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Abstract
In this contribution, genetic programming is
combined with continuum regression to produce
two novel non-linear continuum regression
algorithms. The first is a ‘sequential’ algorithm
while the second, adopts a ‘team-based’ strategy.
Having discussed continuum regression, the
modifications required to extend the algorithm
for non-linear modelling are outlined. The results
of applying the derived non-linear algorithms to
the development of an inferential model of a
food extrusion process are then presented. The
superior performance of the ‘sequential’
algorithm, as compared to a similar non-linear
partial least squares algorithm, is demonstrated.
In addition, these results clearly demonstrate that
the ‘team-based’ strategy significantly
outperforms the ‘sequential’ approach.

1 INTRODUCTION
In this paper Genetic Programming (GP) is used to
develop two non-linear continuum regression algorithms
for building input-output models of chemical process
systems. A ‘team-based’ strategy is investigated, and
compared to a more traditional ‘sequential’ approach.

Why are chemical engineers interested in data-based
modelling ?
Recent years have seen an increase in the emphasis on
product 'quality', economic process performance,
environmental and safety issues in the process industries,
and these factors have placed significant demands on
existing operational procedures. Process monitoring,
optimisation and advanced control have the potential to
satisfy many of these demands. However, in order to
realise the benefits of these techniques, it is generally
necessary to have an accurate model of the process. While
it may be possible to develop such a model from first-
principles (using a detailed knowledge of the physics and
chemistry of a system), there are a number of drawbacks
to this approach. As many industrial process systems are
extremely complex and relatively poorly understood, the
development of a realistic model can take a considerable

amount of time and effort. In addition, the modelling
process inevitably involves a number of simplifying
assumptions that have to be made in order to provide a
tractable solution. Therefore, a mechanistic model will
often be costly to develop and may be subject to
inaccuracies. Consequently, data-based modelling (using
plant data to build an input-output model that describes
the response of process outputs to changes in inputs,
without attempting to represent the underlying process
mechanisms) presents a popular alternative.

Why use non-linear models ?
Many chemical process systems are non-linear in nature.
Therefore, in order to achieve sufficient model accuracy,
a non-linear model structure is typically required.

Why not use a standard GP algorithm ?
The performance of a standard GP algorithm when used
to develop non-linear models of chemical process systems
(using either simulated or industrial input-output data) can
be disappointing when compared to other non-linear
regression techniques such as feedforward neural
networks (e.g. see McKay, 1997, Hiden, 1998).
Generally, a GP algorithm is much slower than
competitive techniques (especially for increasing numbers
of input variables) and the prediction errors on unseen
(test) data are typically higher, indicating a less accurate
model.

Why the interest in Continuum Regression ?
Our recent work has shown that strategies that reduce the
algorithm’s search space can help the overall performance
of a GP algorithm (when used for model development). A
number of multivariate statistical modelling techniques
provide systematic procedures for the decomposition of
an input-output relationship. By extracting and structuring
information in an appropriate manner, these techniques
can be used to reduce the effective search space. In Hiden
et al. (1998) it was demonstrated that the combination of
GP with one such technique, known as Partial Least
Squares (PLS), could produce results of comparable
accuracy to alternative non-linear regression techniques
such as neural networks. However, PLS is merely one of a
family of linear multivariate statistical modelling



techniques. It is Continuum Regression (CR) that
provides a unified framework encompassing all of these
techniques. Wise and Ricker (1997) demonstrated the
effectiveness of CR, developing models of improved
accuracy when compared to alternative approaches
(without sacrificing model robustness and generalisation).
However, standard CR algorithms produce linear models.
In this paper, we combine GP and CR to produce non-
linear CR algorithms. The objective being the
development of an algorithm that can develop accurate
and robust non-linear models.

How is this paper organised ?
The next section provides some background information
on linear regression. CR is then introduced and the range
of techniques it encompasses are explained. Next, the
modifications required to extend the algorithm to a non-
linear strategy are outlined. Two approaches are
proposed, a ‘sequential’ and a ‘team-based’ algorithm.
Having detailed the algorithms, their performance on a
benchmark example are studied: The development of an
inferential model of a food extrusion process. After
discussion of the results, conclusions are drawn and
recommendations for further work are made.

2 LINEAR REGRESSION
Given a set of input and output measurements for a
process, a typical modelling objective is to obtain a
relationship, that can be used to explain the variation in an
(n x 1) output vector, y, in response to changes in an (n x
m) input matrix, X. This can be expressed mathematically
as follows:

y = f(X) + e (1)

Where the function f(.) is chosen so as to minimise the
vector of prediction errors, e. If  f(.) is linear in the
parameters, then the input-output model reduces to:

y = Xr + e (2)

where r is a (m x 1) vector of regression coefficients.

A family of linear multivariate statistical modelling
algorithms have been developed for the purpose of
estimating r. Three of the more common and effective of
these are Multiple Linear Regression, Principal
Component Regression and Partial Least Squares.

What is Multiple Linear Regression ?
Multiple Linear Regression (MLR) uses one of the many
variants of the Least Squares technique (such as Batch
Least Squares ) to parameterise Equation 2. A draw-back
of this method is that it fails to produce accurate and
robust models if the input data is correlated (the columns
of input data are linearly related to each other). This is the
norm when data is collected from chemical process
systems.

What is Principal Component Regression ?
PCR avoids the problems associated with the modelling
of correlated input data (ie. singular solutions or
imprecise parameter estimations) by transforming the

inputs into a new set of uncorrelated data (typically of
reduced dimensionality), and then performing MLR
between this transformed data set and the output data. The
procedure is based on a technique known as Principal
Component Analysis (PCA), one of the oldest and best
documented multivariate statistical techniques (Pearson,
1901). PCA is performed on the input data, X, and
generates a set of transformed input variables (known as
principal components) that are uncorrelated and ranked in
term of significance. This allows the least significant
principal components (ones that only describe process
noise) to be discarded prior to modelling.

More rigorously, PCA rotates X to produce an (n x m)
scores matrix, T and an (m x m) loadings matrix, V
(describing the required rotation) such that, T=XV. The
loading matrix V contains the eigenvectors of the input
data correlation matrix, XTX. The scores matrix, T,
contains orthogonal projections of the input variables,
sorted (from left to right) in terms of decreasing
contribution to the variance in the input data.  Retaining
the first ‘p’ principal components leads to a  reduced (n x
p) scores matrix Tp and an (m x p) loadings matrix Vp. To
perform PCR, batch least squares is used to regress Tp

against y, giving the (p x 1) regression vector b, such that
y=Tpb + e. The input-output mapping is then given as,

y = XVpb + e (3)

Unfortunately, as PCA only considers the variation in the
input data, there is no guarantee that the variation
represented by the major principal components will
correspond to the variation that best describes the
relationship with the output variable.

What is Partial Least Squares ?
Partial Least Squares (PLS) was first described in Wold
(1966). As with PCR, the PLS algorithm overcomes
problems associated with measurement noise and
correlation between input variables.  However, an
additional advantage of PLS (as compared to PCR), is that
by considering both the input variance and the input-
output covariance, the algorithm provides the opportunity
for more accurate model development. A good
introduction to the technique can be found in Geladi and
Kowalski (1986).

PLS is commonly implemented using the NIPALS (Non-
linear Iterative Partial Least Squares) algorithm. NIPALS
sequentially extracts pairs of ‘latent vectors’  (analogous
to the columns of the scores matrix in PCA) from the
input and output data. A univariate (single input, single
output) regression is performed at each stage, to model
the relationship between these latent vector pairs. The
final model is then constructed by summing the
contribution from each step.

More rigorously, PLS (starting with i=1, X1=X and, y1=y)
sequentially extracts latent vector pairs, ti and ui , from Xi

an yi, in order of decreasing predictive power. For the
single output case, the vector ui is equal to yi,, while the
vector ti corresponds to the projection of Xi, in the



direction most correlated to ui (i.e. ti=Xiwi. where wi are
the optimal input projection weights)..The vectors ti and
ui, are then regressed to obtain a univariate linear model
with a regression parameter bi (such that ui = biti + ei) . As
each latent vector is calculated the ‘information’ used is
deducted from the input-output data and these residuals
(Xi+1 and yi+1) are used to calculate the next set of latent
vectors. This procedure is repeated until additional latent
vector pairs fail to improve the model performance. The
final model is then constructed by summing the
contributions from each of the NLV significant latent
vector pairs,
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where ŷ  is the estimated output y. Substituting the

expression for calculating the input residuals (Xi+1 = Xi -
Xiwiwi

T) into Equation 4 and recalling that X1=X gives,
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Using the fact that the wi are orthogonal (and thus
wi

Twj=0, for i≠j), this reduces to a form that is equivalent
to Equation 2,
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Using PLS, difficulties associated with modelling
correlated input variables are avoided by calculating
latent variables sequentially and only performing a
univariate regression at each stage. Problems associated
with measurement noise are also overcome by projecting
the inputs and outputs onto a lower dimensional space. In
addition, considering both the input variance and the
input-output covariance leads to improved model
accuracy.

How are the methods related ?

For a linear input-output mapping, if all principal
components or latent variables are retained when
performing PCR or PLS, the two methods are equivalent
to MLR. It is primarily the difference in emphasis placed
on variation in the input data compared to covariance
between the inputs and the output that distinguishes the
various techniques. A mathematical framework for
unifying these techniques will be introduced in the next
section.

3 CONTINUUM REGRESSION
Stone and Brooks (1990) and Wise and Ricker (1993)
have demonstrated that MLR, PCR and PLS can be
unified under a single framework known as Continuum
Regression. At one extreme of the continuum is PCR, at
the other is MLR, while PLS is in the middle. A
qualitative interpretation of this concept can be obtained

by considering this continuum in terms of the emphasis
that is placed on the variance in the input data, when
compared to the covariance between the inputs and the
outputs. With MLR, only the input-output covariance is
considered when formulating the model (in fact the inputs
are regarded as independent).With PCR, a model is
developed between the output and the significant
principal components. These components represent the
most important variations in the input data, but their
covariance with the output is not necessarily maximised.
While with PLS, a compromise between MLR and PCR is
obtained by consideration of both the correlation in the
input data and input-output covariance. CR allows a
smooth transition between these techniques.

What is the CR algorithm ?
The CR algorithm proposed by Wise and Ricker (1993),
first creates a transformed data set by applying a
sophisticated scaling technique to the input data. This
effectively ‘warps’ the input space to place either more or
less emphasis on existing correlations (depending on a
factor to be referred to as the ‘continuum coefficient’).
PLS (using NIPLAS, as outlined in Section 2) is then
performed on the transformed data set.

The first step in transforming the input data is to
decompose X using the singular value decomposition
(SVD) as,

X = UΣVT (7)

where U is an (n x n) matrix of the eigenvectors of XXT

and V is an (m x m) matrix of the eigenvectors of the data
correlation matrix, XTX. The diagonal elements of the (n
x m) matrix Σ are the positive square roots of the
eigenvalues of XTX and are called the singular values (all
other elements of Σ are zero). A modified X matrix, (Xµ )
is then formed as,

Xµ = UΣµVT (8)

where the matrix Σµ is the singular values raised to the
power µ (0 ≤ µ ≤ ∞). Where µ will be referred to as the
continuum coefficient. The standard NIPALS algorithm is
then applied to Xµ  and y, giving a final model of the
following form,
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In a similar manner to Equation 4, this can be converted
into a form that is equivalent to Equation 2 as follows,
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What is the qualitative interpretation of the continuum
coefficient ?
µ → 0 CR tends towards MLR.

µ = 1 CR is equivalent to PLS.

µ → ∞ CR tends towards PCR.



4 NON-LINEAR CR USING GP
Two approaches for combining GP and CR to create a
non-linear CR algorithm are proposed. The first evolves
inner models sequentially, while the second evolves a
team of inner models simultaneously.

What is the ‘sequential algorithm’ ?
The ‘sequential’ non-linear CR algorithm performs a GP
run each time a non-linear inner model is required (ie. at
each iteration of the latent variable loop). The
mathematical details of the algorithm can be found in
Appendix 1. At Step 8, a standard GP algorithm
minimises the cost function ‘J’, by judicius choice of non-
linear function, fi(.). The optimal continuum coeficient (µ)
is obtained by an outer loop that performs a
unidimensional search using Brent’s method (Press et al.,
1992).

What is the‘team-based’ algorithm ?
Rather than perform a GP run each time a non-linear inner
model is required, it is possible to evolve a team of inner
models simultaneously using a multi-population GP
algorithm. Each team is composed of Np individuals (each
an inner model), drawn from Np separate populations {P1,
… , PNp}. Team members are assigned specific tasks,
based on the population from which they are drawn (eg.
Members of population P1 are assigned the task of
developing an inner model between the first latent vector
pair, while population Pj contains candidates for the j’th
inner model). In this manner, a team of non-linear
functions {f1(.), … ,fNp(.)}.are evolved to minimise the
overall model prediction error (e in Equation 1).

Fitness is calculated on a team basis. The fitness of a team
is determined by implementing the CR algorithm given in
Appendix 1 (using the inner models defined by the given
team). For the i’th latent variable pair, at Step 8, the team

member corresponding to the i’th inner model is
evaluated . Each individual in a team is then assigned the
teams fitness.

Each population is homogenous (ie. only individuals from
the same populations can be crossed over). The crossover
strategy employed does not maintain the integrity of
teams (ie. it is non-cohesive). The various populations are
treated independently when selecting individuals for
crossover (rather than crossing over complete teams).

Prior to fitness evaluation, a teams continuum coefficient
(µ) was determined in one of two ways. Either, µ was
optimised using Brent’s method (with a probability of
0.1), or a random Gaussian perturbation was made to the
value of µ associated with the fittest team of the previous
generation. This perturbed value of µ was then used to
evaluate the teams fitness.

5 CONFIGURATION OF THE
GP ALGORITHMS

Table 1 shows the values of the most important GP
algorithm control parameters, as well as a summary of the
terminal and function sets used. It may be noted that the
‘team-based’ algorithm used a significantly larger
population than the ‘sequential’. However, as the
sequential algorithm was employing a parameter
optimiser (Levenberg-Marquardt non-linear least
squares), the sequential algorithm actually processed
twice as many individuals per run.

6 EXPERIMENTAL METHOD
For all of the results presented, the Root Mean Square
(RMS) error between the actual and predicted output was
calculated based on an ‘unseen’ (or test) data set. This test
set is used to verify the generalisation of the model. Due
to the stochastic nature of the GP algorithm, using it on
anything but the simplest of systems produces different
results for every run. Therefore, in order to investigate the
performance of a GP-based algorithm for model building
multiple runs were performed for each technique.

7 MODELLING A FOOD EXTRUSION
PROCESS

As described in Elsey et al (1997), the parameters of this
simulated process have been fitted to plant data obtained
from a pilot-scale APV Baker MPF 40 cooking extruder,
processing a mixture of corn flour and water. Given the
screw speed, feed rate, feed moisture content, feed
temperature and barrel temperature profile, the model
calculates the degree of gelatinisation of the product. This
was selected as the process output of interest in these
studies. Therefore, the terminal set for this system
consists of four variables, screw speed, feed rate, feed
moisture content and feed temperature. Four hundred
steady-state readings were available for modelling. This
data was split evenly with the first 200 points being used

Sequential Team-Based
Function Set +, -, /, *, protected ^, protected

√, exp(), protected ln(), tanh()
Terminal Set ti ,constants {t1, … tm,}

,constants
Output: A single inner

model for the
i’th latent

variable pair.

A team of NP

inner models.

Population Size: 40 500
Fitness function Linear ranking
Crossover Probability 0.7
Mutation Probability: 0.2
Direct Reproduction
Probability

0.1

Proportion of elite
individuals retained:

0.1

Termination criterion 40 Gens. 60 Gens.
Parameter optimisation Yes No
Total # of runs 20
Average # individuals
processed per run:

5.0x105 2.5x105

Table 1: Configuration of the GP Algorithms



to train the models and the remaining 200 points reserved
for testing.

This data set has become our benchmark example for
comparing non-linear modelling techniques. A selection
of pertinent results are presented in Table 2. These results
demonstrate that standard GP performs poorly when
compared to a feedforward neural network (FANN). This
led to the development of two GP-based non-linear PLS
algorithms.

The first, GP_PLS1 (the so called ‘quick and dirty’
approach), is equivalent to the ‘sequential’ algorithm
presented in this paper, when the continuum coefficient is
set to one. While the second, GP_PLS2, demonstrated
that optimisation of the input projection weights (wi) can
be beneficial in reducing the model prediction errors. This
is because, in linear PLS the wi is calculated to achieve
maximum ‘linear’ covariance between ti and ui even
though the inner models are in fact non-linear. Therefore,
for a given non-linear function, wi may not correspond to
the direction that produces the best approximation of ui.
Hiden et al. (1998) demonstrated that GP_PLS2 could
produce results of comparable accuracy to a FANN.
However, it was concluded that optimising wi was an
unacceptable computational burden (especially with
increasing numbers of input variables), limiting the
application of the algorithm. As such, in this work no
attempt was made to optimise the input projection
weights.

Figure 1 shows a comparison of the RMS error
distributions obtained using the ‘sequential’ and ‘team-
based’ algorithms (while Table 3 summarises the average

and best RMS errors). It may be noted that the
‘sequential’ algorithm outperforms GP_PLS1. This is
because the optimisation of µ has a similar effect to
optimising the input weights wi (in that it changes the
projection of the input data in an attempt to maximise the
model fit). However, as there is only one continuum
coefficient (as compared to wi which is an (m x 1) vector,
where m is the number of input variables) the
optimisation problem becomes more tractable.

It is also apparent that the ‘team-based’ approach
produces significantly lower RMS errors on the test set,
compared to the ‘sequential’ algorithm. This is despite the
fact that the sequential algorithm processed more
individuals (as shown in Table 1).

The ‘sequential’ algorithm finds the best fit for each latent
variable pair in turn. This procedure effectively constrains
the type of solutions the algorithm will find. While
resulting in good local solutions at each step, it is
conjectured that it may be prone to being trapped in local
minima. In comparison, the ‘team-based’ algorithm
‘optimises’ all of the inner models simultaneously. As
Fitness is calculated on a team-basis, this allows a trade-
off between team member contributions to the overall
fitness measure. This provides the potential for escape
from local minima and the possibility of obtaining a more
global optimum. The best set of inner models obtained
using the ‘team-based’ algorithm are given by Equations
11, 12, and 13,

u1 = 2.61 exp(tanh(tanh(exp(4t1)))) - 4.58 (11)
u2 = 0.0498 (|tanh(t2)| 

| t2| + (2 t2 - 0.0474)/exp(t2) 
+ u1 - 0.0503 t2

2) – 0.0196
(12)

u3 = 0.180 (t3 – 0.0381) tanh(2t3) – 0.0352 (13)

8 CONCLUSIONS
The food extrusion benchmark example shows that non-
linear CR using GP gives superior performance to a
similar implementation of non-linear PLS. More
specifically, the ‘sequential’ non-linear CR algorithm
outperforms GP_PLS1 of Hiden et al.(1998). It is
conjectured that this is because the optimisation of µ has a
similar effect to optimising the input projection weights
wi. Both change the projection of the input data in an
attempt to maximise the model fit. However, optimising
the continuum coefficient is less computationally
intensive than optimising wi (which is an (m x 1) vector,
where m is the number of input variables).

The case study also demonstrates the effectiveness of the
‘team-based’ approach to non-linear CR, as compared to
the ‘sequential’ algorithm. By finding the best fit for each
latent variable pair in turn, the ‘sequential’ technique
effectively constrains the type of solutions the algorithm
will find. While concentrating on achieving good inner
models at each step, it may be prone to being trapped in
local minima. By optimising all of the inner models
simultaneously, the ‘team-based’ algorithm allows trade-
offs between individuals contributions to the overall team
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Figure 1: Model error distributions on the cooking
extruder data.

Method Mean
Test
RMS

Min.
Test
RMS

Source

FANN 0.031 0.024 McKay (1997)
Standard GP 0.280 0.188 Hiden(1998)
PLS - Linear
GP_PLS1
GP_PLS2

0.925
0.049
0.022

0.925
0.044
0.017

Hiden et al.
(1998)

Table 2: Summary of prior modelling work on the
cooking extruder data.

Method Mean
Test
RMS

Min.
Test
RMS

µ
Best

Model

NLV

Best
Model

‘Sequential’ 0.0354 0.0316 1.09 3
‘Team-Based’ 0.0252 0.0243 0.61 3

Table 3: Results for the ‘sequential’ and ‘team-based’
algorithms on the cooking extruder data.



fitness. This may allow the evolution of a more ‘globally’
optimal solution.

As explained in Section 4, the ‘team-based’ algorithm
employs a non-cohesive reproduction strategy. This
means that teams are broken up during reproduction (ie
the integrity of the team is not maintained). If only one
type of team strategy is going to work (ie. if there is only
one ‘good’ way of performing each task), then disrupting
the integrity of the teams will probably not have a
detrimental effect. While we believe that the non-linear
CR modelling task is an example of such a system (where
the form of each inner model, and hence the task of each
team member, is largely dictated by the data set), future
work will examine the effect of implementing a cohesive
crossover strategy.

As noted in Section 7, the ‘team-based’ non-linear CR
algorithm does not outperform GP_PLS2, the weight
optimised non-linear PLS algorithm of Hiden et al.,
(1998). However, it was considered that optimising the
projection weights was currently an unacceptable
computational burden. As such, finding an improved
method of implementing the input weight optimisation
will be a focus of future work.

9 REFERENCES
Elsey, J. Riepenhausen, J. McKay, B., Barton, G.W. and Willis,

M.J., (1997), ‘Modelling and Control of a Food Extrusion
Process’, Computers and Chemical Engineering, Vol. S21,
pp S361-S366.

Geladi, P. and Kowalski, B.R. (1986), ‘Partial least squares
regression: A tutorial’, Analytica Chimica Acta, Vol.185,
pp.1-17.

Hiden, H.G. (1998), Data-Based Modelling using Genetic
Programming, PhD Thesis, Dept. Chemical and Process
Engineering, University of Newcastle, UK.

Hiden, H.G., McKay, B., Willis, M.J. and Montague, G.A.
(1998) ‘Non-linear partial least squares using genetic
programming’, Proc. 3rd Annual Conf. On Genetic

Programming, University of Wisconsin, Maddison, USA.
July 22-25th., pp.128-133.

McKay, B., (1997), Studies in Data-Based Modelling, PhD
Thesis, Dept.Chemical Engineering, The University of
Sydney, Australia.

McKay, B., Willis, M.J. and Barton, G.W., (1997), ‘Steady-state
modelling of chemical process systems using genetic
programming’, Computers and Chemical Engineering,
Vol.21, No.9, pp.981-996.

Pearson, K., (1901), ‘On lines and planes of closest fit to
systems of points in space’, Phil. Mag., Ser.6, 2(11),
pp.559-572.

Press, W.H., Flannery, B.P., Teukolsky, S.A and Vetterling,
W.T., (1992), Numerical Recipes in C: The Art of
Scientific Computing, 2nd Ed, Cambridge University
Press, USA.

Stone and Brooks (1990), ‘Continuum regression: Cross-
validated sequentially constructed prediction embracing
ordinary least squares, partial least squares, and principal
components regression’, J.R.Statist. Soc., B,52, pp.337-
369.

Wise, B.M. and Ricker, N.L. (1993) ‘Identification of finite
impulse response models with continuum regression’,
Journal of Chemometrics, Vol. 7, 1-14.

Wold, S., (1966), ‘Non-linear estimation by iterative least
squares procedures’, Research Papers in Statistics, Ed.
David, F., Wiley, New York, USA.

APPENDIX 1:
Non-Linear Continuum Regression Algorithm
Sequential Algorithm: The algorithm in Table A1 represents a
single function evaluation for a given value of µ. This is called
repeatedly by Brent’s method to optimise µ. Note that a full GP
run is performed at Step 8 to optimise the fit of each inner
model.

Team-Based Algorithm: The algorithm in Table A1is called by
a multi-population GP algorithm as a single fitness evaluation,
for a given team of inner models, and a given µ.

 (1) Mean centre and normalise the input and output data (X and y)
(2) Perform SVD on scaled input data (X)  UΣVT = X (n x n)(n x m)(m x m)
(3) Generate modified input data (Xµ)  Xµ = UΣµVT (n x m) matrix
(4) Set the output latent vector (ui) equal to the output.  ui = y (n x 1) column vector
(5) Calculate weights (wi) that correspond to the direction in

iX with the greatest covariance with ui.
iii uXw T)(= (m x 1) column vector

(6) Normalise wi to unit length
(Note ||.|| refers to the Euclidean Norm)

iii www = (m x 1) column vector

(7) Calculate the latent vector ti which is the projection of 
iX onto

the direction defined by wi.
iii wXt = (n x 1) column vector

(8) Sequential: ( )( )T)(.f)(.f
(.)f

min
iiiiii

i

J
J

tutu −−=
Team-Based: Use supplied fi(.)

(9) Calculate residual matrices T
1 iiii wtXX −=+

)(f1 iiii tyy −=+

(n x m) matrix
(n x 1) column vector

(10) If i < NLV, {Return to Step 5; i = i+1}
(11) Construct the final model

)(fˆ
1

i

N

i
ii

LV

wXy ∑
=

=
(m x 1) column vector

Table A1: The non-linear continuum regression algorithm.


