Modelling software quality with GP

Matthew Evett, Taghi Khoshgoftaar, Pei-der Chien, Edward Allen
Dept. Computer Science & Engineering
Florida Atlantic University
Boca Raton, Florida 33431
(matt,taghi,chienp,allene)@cse.fau.edu

Abstract

Software development managers use soft-
ware quality prediction methods to determine
to which modules expensive reliability tech-
niques should be applied. This paper de-
scribes a genetic programming (GP) based
system that classifies software modules as
“faulty” or “not faulty”, allowing the target-
ting of modules for reliability enhancement.
The system is validated via a case study us-
ing software quality data from a very large
industrial project. The demonstrated qual-
ity of the system is such that the system is
being integrated into a commercial software
quality management system.

We used GP to create models that predict the number
of faults expected in sets of modules, and use these
predictions to rank the modules. With a given rank-
order of the modules, the software manager must de-
cide which modules to submit to reliability testing.
This is done by selecting a threshold (or cut-off), ¢,
a percentage. In effect, the threshold delineates the
set of modules that are considered “faulty” from those
that are considered “not faulty”. The top ¢ percent
of the modules according to the ranking (i.e., those
designated “faulty”) are chosen for testing. The diffi-
culty is in choosing ¢ so as to minimize the cost of not
testing faulty modules (Type II errors) or needlessly
testing non-faulty modules (Type I errors).

The basic unit for software quality modeling is an
observation, which is a software module represented
by a tuple of software measurements, x;, for obser-
vation j. The x; values are vectors of the form
< Zj1,%42,. .., Tjn >, Whose components are discrete
or real-valued software metrics. The dependent vari-
able of a model is the quality factor, y;, for each obser-
vation j. The quality factor usually is the number of

faults in each software module for this study. The pro-
grams resulting from our GP system are the models,
which estimate the y;.

The function set consisted of a standard collection of
arithmetic functions, and the terminal set consisted of
the available software product and process metric vari-
ables (the independent variables of the data sets) and
the ephemeral random constant generator function.

The fitness of individual i is defined as the type II error
rate of individual :

faaj(i) =1 — typelI;(p) (1)

where p, the “training cut-off”, is a cut-off percent-
age value, and typelI;(p) is the percentage of modules
that were misclassified using that cut-off. We used an
impartially selected subset of observations taken from
a very large legacy telecommunications system (more
than ten million lines of code, and over 3500 software
modules) as the test cases for our GP system. The
remaining observations were used for validation.

Each best-of-run was applied to the validation set of
observations to achieve a ranking of those modules.
We then calculated the Type I and Type II error rates
for a set of proposed cut-offs. The manager can then
look at the error rates obtained by the various cut-off
values to determine which cut-off value obtains error
rates that optimize the cost of reliability analysis, but
which are within the financial and man-power resource
constraints.

This work, in combination with our related previous
work (see GP98) has demonstrated the effectiveness
of GP to generate accurate software quality models in
real-world, industrial domains.

This work was supported in part by a grant from Nor-
tel. The findings and opinions in this study are the
authors’; and are not necessarily those of the sponsor.



