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Abstract

The application of genetic programming to
the evolution of neural networks has been
hindered by the inadequacy of parse trees to
represent oriented graphs, and by the lack of
a good mechanism for encoding the weights.
In this work, a hybrid method is introduced,
where genetic programming evolves a map-
ping function to adapt the weights, whereas
a genetic algorithm-based approach evolves
the architecture. Results on the application
of the new method to the evolution of feed-
forward and recurrent neural networks are re-
ported.

1 Introduction

The training of arti�cial neural networks for a partic-
ular task can be seen as a mapping of the initial set
of random weights into a new set of adapted weights
which solves the problem. That means, the process
of training de�nes a function to map the initial set
of random weights into the correct ones. For exam-
ple, the backpropagation training algorithm [1] is an
attempt to construct such a mapping function iter-
atively. All training algorithms su�er from a num-
ber of problems such as slow convergence, instablil-
ity, get trapped in local minima, etc. Genetic pro-
gramming (GP) has been used to evolve new learning
rules [2, 3], which overcome some of these di�culties.
These approaches seek to evolve new general purpose
training procedures, which are more robust and more
e�cient than existing ones. Unfortunately, learning
procedures always use the same strategy to adapt the
weights, disregarding the fact that the error surfaces
associated with di�erent tasks present completely dif-
ferent features. Attempts to use genetic programming
to evolve the architecture and the weights simultane-
ously [4, 5] have been marred by the fact that parse
trees are not suitable for representing oriented graphs.
Alternatively, GP has been used to evolve rules for

constructing neural networks [6, 7, 8]. However, this
approach imposes constraints on the weights of the
neural network.

In this paper, a new approach is discussed which uses
genetic programming to automatically build a non-
iterative mapping function to adapt the weights. The
function is evolved concurrently to the architecture,
and is tailored to the task at hand. The architecture
and the learning rule are separated in the genotype,
and a crossover operator is de�ned to evolve both parts
simultaneously.

The new approach can be described as follows: each in-
dividual has its own mapping function to compute the
adapted weights from raw weights (biases are treated
as ordinary weights). The process is illustrated in Fig-
ure 1. The individual in Figure 1a has a set of raw
weights which are not suitable to solve a particular
problem. New values are then computed by applying
a mapping function to each raw weight, resulting in
the individual in Figure 1b. The mapping function is
implemented as the parse tree shown in Figure 1c, to
be evolved by genetic programming.

2 Representation

All individuals (genotypes) in the population are struc-
tures which have one part to describe the architecture
of the encoded network, and a second part to represent
the function to map the raw random weights (which
are �xed throughout a run) into the values used to
evaluate the network performance (see Figure 2). To
evolve the architecture, a modi�ed version of the two-
dimensional representation introduced in our previous
work [9, 10, 11, 12] was used. The structure of the net-
work is encoded as an ordered list of nodes, where each
node may be of two types: terminal or neuron. In the
�rst case, the node is a variable containing an input to
the network. In the second case, the node represents
a processing element of the encoded network. When
the node is a neuron, it is encoded as a list of the
incoming connections, represented by indexes, which
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Figure 1: Conversion of raw weights into adapted ones.
(a) Network with raw weights (values in the circles are also
weights representing biases). (b) Network with adapted
weights. (c) Parse tree encoding the mapping function.

indicate the positions (in the list of nodes) of the con-
nected nodes. All individuals in the population have
the same number of nodes. (but not of neurons, see
below).

To apply the crossover operator (see Section 3), the
linear representation just described is interpreted as
a two-dimensional arrangement of columns and layers
(grid). The nodes are mapped onto the grid according
to a description table, which de�nes the number of lay-
ers and the number of nodes per layer. All individuals
in the population use the same table. It is a feature of
the population, and is not included in the genotype.
The layers and columns of the grid are treated as cir-
cular entities, leading to a toroidal grid (the reason
for this design will become clear in the description of
the crossover operator). For example, by using the de-
scription table in Figure 3b, the individual in Figure 3a
is interpreted as the two-dimensional representation in
Figure 3c, where connections are indicated by links be-
tween nodes.

The nodes in the �rst layer (input layer) are necessarily
terminals representing input to the network, whereas
the nodes in the last layer (output layer) are necessar-
ily neurons, returning the output of the network. The
number of input and output nodes depends on the
problem to be tackled. The remaining nodes, called
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Figure 2: Genotype divided into two parts. (a) First part
represents the architecture. (b) Second part is a parse tree
to encode the mapping function. R1 and R2 are random
constants.

internal nodes, constitute the internal layer(s), and
they may be either neurons or terminals. As a conse-
quence, networks of di�erent sizes may be represented,
since terminals may be present as internal nodes from
the beginning, or may be introduced by crossover and
mutation. To visualize the actual network encoded in
the genotype, connections from terminals in the inter-
nal layer can be replaced (and the corresponding ter-
minals removed) with connections from corresponding
terminals in the input layer. Subsequently, multiple
connections from the same node can be merged into a
single one, by adding up their weights (see Figures 3c
and d).

The grid representation is very similar to the network,
and no decoding procedure is necessary to compute its
output. The transformation from genotype to network
presented in Figures 3c and 3d is only for visualization
purposes. The output of the network can be directly
obtained by assigning input values to the terminals,
and evaluating the neurons according to their position
in the list of nodes.

To assign weights and biases to the architecture, a sin-
gle ordered list of raw weights is created in the begin-
ning of the evolutionary process, as if all nodes (includ-
ing those occupied by terminals) were interconnected
with the maximum allowed connectivity (feedforward
or recurrent). The list also includes raw weights rep-
resenting biases for all nodes (even for those nodes
occasionally occupied by terminals). The set of raw
weights is �xed and unique, it is a characteristic of the
population. It is used to assign the same raw weights
and biases to the connections and neurons of all in-
dividuals of the population during �tness evaluation.
For each neuron, this is performed by reading the in-
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Figure 3: (a) Example of the architecture part of the geno-
type. Variables X1 and X2 are terminals representing in-
put to the network. (b) The table describing the number
of layers and the number of nodes per layer of the grid.
(c) The two-dimensional representation resulting from the
mapping of the nodes in (a), according to the description
table in (b). (d) Corresponding network after merging the
connections between node 5 and 6, with the connection
from node 1 to 6, by adding up their weights and removing
node 5.

dexes of the connected nodes, and picking up the cor-
responding connection weights and biases from the list
of raw weights. Afterwards, the mapping function is
applied to these raw values, to compute adapted ones.

To de�ne the parse tree in the second part of the geno-
type, a set of terminals (not to be confused with the
set of terminals used to de�ne the architecture in the
�rst part of the genotype) and a set of functions is
de�ned. The set of terminals includes a variable rep-
resenting the weight which the function is applied to,
and also a variable which is used to initialize random
constants when the individuals of the initial popula-
tion are created (when a parse tree is initially created,
the terminals which contain this variable are randomly
initialized with real-valued constants). The complex-
ity of the mapping function may depend on the di-
versity of the adapted weights but, in principle, it is
independent of the size of the network.

3 Crossover operator

To evolve both parts of the genotype simultaneously, a
combined crossover operator is de�ned. Firstly, recom-
bination of the architectures of both parents is carried
out. Secondly, the parse trees de�ning the mapping
functions of both parents are recombined.

The architectures of the parent genotypes are recom-
bined by selecting a node a in the �rst parent and
a node b in the second parent, and replacing node a
with node b in a copy of the �rst parent (the o�spring).
Depending on the types of node a and node b, the re-
placement is carried out as follows:

Both nodes are terminals: This is the simplest
case, node b replaces node a, and there is no
change either in the topology or in the weights
of the network.

Node b is a terminal and node a is a neuron:
In this case, node b also replaces node a, but the
complexity of the network is reduced, because a
neuron is removed from the network.

Node b is a neuron and node a is a terminal:
In this situation, the crossover operation increases
the complexity of the network, by replacing a ter-
minal with a neuron and increasing the number
of hidden neurons in the network. Before node b
replaces node a in the o�spring, each of its connec-
tions is analyzed and possibly modi�ed, depend-
ing on whether they are connections from termi-
nals or neurons.

� If the connection is from a neuron, the index
of the connected node in the list describing
node b is not modi�ed. That means, the con-
nection will still be from the same node after
node b replaces node a in the o�spring.

� If the connection is from a terminal, the index
is modi�ed to point to another node, as if the
connection had been rigidly translated from
node b to node a. That means, the same hor-
izontal and vertical displacement that exists
between nodes a and b is applied to trans-
late horizontally and vertically each incom-
ing connection of node b. For example, in
Figure 4, node a is one layer below and one
column to the right of node b. Consequently,
the connection between node 10 and node b is
transformed into a connection between node
7 and node b (see Figures 4b and c). Should
the rigid translation of the connection lead
to point to an non-existent node outside the
limits of the layer or column, the index of
the connected node is modi�ed as if the con-
nection had been wrapped around the layer
or column. For instance, the connection be-
tween node 8 and node b is transformed into



a connection between node 1 and node b (Fig-
ures 4b and c).

Here a distinction between recurrent and feedfor-
ward connectivity must be made. After the trans-
formation of connections in node b, loops might be
created in the o�spring. If a feedforward architec-
ture is desired, backward connections are deleted.

This procedure for connection inheritance aims at
preserving as much as possible the information
present in the connections.

Both nodes are neurons: After modifying node b
as in the previous case, node b and node a
are combined by selecting two random crossover
points, one in each node, and replacing the con-
nections to the right of the crossover point in node
a with those to the right of the crossover point in
node b, thus creating a new node to replace node
a in the o�spring. This process can easily create
multiple connections between the same two nodes.
These connections are deleted before the replace-
ment of node a in the o�spring (see Figure 5).
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Figure 4: (a) Two-dimensional representation of the par-
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Figure 5: Combination of two neurons. (a) Node a. (b)
Modi�ed node b. (c) New node created by crossover with
multiple connections. (d) Multiple connections deleted
from the new node, to replace node a in the o�spring.

Once the recombination of the architectures is com-
plete, a standard genetic programming crossover of the
parse trees representing the mapping functions is per-
formed by replacing a random subtree in the second
part of the �rst parent with a random subtree selected
from the second part of the second parent. To prevent
the excessive growth of the parse trees, a maximum
depth is speci�ed, and the selection of the subtrees for
swapping is carried out according to this constraint.
A bias is also introduced to favor functions in the se-
lection of the roots of the subtrees for crossover [4].
In addition, two terminals representing the variables
are never selected as subtrees for crossover, since they
encode the same weight.

4 Experimental results

In the experiments described in this section, all indi-
viduals were initialized with 10 internal nodes in a sin-
gle internal layer. Initially, no terminals were present
in the internal layer. The raw weights were randomly
initialized within the range [-1.0, +1.0]. All individuals
in the initial population were initialized with random
connectivity. However, it was assured that each node
was directly or indirectly connected to the input and
output layers. The mean square error of the output of
the network for all input patterns was used as �tness
function. A threshold activation function was used,

f(x) =
n
+1 if x � 0
�1 otherwise

. Moreover, the following ad-

ditional conditions were applied to the parse trees:

� Parse trees initialized by the ramped half-and-half
procedure [4]. Maximum depth = 8.

� Fraction of random constants included as termi-
nals: 25%. This means that, on the average, when
a parse tree was created, the variable represent-
ing a weight was assigned to 75% of its terminals,
and the remaining 25% of the terminals were ran-
domly initialized with real-valued constants.

� The roots of the subtrees for crossover were se-
lected using a probability distribution which allo-
cated 80% of the crossover points to the internal
nodes of the parse trees and 20% to the terminals.



Table 1: Summary of the results on the binary classi�cation problems.
TASK GEN (�) NEURONS CONNECTIONS EFFORT

min avg max � min avg max �

2 parity (XOR) 4.1 (8.5) 2 8.9 10 1.7 7 32.6 42 7.6 3,000
3 parity 56.0 (74.5) 1 7.8 10 1.8 7 34.6 57 8.6 33,600
4 parity 277.0 (191.7) 3 6.9 10 1.8 21 38.8 57 9.8 224,000
5 parity 406.9 (166.7) 2 4.8 9 2.1 16 31.2 57 11.6 481,600
Symmetry 348.1 (193.8) 5 7.5 10 1.4 24 37.5 48 7.3 248,000
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Figure 6: Typical solution to the odd-3 parity problem. (a) With raw weights. (b) With values adapted by the function
in Figure 8.
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Figure 7: Decoded network for the odd-3 parity problem
obtained by replacing connections from terminals in the
internal layer (and removing the terminals) with connec-
tions from corresponding terminals in the input layer, and
merging the resulting multiple connections by adding up
their weights.

� Function set for the internal nodes of the parse
trees: [ * , - , + , PDIV ], where PDIV stands for
protected division (returns the numerator if the
denominator is zero).
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Figure 8: Parse tree representation of the evolved mapping
function for the solution to the odd-3 parity problem.

4.1 Binary classi�cation problems

The performance of the method proposed was initially
tested on a suite of standard benchmark problems
present in the literature: the odd-n parity problems,
and the 4-symmetry problem (the network is required
to classify a 4 bits input bitstring as symmetric around
its center or not).



In these experiments, a population of 200 individuals
was evolved for a maximum of 500 generations. For
each problem, 50 runs were performed with di�erent
random seeds. A summary of the results obtained is
shown in Table 1. Column 2 represents the average
number of generations (standard deviation in brack-
ets). Columns 3, 4, 5 and 6 show the minimum, av-
erage, maximum and standard deviation for the num-
ber of neurons of the networks evolved, respectively.
Columns 7, 8, 9 and 10 give the minimum, average,
maximum and standard deviation for the number of
connections of the networks evolved, respectively. Col-
umn 11 shows the minimal computational e�ort, i.e.
the minimal number of �tness evaluations necessary
to obtain a solution with 99% probability in repeated
runs [4]. These results compare favourably with those
reported in the evolutionary computation literature in
terms of the number of generations and the computa-
tional e�ort to �nd a solution. For example, to solve
the XOR problem, the following numbers of genera-
tions have been reported: 90 [13], 50 [14], 22 [15]. Koza
[4] reports e�orts of 80,000, 912,000 and 7,840,000, for
the even 3-parity, odd-4 parity, and even-5 parity prob-
lems, respectively.

A typical solution to the odd-3 parity problem illus-
trates the process of building the network. Firstly, the
weights are read from the list of raw values and as-
signed to the architecture evolved. This results in the
two-dimensional representation in Figure 6a. Subse-
quently, the raw weights are adapted by the mapping
function in Figure 8 evolved simultaneously to the ar-
chitecture, leading to the two-dimensional structure
in Figure 6b. The two-dimensional representation can
then be decoded into the corresponding network shown
in Figure 7.

4.2 Tracker problem

To assess the ability of the method to evolve recurrent
neural networks, it was applied to the complex prob-
lem of �nding a control system for an agent whose
objective is to track and clear a trail. The particular
trail we used, the John Muir trail [16, 17], consists of
89 tiles in a 32x32 toroidal grid.

The tracker starts in the upper left corner, and faces
the �rst position of the trail. The only information
available to the tracker is whether the position ahead
belongs to the trail or not. Based on this informa-
tion, at each time step, the tracker can take 4 possible
actions: wait (doing nothing), move forward (one posi-
tion), turn right 90o (without moving) or turn left 90o

(without moving). When the tracker moves to a posi-
tion of the trail, that position is immediately cleared.
This is a variant of the well known "ant" problem often
studied in the GP literature [4].

Usually, the information to the tracker is given as a
pair of input data [16, 17]: the pair is (1,0) if the po-

sition ahead of the current tracker position belongs
to the trail, and (0,1) if it does not. The objective
is to build a neural network that, at each time step,
receives this information, returns the action to be car-
ried out, and clears the maximum number of positions
in a speci�ed number of time steps (200 in our experi-
ments). As information about where the tracker is on
the trail is not available, it is clear that to solve the
problem the neural network must have some sort of
memory in order to remember its position. As a con-
sequence, a recurrent network is necessary. Although
it might seem to be unnecessary, the wait action allows
the network to update its internal state while staying
at the same position (this can be imagined as "think-
ing" about what to do next).

This problem is very hard to solve in 200 time steps (in
[4], John Koza allotted 400 time steps to follow slightly
di�erent trails using GP). However, it is relatively easy
to �nd solutions able to clear up to 90% of the trail
[16]. This means that the search space has many local
minima which mislead evolution [18].

We used asymmetric recurrent neural networks to
solve the problem. A neuron can receive connections
from any other neuron (including output neurons). All
neurons are evaluated synchronously as a function of
the output of the neurons in the previous time step
(initially all neurons have null output), and of the cur-
rent input to the network. A population of 100 indi-
viduals was evolved for a maximum of 500 generations.
The �tness of an individual was measured by the num-
ber of trail positions cleared in 200 time steps.

In 20 independent runs a solution with 6 hidden neu-
rons and 48 connections was found (see Figure 9),
amounting to a computational e�ort of 8,766,000. The
solution cleared the entire trail in 199 time steps. It is
interesting to note that the solution did not make use
of either the turn left or the wait options to traverse
the trail. The average number of positions cleared by
the best individuals evolved in the speci�ed maximum
number of generations was 80.4 with a standard de-
viation of 6.6. By assigning additional time steps to
the best individuals evolved, in 50% of the runs other
networks were also able to clear the trail in less than
290 time steps.

These are very promising results. For comparison, [16]
reports a solution with 5 hidden neurons, which clears
the trail in 200 time steps. The solution is a hand-
crafted architecture trained by genetic algorithms us-
ing a huge population (65,536 individuals). Using
an evolutionary programming approach, [17] reports a
network with 9 hidden neurons, evolved in 2,090 gen-
erations (population of 100 individuals). The network
clears 81 positions in 200 time steps and takes addi-
tional 119 ones to clear the entire trail. The authors
also report another network evolved in 1,595 genera-
tions, which scores 82 positions in 200 time steps.
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o
f
rep

resen
ta
tio

n
.
It

is
p
o
ssib

le
to

d
e�
n
e
a

set
o
f
raw

w
eig

h
ts

in
va
ria

b
le
size

rep
resen

ta
tio

n
s
b
y

co
n
sid

erin
g
th
e
n
u
m
b
er

o
f
n
eu
ro
n
s
o
f
th
e
b
ig
g
est

d
e-

co
d
ed

n
etw

o
rk

in
th
e
in
itia

l
p
o
p
u
la
tio

n
,
a
n
d
th
e
m
a
x
-

im
u
m

n
u
m
b
er

o
f
co
n
n
ectio

n
s
a
llow

ed
b
y
co
n
n
ectiv

ity
co
n
stra

in
ts.

If
in

la
ter

g
en
era

tio
n
s
a
d
d
itio

n
a
l
w
eig

h
ts

a
re

n
ecessa

ry
(b
eca

u
se

th
e
n
etw

o
rk
s
g
et

b
ig
g
er),

n
ew

va
lu
es

ca
n
b
e
in
clu

d
ed

in
th
e
o
rig

in
a
l
set,

w
ith

o
u
t
d
is-

ru
p
tin

g
th
e
q
u
a
lity

o
f
th
e
m
a
p
p
in
g
fu
n
ctio

n
ev
o
lv
ed

so
fa
r.

T
h
is

o
p
en
s
th
e
p
o
ssib

ility
o
f
co
m
b
in
in
g
th
e
w
eig

h
t

m
a
p
p
in
g
a
p
p
ro
a
ch

w
ith

a
n
y
m
eth

o
d
u
sed

to
ev
o
lv
e

th
e
a
rch

itectu
re.

F
o
r
ex
a
m
p
le,

g
ra
m
m
a
r-b

a
sed

m
eth

-
o
d
s
[1
9,
2
0]
co
u
ld

b
en
e�
t
fro

m
th
is
m
ech

a
n
ism

fo
r
en
-

co
d
in
g
th
e
w
eig

h
ts.

In
th
is
ca
se,

th
e
g
en
o
ty
p
e
w
o
u
ld

co
n
sist

o
f
th
e
ru
les

fo
r
g
en
era

tin
g
th
e
a
rch

itectu
re,

a
n
d

a
p
a
rse

tree
to

en
co
d
e
th
e
m
a
p
p
in
g
fu
n
ctio

n
.

T
h
is

w
o
u
ld

so
lv
e
th
e
p
ro
b
lem

th
a
t,
d
u
e
to

rew
ritin

g
m
ech

-
a
n
ism

s,
g
ra
m
m
a
r-b

a
sed

m
eth

o
d
s
im
p
o
se

a
reg

u
la
rity

o
n
th
e
d
istrib

u
tio

n
o
f
w
eig

h
ts

in
th
e
n
etw

o
rk
.
W
ith

th
e
w
eig

h
t
m
a
p
p
in
g
a
p
p
ro
a
ch

th
is
w
o
u
ld

n
o
t
h
a
p
p
en
.

R
eg
u
la
rity,

if
n
ecessa

ry,
w
o
u
ld
b
e
en
co
d
ed

in
th
e
m
a
p
-

p
in
g
fu
n
ctio

n
b
y
th
e
ev
o
lu
tio

n
a
ry

p
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cess.
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C
o
n
c
lu
sio

n
s

In
th
is
p
a
p
er,

a
n
ew

m
eth

o
d
fo
r
th
e
sy
n
th
esis

o
f
feed

-
fo
rw
a
rd

a
n
d
recu

rren
t
n
eu
ra
l
n
etw

o
rk
s
w
a
s
p
resen

ted
.

W
e
u
se
g
en
etic

p
ro
g
ra
m
m
in
g
to
ev
o
lv
e
a
m
a
p
p
in
g
fu
n
c-

tio
n
to

a
d
a
p
t
th
e
w
eig

h
ts
o
f
n
eu
ra
l
n
etw

o
rk
s,
w
h
erea

s
th
e
a
rch

itectu
re

is
ev
o
lv
ed

b
y
a
g
en
etic

a
lg
o
rith

m
-

b
a
sed

m
eth

o
d
.
T
h
e
m
eth

o
d
n
o
t
o
n
ly

h
a
s
g
iv
en

v
ery

p
ro
m
isin

g
resu

lts,
b
u
t
it
a
lso

o
p
en
s
n
ew

p
o
ssib

ilities
fo
r
g
en
etic

p
ro
g
ra
m
m
in
g
in

th
e
ev
o
lu
tio

n
o
f
a
rti�
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l

n
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l
n
etw

o
rk
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o
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d
g
e
m
e
n
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T
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e
a
u
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o
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ish
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a
n
k
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e
m
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o
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e
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E
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(E
v
o
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n
a
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a
n
d
E
m
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en
t
B
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av
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r
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tellig

en
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a
n
d

C
o
m
p
u
ta
tio

n
)
g
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u
p
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r
u
sefu

l
d
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ssio
n
s
a
n
d
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m
-

m
en
ts.

T
h
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resea

rch
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p
a
rtia

lly
su
p
p
o
rted

b
y
C
N
P
q

a
n
d
C
N
E
N
(B
ra
zil).
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