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ABSTRACT

This paper presents a new tech-
nique, Functional Genetic Programming
(FGP), for the induction of high level
programs. This technique is based on
the pure functional language FP, which
allows the specification of functional
programs that do not reference named
objects and advocates a programming
style that utilises higher-order functions.
A number of fitness evaluation schemes
are also investigated and results show
that a step-wise fitness scheme out per-
forms the evaluation of a single raw
fitness measure. The results of a num-
ber of GP experiments are presented
and results show that this technique
can generate high level programs that
are highly expressive and inherently
parallel.

1 Introduction
It has been highlighted by Olsson, that when inferring a large
expressionE, the schema theorem requires thatE is primarily
composed of expressions E1; E2; E3; :::; En such that the fit-
ness advantage of each Ei can be measured independently of
each Ej with j 6= i, where each Ei can be viewed as a schema
[Olsson 94]. Unfortunately, practically all recursive and itera-
tive LISP programs consist of coupled Ei’s, where an expres-
sion Ei cannot be evaluated until a base case expression Ej

is evaluated. That is, for a recursive program, each succes-
sive call must converge towards a terminating condition. If
each recursive call does not converge towards the terminating
condition, then the base case will never be evaluated. Simi-
larly, it is difficult for GP to produce iterative programs, and
it has been claimed that the current form of GP is unlikely to
ever become an effective tool for general purpose program-
ming [Olsson 94]. Moreover, many inferred programs gener-

ated in GP do not use common programming language con-
structs such as iteration and recursion.

However, it has been shown that recursive and iterative pro-
grams can be generated by the use of higher-order functions in
GP [Walsh 98]. Similar results have been reported using the
pure functional language Haskell [Yu 98]. It is therefore the
aim of this paper to extend the power of GP, by utilising the
expressive power of higher order functions and the pure func-
tional language FP to induct programs to solve a number of
common programming problems that involve iteration and se-
lection. To this end an FGP system is described and the prac-
tical scope of the FGP system is extended by the inclusion of
an FP to C translator, which translates inducted FP code into
C. This allows FP to be used as an intermediate form for the
generation of general purpose C programs.

The remainder of this paper is organised in the following
fashion. Section 2 of this paper highlights the advantages of a
pure functional style for program induction and describes the
architecture of a GP system that can infer general purpose pro-
grams in both FP and C. Section 3 describes a step-wise fitness
function that allows a more efficient search of the FP program
space and compares this with a standard GP fitness function.
Section 4 describes a number of GP experiments and describes
the performance of the system on a number of general purpose
programming problems. Section 5 discusses the translation of
FP programs to C. Section 6 presents a number of conclusions
and discusses future directions of research.

2 Program Induction with FP
FP is a pure functional language that uses a highly expressive
functional notation and the characteristic style of program-
ming it encourages makes it a basis for a viable functional lan-
guage for practical use. The syntax and semantics of FP are
discussed in more detail in [Backus 78]. FP was chosen for
program induction for the following benefits:

� Functional languages provide a powerful abstraction
mechanism for describing a pattern of behaviour. This is
achieved by the use of higher order functions, which are
functions that can take functions as arguments or return
functions as a result. Higher order functions in functional



programming languages enable very regular and power-
ful algorithms to be constructed [Cunningham 97].

� Olsson has noted, that functional languages are partic-
ularly useful for program induction techniques as func-
tional programs are often much smaller than the corre-
sponding imperative programs. This is particularly im-
portant when using search strategies that search the sub-
space of all programs [Olsson 94]. Similarly, as FP pro-
grams do not require any explicit identifiers, the number
of objects that must be expressed in the solution is re-
duced, which in turn reduces the problem search space.

� A reference to an explicitly defined argument compli-
cates the formal manipulation of functions, since formal
manipulation of user defined functions are more easily
expressed if object references in the original program are
abstracted out [Field 88]. Algebraic laws for FP have
been constructed which can be applied to transform one
FP program into another [Backus 78]. Such laws can be
used to transform one program into an equivalent pro-
gram that can be executed more efficiently.

� Pure functional programming languages encourage mas-
sively parallel execution. However many LISP imple-
mentations, including those used in GP, employ state
changing constructs. This destroys the referential trans-
parency of inducted programs and data dependency be-
tween statements in programs has proved limiting in the
induction of parallel programs [Walsh 95].

� As FP is a loosely typed language, the stochastic search
technique employed need not be constrained to the ap-
plication of functions to a specific type. This simplifies
the search procedure, whereas evolutionary search tech-
niques that use typed languages, as in [Yu 98], must em-
ploy complex type preserving mechanisms.

3 Functional Genetic Programming
FGP is a technique that carries out a directed stochastic search
on the set of all possible FP programs. This directed search is
implemented by a typical GP algorithm implemented over the
function set of FP primitive functions. Input/Output test cases
are used to define the functionality of the program that is to be
inferred. Programs inferred by the system are evaluated using
an FP evaluation module. While functional languages are of-
ten criticised for being impractical, a key feature of the FGP
system is the inclusion of an FP to C translator. This allows
inducted subroutines to be linked with standard C programs.
The C code generated is functional in style, which improves
the modularity of C programs. The structure of the FGP sys-
tem is shown in Figure 1.

3.1 Structure of Individuals
Individuals in FGP experiments in this paper consist only of
primitive functions and the functional forms constant, com-
position, conditional and the higher order functions apply-
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Figure 1 Architecture of the Functional Genetic Pro-
gramming System.

to-all and insert, which are sufficient for generating many
common general purpose programs. A unique feature of FGP
is that there are no variables represented as there are no explic-
itly named objects in FP. Hence individuals are represented,
for convenience, using trees that consist only of primitives and
combining forms. The composition operator � is inserted be-
tween functions and combining forms by parsing individual
trees using a pre-order traversal. When the combining forms j
and � are encountered the compositional combining form � is
omitted. This representational scheme ensures that programs
represented in this parse tree form remain syntactically cor-
rect, despite the disruptive effect of the crossover and mutation
search operators. A sample individual is shown in Figure 2.
The FP program corresponding to this is:

�� j + � �

However, a major limitation that was encountered with FP
is the inability of FP programs to maintain state. This was
particularly limiting for applications that require multiple in-
stances of input arguments. This limitation was successfully
addressed by extending the power of FP, without compromis-
ing the referential transparency of the system. A new set of
functions are introduced which return the initial input argu-
ments. These are constant functions and do not update any
variables and are automatically defined for each application.
For example, a program that transforms two input arguments
will have two functions, x1 and x2, automatically defined
by the system. These functions return the original unmod-
ified values of the first and second input arguments respec-
tively. Note that these argument “references” to input argu-
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Figure 2 Sample FP program parse tree



Primitive Function
+,-,*,/ Standard arithmetic operators, e.g.

+ :< 2; 3 >= 5
�;�; 6=;= Standard comparison operators

�:< 2; 3 >= T

1,2,3,.. Sequence selector functions
e.g. 2:< x1; x2; ::; xn >= x2

xn Input parameter selector function, where
n is the nth input parameter e.g.
x2 :< 3; 4 >= 4

id The identity function e.g.
id:3=3

� Generation of a list of
consecutive integers, e.g.
�:3=< 1; 2; 3 >

trans Transposition of a matrix, e.g.
trans:<< 1; 2 >< 3; 4 >< 5; 6 >>
=<< 1; 3; 5 >< 2; 4; 6 >>

% Constant e.g.
%4=4

Table 1 Primitive functions used in FGP

ments are functions, and as such they maintain the referen-
tial transparency of inducted programs. The notion of constant
functions is also widely used in the object oriented program-
ming paradigm. This innovation has proved useful for the ef-
ficient induction of functional programs, see Section 4 below.

3.2 Modifying Individuals
Crossover in FP parse trees is achieved by swapping sub-trees
as in GP, but may result in individuals that contain combining
forms that are undefined, ?. However, any function that has
? as an input argument, automatically returns?, thus achiev-
ing closure. This notion of “undefined” has proved useful in
the evaluation of individual programs created by the system.
Programs that return ? as a result are not incorrect but are
simply undefined over the current input arguments. Such pro-
grams may contain useful schema which may be employed in
the generation of a correct solution.

3.3 Initial Population Structure
The initial population of individuals is created by randomly
generating trees from the function set, F . A ramped half and
half method is used so as to introduce a variety of different
tree shapes into the initial population. Trees are generated by
recursively inserting nodes from the functions setF for points
less than the specified depth and by inserting null terminals for
points that exceed the maximum depth.

3.4 Fitness
One of the most common return results from the vast majority
of individuals created in FGP, in the population creation phase,
is the undefined result ?. The probability of this result being
returned is high as the return values of a randomly selected se-
quence of functions are unlikely to be defined as input argu-
ments to each other. Consider, for example, the evaluation of

the following FP program:

� � � �+ :< 1; 2 >

= � � � : 3

= � : ?

?

The intermediate results in the evaluation of this example
are the integer 3, ? and the final output ?. While the final
result of the FP program may not provide the correct solution,
previous applications of combining forms may have produced
a result that is close to the desired result. In the above ex-
ample the application of the function + to the input argument
< 1; 2 > produced the result 3, which shows that the func-
tion + is not “undefined” over the input arguments. Conse-
quently, to accommodate a more precise evaluation of individ-
uals, three separate approaches were investigated, denoted as
single, step-wise and exhaustive evaluation respectively.

In a single evaluation scheme the full expression is evalu-
ated in its entirety and the final value is returned. In the above
example, the single evaluation results in the return value ?,
and in this case the raw fitness is 1, or an arbitrarily large
value. In a step-wise evaluation scheme the result from the
successive evaluation of each function of the expression is ex-
amined. The best result from each of these function applica-
tions is then taken as the result. In the above example this re-
sults in the subexpressions+; ��+ and ����+, which result
in the return values 3,? and? respectively. In these cases the
raw fitness measure is the least difference between the defined
values and the target output value. In the exhaustive evalua-
tion scheme, the complete combination of all subexpressions
with in the original FP expression are evaluated. In the above
example, this results in the expressions +; ��+; ����+, ���
and �. Here the return types are 3, ?;?; < 1; 2 > and ? re-
spectively. Again the defined return values, in this case 3 and
< 1; 2 > are compared with the desired output and the best
raw fitness measure is taken.

The motivation behind the step-wise and exhaustive eval-
uation schemes is the Building Block Hypothesis (BBH)
[Holland 68]. Both these schemes attempt to locate building
blocks which may lead the search mechanism to sections of
the fitness landscape which are defined ( 6= ?), over the set of
input arguments. Programs which contain useful schema will
receive a higher score and will be propagated with exponen-
tially increasing numbers in subsequent trials (generations). It
should be noted that a high degree of diversity is maintained
within these programs and that the search is not focused exclu-
sively on these building blocks, as most programs will contain
other undefined sub-expressions, which may be useful in fu-
ture trials. There is some empirical evidence to support this
hypothesis as a number of experiments were performed to in-
vestigate each of these evaluation schemes.

Each of these fitness evaluation schemes were tested on the
dot product problem, see Section 4, and results were aver-
aged over 10 runs, see Figure 3. It was found that all evalua-
tions schemes found the correct solution, with the exhaustive
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Figure 3 Time series plot of best fitness for the Single,
Step-wise and Exhaustive evaluation schemes, averaged
over 10 runs.

evaluation method performing the best. The single evaluation
scheme also found the correct solution as it was found that ini-
tial populations contained a number of short programs that did
not result in ?. For example, the FP programs trans; � j +
and j �� were all generated in initial populations and are all
defined over a pair of input vectors. Hence there was an in-
crease in the number of these expressions in subsequent gener-
ations. This has the effect of focusing the search on the region
of the search space that contains these functions. However, it
was found that the search converges more quickly to a global
optimum when the full evaluation of all building blocks is em-
ployed. This is at an increased overhead as there are �n�1

extra evaluations for an FP program containing n functions.
However, step-wise evaluation requires the same amount of
computation but performs significantly better than the single
evaluation scheme. Consequently, the step-wise evaluation
scheme is the most commonly employed fitness function in the
following FGP experiments.

4 Results

FGP was applied to the task of generating functional programs
for a number of common programmingproblems. These prob-
lems were chosen as they require some form of iteration or
recursion. It should be noted that the complete function set
described in Table 3 was used in all experiments. However,
the search space may be reduced if some heuristic is used for
the selection of functions suitable for a given problem. It is
also possible to implement all of these algorithms in parallel
as the insertion operation j can be replaced by a synchronous
parallel version, which would evaluate a problem of size n in
O(log2n) time and the apply-to-all operator � can be imple-
mented in O(C) time, where C is the constant time required
to evaluate a single applied operator [Braunl 93].

Objective : Produce a functional program
that minimises raw fitness

Terminal Set : NULL
Function Set : *, /, +, -, j, �, �,

trans, id, 1, 2, xn,
(>!; ), (=!; ), (<!; )

Fitness cases : 10 randomly generated
test cases

Raw Fitness : The number of fitness cases for
which the functional program
outputs the correct values

Standardized fitness Same as raw fitness
Hits : Same as raw fitness
Wrapper : None
Parameters : M = 500-2000, G=20
Success Predicate : error=0

Table 2 A Koza-style tableau summarising the control
parameters for the FGP experiements described in this pa-
per.

4.1 Factorial
A common numerical function, that requires some form of it-
eration is the evaluation of the factorial of a number. The so-
lution found by FGP is unique in that it uses the very nature of
the problem to find a solution:

j � � �

Applying this to the input object 6, illustrates the expressive
power of solutions generated by FGP, and the ability of FGP
to find novel solutions:

j � � � : 6

=j � :< 1; 2; 3; 4; 5; 6 >

=< 1 � 2 � 3 � 4 � 5 � 6 >

= 720

4.2 Dot Product
Many high performance computing applications consist of a
large number of matrix and vector operations. The following
solution was generated by FGP:

j + � � � �trans

Applying this to the input object << 1; 2; 3 >< 4; 5; 6 >>:

j + � � � �trans :<< 1; 2; 3 >< 4; 5; 6 >>

j + � �� :<< 1; 4 >< 2; 5 >< 3; 6 >>

j + :< � :< 1; 4 > � :< 2; 5 > � :< 3; 6 >>

j + :< 4; 10; 18 >

< 4 + 10 + 18 >
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This solution works for any pair of vectors, regardless of size,
and the apply-to-all compositional form,�, can be executed in
parallel using the synchronous SIMD model of parallel com-
putation.

4.3 Exponentiation
Finding the power of a number raised to some exponent is a
common numerical problem which requires some iterative or
recursive mechanism. In order to increase the power of the
FGP system the use of automatically named arguments, as de-
scribed in Section 3.1 above, is introduced. A typical FP solu-
tion, without the use of automatically defined argument func-
tions, is as follows:

j � �� � dist � [hd; �%1 � � � tail]

However, extending FP to allow the use of automatically de-
fined argument functions, the FGP system generated the fol-
lowing solution:

j � ��x1 � � � x2

where x1 is a function that returns the value of the first ar-
gument and x2 is a function that returns the value of the sec-
ond argument. Applying this program to the input arguments
< 2; 4 > illustrates the solution:

j � ��x1 � � � x2 :< 2; 4 >

j � ��x1 � � : 4

j � ��x1 :< 1; 2; 3; 4 >

j� :< 2; 2; 2; 2 >

16

The use of automatically defined argument functions in FP is a
unique feature and as the above example illustrates, it provides
a novel way for FP programs to maintain input state, while
preserving referential transparency, for a given problem.

4.4 Condition
One of the most fundamental constructs in any language is the
conditional statement. The conditional statement (!; ) is im-
plemented in FGP. While current implementation limitations
have not allowed the definition of a general conditional con-
struct, a number of commonly used Boolean expression have
been incorporated into conditional constructs. The following
conditional constructs have been implemented for the experi-
ments described in this paper:

(=!; )(6=!; )(>!; )

As the system allows any level of nesting of conditional
statements, all possible comparison operations can be imple-
mented using the above constructs. The system was tested

with the basic problem of finding the greater of two numbers.
The following solution was generated by the system:

(>! 1; 2)

Applying this to the input argument < 5; 9 > produces the
following result:

(>! 1; 2) :< 5; 9 >

2 :< 5; 9 >

9

4.5 Searching
Searching operations are common to many general purpose
applications. The FGP system was tested with a simple
searching problem of finding the greatest element in an ar-
bitrarily long list of integers. The problem can easily be re-
formulated in terms of searching for the smallest element or
searching for a specific element. For very large population
sizes the system found a general solution to the problem. Con-
vergence to a solution occurred more rapidly when an incre-
mental or a large training set was used. The following solution
was generated by FGP:

j (>! 1; 2)

Applying this to the input argument list
< 3; 55; 23; 40; 2; 34> yields the following result:

(>! 3; (>! 55; (>! 23; (>! 40; (>! 2; 34)))))

= 55

5 FP to C
The FGP system can be applied to a wider set of applications
by translating the FP solutions into the more widely used pro-
gramming language C. Thus, FGP can hide the more cryptic
features of the FP style to programmers who are more famil-
iar with the imperative style of C. The following code segment
shows the solution to the dot product of two vectors, as de-
scribed in Section 4.2, translated to C.

#include <stdio.h>

fp_data dot (data)
fp_data data;
{
fp_data plus(), fptimes(), trans();
fp_data d1, d0, res;
d0 = trans (data);
d1 = fptimes (d0);
res = plus (d1);
return (res);

}

It can be seen from the sequential evaluation of this imperative
program that the FP functions trans; �� and j + are encapsu-
lated by the functions trans(), fptimes() and plus()
respectively, thus hiding the implementation details from the
user.



6 Conclusion
In summary, this paper has introduced a technique for evolv-
ing pure functional programs. The advantages of using a pure
functional programming language such as FP for program in-
duction are:

� Pure Functional Programs are highly expressive, hence
the search space of FP programs is smaller than that of
conventional languages.

� As FP advocates a higher order functional style, pro-
grams requiring iteration and selection can be produced.

� The FGP system that utilises FP has the ability to find
novel, unobvious solutions.

� FP programs can be directly translated to C, allowing a
wider range of application.

� The generated pure functional programs contain inherent
parallelism and are amenable to formal manipulation.

However, while a number of common programming prob-
lems have been addressed by the work presented in this paper,
a number of issues remain:

� Only a fraction of the available primitive functions and
compositional forms have been employed in the above
experiments. The expressive power of individual pro-
grams in FGP can be vastly improved if a wider choice
of these components are made available to the system.

� Advanced GP techniques such as ADF’s, stochastic sam-
pling and adaptive parsimony pressure could be incorpo-
rated into the system to facilitate the induction of more
complex programs.

� The performance of FGP in a wider range of more com-
plex problems must be investigated. The real benefit of a
system such a FGP could be demonstrated by the induc-
tion of serial or parallel algorithms for novel program-
ming problems that are encountered on-the-fly.

� The modification of FP to maintain the state of input ar-
guments has proved useful. Similarly, as neither LISP
nor FP were originally designed with GP in mind, it
may be useful to design the syntax and semantics of a
completely new language, specifically for inducting high
level programs. At any rate, more use of higher order
functions should be made in GP, regardless of the lan-
guage used. It would also be useful to compare the per-
formance of LISP based GP and FGP.

While the FP style of programming has been shown to be
useful for genetic programming, it is not a panacea. However,
it does show that iteration and recursion can be addressed to
some extend by this programming style. Consequently, the
use of higher order functions and pure functional program-
ming in GP should be more widely investigated.
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