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Abstract

It is often necessary to extract simple and un-
derstandable rules from databases containing
inconsistent records and/or irrelevant �elds.
In this study we have assessed the feasibil-
ity of using a genetic programming (GP) ap-
proach to extract a single rule to describe
such data. Instead of a tree structure we
use a Reverse Polish (post-�x) representa-
tion. To assess the performance of the GP
algorithm, it is compared to a steepest ascent
hill climber algorithm and C5.0, a commer-
cially available data mining algorithm (Quin-
lan, 1997). On the datasets used, the GP al-
gorithm out-performs both C5.0 and a steep-
est ascent hill climber in the simplicity and,
in most cases, the accuracy of the expressions
produced.

1 INTRODUCTION

The advent of the information age has left us with nu-
merous databases containing data collected from vir-
tually any source you could possibly think of. Due
to the large size of these databases, analysts need to
use automatic techniques to assist them in extracting
useful knowledge from this data. Often the analyst is
looking for relationships between di�erent �elds which
can be used to classify new cases. However, many of
the �elds in the data may not be relevant to the class
of the record and as such are not useful as predictors.
Furthermore, the data may also be inconsistent be-
cause it may contain records that have identical �eld
values and yet are from di�erent classes. The presence
of inconsistent records and/or irrelevant �elds may ob-
scure any relationships between �elds in the data and
therefore hinder the discovery of such relationships.
The techniques used to extract such knowledge must

therefore be able cope with these potential problems
as well as present any knowledge found in a form un-
derstandable to the user.

The process of extracting extract accurate and appli-
cable rules, either directly from the data (Clark and
Niblett, 1989; Holte, 1993) or via the construction de-
cision trees (Breiman et al., 1984; Quinlan, 1986), is
called rule induction. The purpose of this study is
to assess the feasibility of using a genetic program-
ming (GP) approach to extract a single rule from data
containing both inconsistent records (noise) and irrel-
evant �elds. Previous GP approaches to rule induc-
tion have either relied on traditional tree-based deno-
tations (Ryan and Rayward-Smith, 1998) or have used
a crossover operator that requires the child solutions
to be repaired (Freitas, 1997). In this study we em-
ploy a Reverse Polish (post-�x) notation which allows
the solutions represented as strings, which are easier
to manipulate than trees, and permits crossovers to be
performed without the need to repair child solutions.
For simplicity, Boolean data was used in this study,
which allowed the rule to take the form of a Boolean
expression that best describes the relationship between
the predicted class (output �eld) and one or more of
the remaining (input) �elds in the data.

2 A SIMPLE GENETIC

PROGRAMMING ALGORITHM

FOR EXTRACTING BOOLEAN

EXPRESSIONS

We wish to �nd a single Boolean expression that `best'
describes the relationship between the input �elds and
the output �eld in the data. This expression will be in
form �$ �, where � is any combination of the input
�elds using logical operators and � 2 f0; 1g is the value
of the output �eld. We therefore need some way to
represent an expression to support crossover and mu-



tation operations. Since the value of � depends only
on the output �eld we therefore only need to encode
the value of �. Using Reverse Polish (RP) notation
we can specify � as a logical expression without the
need for parentheses to denote the order in which the
expression should be evaluated. So, for example, we
represent (f3_:f1)^f2 by f3f1:_f2^. Furthermore,
any RP encoded logical expression can therefore be
represented by a string of integers, where for example
variables (�elds) f1; f2; : : : ; fp are represented by the
integers 1; 2; : : : ; p and logical operators :, _ and ^,
are represented by the integers, 0, -1 and -2, respec-
tively. For example the RP expression f3f1: _ f2^
would be represented by the integer string 3 1 0 -1 2
-2.

GP operates by producing new (valid) solutions from
old solutions via recombination (crossover) and/or mu-
tation. There are two di�erent approaches to imple-
menting the crossover and mutation operators. In the
�rst approach a crossover or mutation would be al-
lowed at any position in the parent solutions(s). How-
ever, the child solutions(s) from such an operation may
be invalid and if so would need to be repaired before
being allowed in the new population. To avoid the
necessity of repairing the child solutions, the second
approach was used in which a crossover or mutation
was only made at point(s) that produced valid solu-
tion(s). The method used to determine valid crossover
and mutation points was developed from the following
method that was also used to evaluate the RP expres-
sions.

Any expression written in RP notation can be evalu-
ated using a stack in following way (Burge, 1964). The
expression is read from the left to the right and when
a variable is encountered, its value is placed on the
top of the stack. When a logical operator is read, one
or more values are removed from the top of stack and
are used as arguments for the logical operator. The
number of values removed from the stack depend on
the number of arguments the logical operator required
(e.g. one for unary operators and two for binary op-
erators). The value returned by the logical operator is
then placed on the stack. Once the whole expression
has been read, then the value on the top of the stack
is the value of the expression. Hence, the following
properties of stack evaluation can be used to de�ne a
valid RP encoding.

1. Once the whole expression has been evaluated
then there should only be one number left on the
stack and this will be the value of the expression.

2. There should always be at least one number on
the stack after the �rst value has been read.

We can therefore de�ne a valid RP expression as fol-
lows. First let us de�ne the validation function v(xi)
on a single element in the string xi which simply re-
turns the net change in the number of values on the
stack when this element is read during evaluation.
Since our encoding scheme uses negative integers for
the binary operators _ and ^, 0 for the unary operator
:, and integers greater than 0 for variables then

v(xi) =

8<
:

�1 : xi < 0
0 : xi = 0

+1 : xi > 0

The validation function v can now be de�ned recur-
sively for an integer string of size z > 1.

v(x1 x2 : : : xz�1 xz) = v(x1 x2 : : : xz�1) + v(xz)

From the two stack evaluation properties described
above we can now de�ne a valid RP encoding of
a logical expression, represented by the integers
x1 x2 : : : xz , if and only if

1. v(x1 x2 : : : xz) = 1 and

2. v(x1 x2 : : : xi) � 1 8 1 � i � z

Using this de�nition the following theorem was ob-
tained that can be used to determine valid crossover
points.

Theorem 1. Any single-point crossover, represented

by the ordered pair (i; j), between valid parents

pa = (a1 a2 : : : ai ai+1 : : : ay) and
pb = (b1 b2 : : : bj bj+1 : : : bz)
after position i in pa and j in pb will produce valid

children

ca = (a1 a2 : : : ai bj+1 : : : bz) and
cb = (b1 b2 : : : bj aj+1 : : : ay)
if and only if v(a1 a2 : : : ai) = v(b1 b2 : : : bj).

Using this theorem two types of crossovers were im-
plemented: a single-point crossover and a two-point
crossover. A valid single point crossover (i; j) can be
found from the theorem directly, whereas the crossover
points ((i; j); (k; l)) for a two-point crossover were
found by choosing two valid single-point crossovers
(i; j) and (k; l) such that the following conditions ap-
plied.

1. (i � k and j � l) and

2. (i; j) 6= (k; l)

The �rst condition ensured that together the two
crossover pairs produced valid children and the sec-



ond condition ensured that the crossover actually pro-
duced children di�erent from their parents. A two-
point crossover could either be constrained or uncon-
strained. In the constrained crossover an additional
condition was imposed on the values of the crossover
points ((i; j); (k; l)) such that

v(ai+1 ai+2 : : : ak) = v(bj+1 bj+2 : : : bl) = 1

This condition ensured that the central part of each
parent solution exchanged in the crossover formed a
valid expression on its own. By constraining the two-
point crossover in this way, the crossover is simply
exchanging sub-expressions contained within larger
expressions. The constrained two-point crossover
therefore mimics the crossover normally used in GP
(Cramer, 1985; Koza, 1992), where programs (solu-
tions) are normally represented by decision trees and
the crossover operator is performed by exchanging se-
lected sub-trees between parent programs. In contrast,
the unconstrained two-point crossover allows the inter-
change of any elements between the parents, provided
only that the �rst two conditions are obeyed.

Four types of mutation were implemented: `point',
`insertion', `deletion' and `all mutations'. In all four
types, a position i within the solution was chosen at
random and then one of following actions was carried
out, according to the type of the mutation.

Point mutation If the element at position i repre-
sents a �eld then change its value to represent a
di�erent �eld. Otherwise if the element at posi-
tion i represents a ^ or a _ then change its value
to represent a _ or a ^, respectively.

Insert mutation At random choose a logical oper-
ator 2 f^;_;:g and if the operator is a : then
insert a new element to represent a : into the so-
lution at position i. Otherwise, choose a �eld at
random and insert two new elements at position
i to represent the �eld and operator, respectively.

Deletion mutation If the element at position i rep-
resents a : remove it. If the element at position
i represents a ^ or a _ then remove it and the
nearest element to the left that represents a �eld.
If the element at position i represents a �eld then
remove it and the nearest element to the right
that represents either a ^ or a _.

All mutations One of the three mutations described
above was chosen at random and used.

Both the point and insert mutations will always pro-
duce a valid solution. However, the deletion mutation

may produce a solution with one or more : operators
at the beginning of the solution string, which would in-
validate the solution. When this occurred, the string
element(s) representing the : operator was removed
from the beginning of the solution string. The insert
mutation was also used to create valid solutions for the
initial population according to the following protocol.
First, start with a integer string containing a single el-
ement representing any �eld chosen at random. Next,
use the insert mutation to introduce 0-20 element pairs
at random into this string to a valid solution.

The objective of the GP is to �nd a simple Boolean
expression that describes the relationship between the
input �elds and the output �elds of a dataset. As we
are only concerned with �nding a relationship within
the given data and not with �nding a rule to classify
new cases, the performance of the expression was as-
sessed directly from its error rate on the given (train-
ing) data. We therefore want to minimise both the
error rate and the length of the expression. Hence,
the GP algorithm was set to minimise the following
�tness function.

fitness = r + �l (2.1)

where r is the error rate of the expression (expressed
as a percentage), l is the length in string elements re-
quired to encode the expression and � � 0 is a con-
stant that determines the relative importance of the
error rate and the simplicity of the expression. In this
study the value of � was set to 0.01 to ensure that pref-
erence was given to the accuracy of the expression.

The basic GP algorithm used for the analysis was de-
veloped as part of a package of modern heuristic tech-
niques called the Templar framework (Jones, 1998)
and is based on the simple genetic algorithm described
by Goldberg (1989). Solutions were ranked according
to their �tness and selected with probability propor-
tional to this rank. Each pair of selected solutions was
subjected to a crossover operator and then a mutation
operator, with probability de�ned by the crossover
and mutation rates, respectively. Child solutions were
placed in a separate population, which replaced the
orginal population at the end of the generation. In
addition the best solution was always maintained in
the population from one generation to the next. Each
analysis consisted recording the average best solution
from for 5 or 10 separate runs. A population size of 500
solutions was used and the algorithm was stopped af-
ter 50 generations in which there was no improvement
in the best �tness. For each analysis crossover and
mutation rates of 0.3 and 0.8, respectively were used
since these values gave the best results initial trials of
the algorithm on the training data.



3 SEARCHING FOR SIMPLE

BOOLEAN EXPRESSIONS

In order to assess the ability of the GP algorithm to
extract simple Boolean expressions from Boolean data,
four training datasets were constructed that contained
a single output �eld and three, four, �ve or six input
�elds. The value of each input �eld was chosen at
random, with equal probability given to either T or
F . The relationship between the input �elds (I1, I2,
: : : I6) and the output �eld (O) was determined by
one of four Boolean expression described in Table 1.
Each of the datasets contained 100 records and was
named according to the expression they describe. To
assess the ability of GP to cope with irrelevant �elds,
the algorithm was run on datasets that contained 0 to
100 random �elds in addition to the input �elds.

To determine how the presence of inconsistent records
in the data a�ected the performance of the di�erent al-
gorithms, noise was introduced into the output �elds
of the datasets. This noise consisted of 
ipping the
output value in a �xed number of records chosen at
random from a dataset. In this way datasets contain-
ing 5% to 20% inconsistent (noisy) records were con-
structed and the algorithm was run on each dataset.
The performance of the algorithm using di�erent ge-
netic operators was evaluated by comparing its rel-
ative performance using the two di�erent two-point
crossovers (constrained and unconstrained) and two
di�erent mutation operators (point mutation and all
mutations).

The results of the analysis for the 6�elds data are pre-
sented in Figure 1 and suggest that the `all mutations'
operator is more e�ective than the point mutation.
Hence the `all mutations' operator was preferred in the
next analysis. The results also suggest that there is
little di�erence in performance of the algorithm when
using the unconstrained or the constrained crossover
on the 6�elds datasets, containing no noise. However,
when the constrained crossover is used, the algorithm
takes noticeably longer to run than when using the
unconstrained crossover and yet a similar number of
generations are required. This �nding suggests that
constraining the crossover does not a�ect the quality
of the solutions produced, but does increase the time
it takes to reach these solutions. For this reason the
unconstrained crossover was preferred over the con-
strained crossover in the next analysis.

The performance of GP on the 3�elds, 4�elds, 5�elds
and 6�elds datasets described above was compared to
that of the C5.0 algorithm, a commercial data mining
algorithm. C5.0 produced two sets of rules, one for

each of the output values, 0 and 1. Individual rules
that predict the same output value were combined by
conjunction to form a single rule for each output value.
Finally, these rules were also combined to form a sin-
gle expression to cover all of the records in the dataset,
which can then be compared directly with the expres-
sions produced by GP. The expressions produced in
this way were often complex but could be reduced to
simpler expressions. However, the processor time re-
quired for the GP algorithm was 10-100 times longer
than that required to run the C5.0 algorithm.

As an additional control, a steepest ascent hill climber
(HC) algorithm was also run on the same datasets.
This hill climber starts with a random solution cre-
ated using the same method used by the GP algorithm
and tries to improve this solution by trying all possi-
ble neighbourhood move operators on each position in
the solution. These move operators were based on the
point, insertion and deletion mutation operators used
for GP. Since each run of the GP algorithm started
with a population of 500 random solutions, the HC
was run 500 times on each dataset and the best so-
lution was chosen. The results from this analysis are
presented in Table 2.

4 DISCUSSION AND FUTURE

DIRECTION

We have previously demonstrated that GP can be ap-
plied e�ectively to evolve decision trees (Ryan and
Rayward-Smith, 1998) using an algorithm that evolved
new decision trees by exchanging subtrees between the
trees in the population. Furthermore, GP has also
been used to evolve Boolean expressions using tree
based denotations (discussed in Koza, 1992). How-
ever, the aim of this study was to determine the fea-
sibility of using GP with a Reverse Polish representa-
tion, instead of a tree structure, to perform rule in-
duction. In the initial experiments described in this
study the comparison between the unconstrained and
constrained two point crossovers showed that using the
constrained crossover did not improve the performance
of the algorithm but did decrease the average execution
time. Since, the constrained crossover is equivalent to
the crossover used for the tree representation this �nd-
ing suggests that the Reverse Polish representation is
more versatile than trees.

To assess the performance of the GP algorithm on
data containing inconsistent records and/or irrelevant
�elds it was compared with the C5.0 algorithm and
a simple HC algorithm. The results presented in Ta-
ble 2 show that GP outperformed the HC on all of



Table 1: Boolean expressions used in this study

Name Expression

3�elds (I1 ^ I2) _ I3$ O

4�elds ((I1 ^ I2) _ I3) ^ :I4$ O

5�elds ((I1 ^ I2) _ I3) ^ (:I4 _ I5)$ O

6�elds (((I1 ^ (I2 ^ I6)) _ I3) ^ (:I4 _ I5)$ O

Figure 1: Analysis of the e�ect of di�erent crossover and mutation types on the performance of the GP algorithm
run on the 6�elds data. The average �tness is the mean �tness of the best solutions from 5 separate runs and
error bars denote one standard deviation from the mean.

Table 2: Comparison of GP, C5.0 and Hill-climber (HC) techniques on data containing 0%, 5% or 10% noise.
The values indicate the number of additional �elds that can be added, up to a maximum of 100, before the
algorithm was unable to extract the embedded expression. An x denotes that the embedded expression was not
found on these datasets.

noise 3�elds 4�elds 5�elds 6�elds

GP 0% 100 100 100 10
C5.0 0% 100 100 100 100
HC 0% 100 40 100 x

GP 5% 100 100 0 0
C5.0 5% 100 100 x x
HC 5% 0 0 x x

GP 10% 0 20 0 0
C5.0 10% x 5 x x
HC 10% 0 0 x x



the datasets analysed (containing � 10% noise), sug-
gesting that the GP approach was more e�ective than
a greedy local search approach. With the exception
of the 6�elds datasets, GP performed as well as the
C5.0 algorithm on data with no inconsistent �elds (0%
noise). However, when 5% and 10% noise was intro-
duced into the datasets, GP performed equally or bet-
ter than the C5.0 algorithm. Furthermore, in contrast
to the expressions produced by the C5.0 algorithm, the
GP approach produced simple expressions that did not
require further simpli�cation. With 20% noise the em-
bedded Boolean expression provides an upper bound
on the �tness of the optimal solution. In our experi-
ments the GP algorithm was the only algorithm to pro-
duce solutions which were as good or better than this
bound. This result shows that with increased noise
GP is easily the best option.

The results presented in this study suggest that the
GP can extract simpler and in some cases more ac-
curate expressions than the C5.0 algorithm in noisy
data. However, the GP algorithm requires much more
processor time to produce an expression than that re-
quired by C5.0. This �nding is not surprising since for
every new expression produced by GP its �tness must
be calculated by evaluating its performance on each
record of the dataset. Furthermore, GP also requires
signi�cant processor time to �nd valid crossover points
before a crossover can be performed. Hence, reducing
the size of the population or the crossover rate will
decrease the time taken by GP to perform a genera-
tion. Preliminary studies, not reported in this study,
suggest that reducing the size of the population or the
crossover rate produced poorer solutions. We there-
fore need to improve the e�ciency of the evaluation
and crossover procedures.

The performance of many of the solutions in a popu-
lation is likely to be poor, particularly at the start of
the algorithm. The speed of the evaluation procedure
could therefore be increased by determining the �tness
of a solution from only a proportion of the records in
the database at �rst. Only when the solution's �tness
is better than a de�ned threshold �tness, are the re-
maining records used to produce a more accurate mea-
sure of the solution's �tness. Using this method less
processor time would be spent evaluating the �tness of
poor solutions. Since, the time taken to evaluate �t-
ness and to �nd valid crossover points is dependent on
the length of the solutions involved, a further improve-
ment in the speed of the algorithm could be made by
limiting the size of the solutions. The size of a solu-
tion could be limited either by penalising the �tness
of long solutions or by using a pruning procedure to
reduce the length of long solutions.
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