signed according to a “Stochastic Universal Sampling”
[Whitley, 1993]. Stochastic Universal Sampling is a
method for computing the number of copies assigned
to an individual in a genetic algorithm. As in Ad-
aboost.M1.1, for each instance z;, we calculate IV %
w¢(x;). The quantity x; = N * wy(2;) — eyr(zs)
is kept for each instance. If N — A > 0 the clas-
sifier Ciy1 still needs N — A elements for training.
Those elements are assigned using the first N — A k;
such that if k; > 0.5 and rand(seed) > 1 — k; then
Ni+1(x;) = Mep1(x;) + 1.Where rand(seed) is a ran-
domly generated number in the range (0,1).

3.2 GA-CLASSIFIER SETUP

Our main focus is to apply genetic-based search to fea-
ture selection for ensemble creation. The idea is to find
subsets of features to be used as input for each clas-
sifier in an ensemble. Several randomly independent
experiments were carried out using this approach. We
used datasets with features ranging from 19 up to 180.
For all of the experiments the setup was similar.

Using each dataset original train file, 50 indepen-
dent train and test files were randomly generated
((T’l‘l, T.Sl), (T’I‘2, TSQ), oy (T’I‘50, TS5())). 50 different
experiments using CHC as search engine were run us-
ing these files; experiment 4 used files (T'r;,T's;). For
a particular experiment ¢ a chromosome represents a
plausible feature selection vector. In order to evalu-
ate a chromosome and obtain its fitness, a classifier C;
was constructed using T'r; and tested using T's;. After
10000 trials the ga-based engine was stopped and the
best individual was saved. At the end of each set of ex-
periments (one for each dataset), 50 individuals were
saved. Each one of those individuals was meant to be

used as a feature template for a classifier in a particu-
lar ensemble. For an ensemble Ej (k representing the
dataset employed for that ensemble) the classifier C]’-“
uses the individual j in the set of individuals saved for
the experiment corresponding to k. Figure 1 depicts
graphically our method.

2 3

Traindl, Test1 CHC-Class Exp 1 —— 11000110110
1 Train2, Test 2 CHC-Class Exp2 —— 101100100
Original Train |——
Train 50 Test 50 CHC-Class Exp 50 —— 10000100
s Feamures Selected
Atrer 10,000 Trials
q 3
5 Classitier] —— 11000110110
Classifier 2 —— 101100100
EMNSEMELE
Original Test Classifier T —— 10000100

Complete Process For Jenetic -Based Ensemble Creation

Figure 1: Genetic-based ensemble creation. Numbers
represent the order of the operations to do.

4 RESULTS

An ensemble is a colection (aggregation) of several sin-
gle classifiers. For this research all the classifiers that
form an ensemble are of the same type, either EDT or
KMA. The type of the classifiers forming an ensemble
is refered as base classifier.

Two different sets of results were obtained from our
experiments. First, a comparison between different
approaches for constructing ensembles based on se-
lection of features was carried out. Ensembles were
constructed using the complete set of features, a ran-
domly generated subset of features (random subspace
method) and a subset of features obtained by genetic
search. For each feature-selection method four differ-
ent methods of ensemble creation were employed; Con-
struction based on the complete set of instances, bag-
ging, Adaboost.M1.1 and Adaboost.M1.2. Second, a
comparison in memory usage based on the total num-
ber of features used for the different approaches was
carried out as well.

For the random subspace method, 50 feature subsets
were generated once for each dataset. The subsets
were then used as input for the ensemble-constructor
algorithm. The same 50 random-feature subsets were
used for all the experiments involving a dataset.

Table 2: Accuracy using EDT as base classifier for the ensemble.

Feature Selection Normal Bagging Boost. 1 Boost. 2
Method DNA SAT SEG DNA SAT SEG DNA SAT SEG DNA SAT SEG
CHC-EDT 92.41 91.20 92.28 92.32 91.10 92.71 93.33 91.20 92.09 92.91 91.15 92.38
CHC-KMA 93.59 91.05 92.76 93.84 91.05 93.00 93.92 91.10 92.38 93.84 91.45 92.42
Random 87.52 91.00 94.14 88.02 91.00 93.80 87.52 91.15 93.09 87.94 90.95 94.14
All Feat. 75.88 89.45 87.38 76.55 89.50 87.33 75.88 89.45 87.38 74.03 88.00 85.42
Table 3: Accuracy using KMA as base classifier for the ensemble.
Feature Selection Normal Bagging Boost. 1 Boost. 2
Method DNA SAT SEG DNA SAT SEG DNA SAT SEG DNA SAT SEG
CHC-EDT 91.48 90.35 91.52 90.69 90.90 92.33 93.25 90.70 87.00 94.26 90.90 92.38
CHC-KMA 92.66 90.65 92.00 92.66 90.80 92.71 93.92 90.70 91.04 94.51 91.30 92.92
Random 92.58 90.85 85.00 91.73 90.45 88.28 91.98 91.10 92.85 92.49 91.45 93.38
All Feat. 88.70 89.20 76.23 93.25 90.50 79.28 93.84 89.70 78.38 93.67 89.90 84.33
4.1 ACCURACY AND EFFECTIVENESS Table 4 C . bet Bacei Ad
able : omparison etween aggin -
OF THE METHODS P 8818

The results presented in Table 2 and Table 3 are the
average of 10 independent runs. Table 2 presents the
results of ensemble creation algorithms using EDT as
a constituing classifier for the ensembles. For Table 3
the base classifier for the ensembles was KMA. In both
tables, the rows labeled CHC-EDT and CHC-KMA
represents ensembles constructed using the features
obtained by CHC using EDT as evaluation function
and by CHC using KMA as evaluation function re-
spectively.

In Table 2 the EDT-based ensembles created using the
features obtained by the genetic search approach, ei-
ther CHC-EDT or CHC-KMA, was best in eight out
of 12 experiments (with two ties). Also, the features
obtained by CHC-KMA seems to be more effective for
EDT-based ensembles than the ones obtained by the
CHC-EDT system itself. They were the best option
in five out of the eight times when the genetic-search
approach was better than the other feature selection
methods.

The ensembles created using the random subspace
method won in four competitions. This option seems
to be the best option for datasets with small num-
ber of features as in the Segmentation dataset. For
EDT-based ensembles and the datasets employed in
this research, the use of the complete set of features
for ensemble creation was least robust. This option
presented the worst performance.

From the comparisons between bagging,
Adaboost.M1.1, Adaboost.M1.2, and the use of the
complete set of instances for EDT-based ensembles,
bagging and Adaboost.M1.1 were the most successful
methods. The use of the complete set of instances was
effective only in three experiments and Adaboost.M1.2
in 2. These results are summarized in Table 4.

aboost.M1.1, Adaboost.M1.2 and the use of the com-
plete set of instances (depicted as Normal) for ensem-
ble creation using EDT as base classifier

Algorithm DNA SAT SEG

CHC-EDT Boost.1 Boost.1/Normal Bagging

CHC-KMA Boost.1 Boost.2 Bagging

Random Bagging Boost.1 Boost.2/Normal

All Feat. Bagging Bagging Boost.1/Normal
Table 5: Comparison between Bagging, Ad-

aboost.M1.1, Adaboost.M1.2 and the use of the com-
plete set of instances (depicted as Normal) for ensem-
ble creation using KMA as base classifier

Algorithm DNA SAT SEG

CHC-EDT Boost.2 Boost.2/Bagging Boost.2

CHC-KMA Boost.2 Boost.2 Boost.2
Random Boost.2 Boost.2 Boost.2
All Feat. Boost.1 Bagging Boost.2

On the other hand, using KMA as base classifier for
ensembles, the genetic search approach was better six
times, random subspace method five and using all fea-
tures was best for one experiment. These results are
summarized in Table 3. Once again the use of the
complete set of features was not a robust alternative.

When comparing the different methods for ensem-
ble creation, bagging, Adaboost.M1.1, Adaboost.M1.2
and the use of the complete set of instances for KMA-
based ensembles. Adaboost.M1.2 were the most suc-
cessful method in 10 out of 16 experiments. Bag-
ging was better only in two experiments and Ad-
aboost.M1.1 in one. The use of the complete set of
instances was the worst approach. These results are
summarized in Table 5.

On the other hand, when comparing the accuracy
of EDT-based ensembles with the accuracy of KMA-
based ensembles, EDT-based ensembles were more ac-
curate (higher accuracy percentages). However, the

Table 6: Comparison Between EDT and KMA for ensemble creation using four different ensemble creation
algorithms. The best accuracies as well as the system that produce them are depicted in parenthesis.

Algorithm DNA SAT

SEG

Normal EDT (93.59% CHC-KMA)

Bagging EDT (93.84% CHC-KMA)
Boost. 1 EDT/KMA (93.92% CHC-KMA)
Boost. 2 KMA (94.51% CHC-KMA)

EDT (91.20% CHC-EDT)
EDT (91.10% CHC-EDT)
EDT (91.20% CHC-EDT)
EDT/KMA (91.45% CHC-KMA /Random)

EDT (94.14% Random)
EDT (93.80% Random)
EDT (93.09% Random)
EDT (94.14% Random)

results obtained by KMA-based ensembles are more
uniform for all the approaches. EDT-based ensembles
showed very poor performance when the complete set
of features was used for the creation of the ensemble.

The best classifier turn out to be EDT. However, as
mentioned above, the features obtained by the sys-
tem CHC-KMA were very effective for the ensemble
creation experiments. Table 6 shows the comparisons
between methods and classifiers for each dataset.

4.2 EXPERIMENTS RELATED TO
MEMORY USAGE

The second set of experiments carried out a compar-
ison in the number of features selected by each ap-
proach. In a table-based classifier each feature is rep-
resented as a column. Reducing the number of features
reduces the number of columns as well; fewer columns
employed in a classifier represents less memory used for
storage. Experiments involving memory usage for en-
semble creation are very important. One of the caveats
of using classifier ensembles is the enormous amount
of memory used to store the ensemble.

An important advantage of the genetic search method
is its ability to obtain small feature subsets. Smaller
tables are easier to implement and to store. In our
research we obtain smaller tables using the genetic
search method. The comparison between the number
of features (columns) obtained by the genetic-search
method and the number of features obtained by the
other methods is presented in Table 7. The percent-
age of savings in feature space for DNA are in the or-
der of 88% compared with random subspace method
and 93% compared to ensembles constructed using the
whole set of features. For LandSat dataset the per-
centage of savings in feature space was 40% compared
to random subspace method and 70% compared to
the use of the complete set of features for the ensem-
ble construction. For the Segmentation dataset the
percentages of savings compared to random subspace
method was 64% and 81% compared to ensembles cre-
ated using all the available features.

Table 7: Average number of features used for the en-
semble.

Algorithm DNA SAT SEG
CHC-EDT 11.24 + 2.13 12.6 £ 1.89 3.6 + 0.728

CHC-KMA 16.26 + 3.5 11.04 + 2.16 5.9 + 0.886
Random 90.00 18.00 10.00
All Feat. 180.00 36.00 19.00

5 DISCUSSION

Ensemble construction is a very important method
for improving classifier accuracy. We are proposing a
novel method for selecting features for ensemble con-
struction. Our method has been empirically shown to
be more accurate than other methods proposed else-
where [Ho, 1998b], [Ho, 1998a]. The main advantage
of our approach is the enormous percentage of savings
in storage for table-based ensembles.

Another important contribution of this research is the
modified boosting scheme (labeled in the results as
Boost. 2) which has empirically shown to be more
effective than traditional boosting.

Acknowledgments

César Guerra-Salcedo is a visiting researcher at Col-
orado State University supported by CONACyT under
registro No. 68813 and by ITESM.

References

[Aha and Bankert, 1994] Aha, D. W. and Bankert,
R. L. (1994). Feature Selection for Case-Based Clas-
sification of Cloud Types: An Empirical Compari-
son. In Proceedings of the AAAI-9/ Workshop on
Case-Based Reasoning.

[Aha and Bankert, 1995] Aha, D. W. and Bankert,
R. L. (1995). A Comparative evaluation of Sequen-
tial Feature Selection Algorithms. In Proceedings of
the Fifth International Workshop on Artificial In-
telligence and Statistics, pages 1-7.

[Bala et al., 1995] Bala, J., Jong, K. D., Huang, J.,
Vafaie, H., and Wechsler, H. (1995). Hybrid Learn-
ing Using Genetic Algorithms and Decision Trees

for Pattern Classification. In 14th Int. Joint Conf.
on Artificial Intelligence (IJCAI).

[Bala et al., 1996] Bala, J., Jong, K. D., Huang, J.,
Vafaie, H., and Wechsler, H. (1996). Visual Routine
for Eye Detection Using Hybrid Genetic Architec-
tures. In 14th Int. Joint Conf. on Artificial Intelli-
gence (IJCAI)Proceedings of ICPR 96.

[Bankert, 1994] Bankert, R. L. (1994). Cloud classifi-
cation of avhrr imagery in maritime regions using a
probabilistic neural network. Applied Metheorology,
33(8):909-918.

[Bankert and Aha, 1996] Bankert, R. L. and Aha,
D. W. (1996). Improvement to a neural network
cloud classifier. Applied Metheorology, 35(11):2036—
2039.

[Breiman, 1994] Breiman, L. (1994). Bagging Predic-
tors. Technical Report 421, Dept. of Statistics Tech-
nical Report 421, University of California, Berkeley,
California.

[C. Blake and Merz, 1998] C. Blake, E. K. and Merz,
C. (1998). UCI repository of machine learning
databases.

[Dietterich, 1998] Dietterich, T. G. (1998). An exper-
imental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting,
and randomization. Machine Learning (submitted),
3:1-22.

[Dillon and Goldstein, 1984] Dillon, W. R. and Gold-
stein, M. (1984). Multivariate Analysis Methods and
Applications. John Wiley and Sons.

[Eshelman, 1991] Eshelman, L. (1991). The CHC
Adaptive Search Algorithm. How to Have Safe
Search When Engaging in Nontraditional Genetic
Recombination. In Rawlins, G., editor, FOGA -1,
pages 265-283. Morgan Kaufmann.

[Freund and Schapire, 1996] Freund, Y. and Schapire,
R. E. (1996). Experiments with a new boosting algo-
rithm. In Saitta, L., editor, Proceedings of the Thir-
teenth International Conference on Machine Learn-
ing, pages 148-156. Morgan Kaufmann.

[Guerra-Salcedo and Whitley, 1998]
Guerra-Salcedo, C. and Whitley, D. (1998). Genetic
Search For Feature Subset Selection: A Compari-
son Between CHC and GENESIS. In Proceedings of
the third annual Genetic Programming Conference.
Morgan Kaufmann.

[Ho, 1998a] Ho, T. K. (1998a). C4.5 Decision Forest.
In Proceedings of the 14th International Conference
on Pattern Recognition, pages 605-609.

[Ho, 1998b] Ho, T. K. (1998b). The Random Subspace
Method for Constructing Decision Forests. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 20-8:832-844.

[John et al., 1994] John, G., Kohavi, R., and Pfleger,
K. (1994). Irrelevant Features and the Subset Se-
lection Problem. In Cohen, W. W. and haym
Hirsh, editors, Machine Learning: Proceedings of
the Eleventh International Conference, pages 121—
129. Morgan Kauffmann.

[Kohavi, 1995] Kohavi, R. (1995). Wrappers for
Performance Enhancement and Oblivious Decision
Graphs. PhD thesis, Stanford University.

[Maclin and Opitz, 1996] Maclin, R. and Opitz, D.
(1996). An Empirical evaluation of bagging and
boosting. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence, pages 546-551.
AAAT Press/MIT Press.

[Punch et al., 1993] Punch, W., Goodman, E., Pei,
M., Chia-Shun, L., Hovland, P., and Enbody, R.
(1993). Further Research on Feature Selection and
Classification Using Genetic Algorithms. In For-
rest, S., editor, Proc. of the 5th Int’l. Conf. on GAs,
pages 557-564. Morgan Kaufmann.

[Quinlan, 1996] Quinlan, J. R. (1996). Bagging,
boosting, and C4.5. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pages
725-730. AAAI Press/MIT Press.

[Turney, 1997] Turney, P. (1997). How to Shift Bias:
Lessons from the Baldwin Effect. FEwolutionary
Computation, 4(3):271-295.

[Vafaie and Imam, 1994] Vafaie, H. and Imam, I.
(1994). Feature Selection Methods: Genetic Algo-
rithms vs. Greedy-like Search. In Proceedings of the
International Conference on Fuzzy and Intelligent
Control Systems.

[Vafaie and Jong, 1994] Vafaie, H. and Jong, K. A. D.
(1994). Improving a Rule Learning System Using
Genetic Algorithms. In Machine Learning: A Mul-
tistrategy Approach, pages 453-470. Morgan Kauf-
mann.

[Whitley, 1993] Whitley, L. D. (1993). A Genetic Al-
gorithm Tutorial. Technical Report Nb. CS-93-103,
Colorado State University.

