
Evolutionary Discovery of Learning Rules for
Feedforward Neural Networks with Step Activation Function

Amr Radi
School of Computer Science

The University of Birmingham
Birmingham, B15 2TT, UK
A.M.Radi@cs.bham.ac.uk
Phone: +44-121-414-3736

Riccardo Poli
School of Computer Science

The University of Birmingham
Birmingham, B15 2TT, UK

R.Poli@cs.bham.ac.uk
Phone: +44-121-414-3739

Abstract

Neural networks with step activation function
can be very efficient ways of performing non lin-
ear mappings. However, no standard learning
algorithm exists for training this kind of neural
networks. In this work we use Genetic Program-
ming (GP) to discover supervised learning algo-
rithms which can train neural networks with step
activation function. Thanks to GP, a new learning
algorithm has been discovered which has been
shown to provide good performance.

1 INTRODUCTION

Supervised learning algorithms are by far the most fre-
quently used methods to train artificial neural networks
[4]. The Standard BackPropagation (SBP) algorithm rep-
resents a computationally effective method for the training
of multilayer networks which has been applied to a num-
ber of learning tasks in science, engineering, finance and
other disciplines. The SBP learning algorithm has indeed
emerged as the standard algorithm for the training of multi-
layer networks, against which other learning algorithms are
often benchmarked [10, 24]. In the past few years a number
of improvements to SBP have been proposed in the litera-
ture (see [21] for a survey). We will review the SBP rule
and mention some of these improvements in Section 2.

A major drawback of SBP is that it can not train networks
using step activation functions. This kind of networks
are very important for several reasons. Firstly, they can
be implemented very efficiently in software and hardware.
Secondly, they can perform complex non-linear mappings.
Lastly, but perhaps more importantly, historically they have
been the first non-linear neural networks to be studied. Af-
ter their introduction thanks to McCulloch and Pitts [11],
they were studied for a number of years. However, the
study of such networks (and of all neural networks in gen-

eral) was nearly abandoned in the Seventies due to Minsky
and Papert’s book on perceptrons [12], which clearly indi-
cated the limitations of single-layer neural networks with
step activation function. These limitations were due to the
fact at the time learning algorithms were available only
for single-layer networks. For example Rosenblatt’s algo-
rithm [19] could train single layer networks with step ac-
tivation function. The field of neural networks reexpanded
in the Eighties and Nineties thanks to the work of Hopfield
[6] and to the discovery of the Backpropagation algorithm
[20]. However, no-one has been able to overcome the origi-
nal limitation of networks with step activation function: the
lack of a learning algorithm for multi-layer nets.

Finding new learning rules is a very difficult task. Indeed,
a critical analysis of the huge literature on this topic shows
that only a few really novel algorithms which demonstrated
much better performance than SBP have been produced in
the last 10 years [1, 7]. This slow progress has led some
researchers to use optimisation algorithms to explore the
space of the possible learning rules. Given the limited
knowledge of such a space, the tools of choice have been
evolutionary algorithms [23] which, although not optimum
for some domains, offer the broadest possible applicabil-
ity. Very often the strategy adopted has been to use Genetic
Algorithms (GAs) [5] to find the optimum parameters for
prefixed classes of learning rules. The few results obtained
to date are promising. We recall them in Section 3.

GAs require fixing the class of rules that can be explored.
This biases the search and prevents the algorithm from ex-
ploring the much larger space of possible rules. So, in line
with some work by Benjio [1], also summarised in Sec-
tion 3, we decided to use GP [9] as this allows the direct
evolution of symbolic learning rules with their coefficients
(if any) rather than the simpler evolution of parameters for
a fixed learning rule. This paper describes the application
of GP to the discovery of learning rules for both the output
and the hidden layers of neural networks with step activa-
tion function.



We describe our approach in Section 4. Our earlier work
on the evolution of learning rules for neural networks with
continuous activation functions is summarised in the same
section. Section 5 reports the experimental results ob-
tained on three classes of standard benchmark problems:
the parity, the encoder-decoder, and the character recog-
nition problems. We discuss these results and draw some
conclusions in Section 6.

2 BACKPROPAGATION ALGORITHM
AND RECENT IMPROVEMENTS

A multilayer perceptron is a fully connected feed-forward
neural network in which an arbitrary input vector is prop-
agated forward through the network, causing an activation
vector to be produced in the output layer [4]. The network
behaves like a function which maps the input vector onto
an output vector. This function is determined by the con-
nection weights of the net. The objective of SBP is to tune
the weights of the network so that the network performs
the desired input/output mapping. In this section we briefly
recall the basic concepts of multilayer feed-forward neu-
ral networks, the SBP and some of its improvements. The
reader should refer to [21, 18] for more details.

Let uli be theith neuron in thelth layer (the input layer is
the0th layer and the output layer is thekth layer). Letnl
be the number of neurons in thelth layer. The weight of the
connection between neuronulj and neuronul+1i is denoted
bywl

ij . Letfx1; x2; :::; xmg be the set of input patterns that
the network is supposed to learn and letft1; t2; :::; tmg be
the corresponding target output patterns. The pairs (xp,tp)
p = 1; ::;m are called training patterns. Eachxp is anno-
dimensional vector with componentsxip. Eachtp is an
nk-dimensional vector with componentstip.

The outputo0ip of a neuronu0i in the input layer, when pat-
ternxp is presented, coincides with its net inputnet0ip, i.e.

with xip. For the other layers, the net inputnetl+1ip of neu-

ronul+1i (when the input patternxp is presented to the net-
work) is usually computed as follows:

netl+1ip =

nlX
j=1

wl
ijo

l
jp � �l+1i ;

whereoljp, is the output of the neuronulj (usuallyoljp =

f(netljp) with f a non-linear activation-function) and�l+1i

is the bias of neuronul+1i . For the sake of a homogeneous
representation,�i is interpreted as the weight of a connec-
tion to a ’bias unit’ with a constant output 1.

The error"kip for neuronuki of the output layer for the train-
ing pair (xp,tp) is computed as

"kip = tip � okip:

The SBP rule uses these errors to adjust the weights (usu-
ally initialised randomly) in such a way that the error grad-
ually reduce.

The network performance can be assessed using the Total
Sum of Squared (TSS) errors given by the following func-
tion:

E =
1

2

mX
p=1

nkX
i=1

"kip
2
:

The training process stops when the errorE is reduced to
an acceptable level, or when no further improvement is ob-
tained.

In the batched variant of the SBP the updating ofwl
ij in the

sth learning step (often called an ”epoch”) is performed
accordingly to the following equations:

wl
ij(s+ 1) = wl

ij(s) +�wl
ij(s)

�wl
ij(s) = ��l+1ip (s)oljp(s)

where�l+1ip (s) refers to the error signal at neuroni in layer
l + 1 for patternp at epochs, which is the product of the
first derivative of the activation functionf 0 and the error
"l+1ip (s), and� is a parameter called learning rate.

The output of neurons with step activation function is:

oljp = f(netljp) =

�
1 if netljp > 0:5,
0 otherwise.

Since this is not differentiable in 0 and its derivative is 0
elsewhere, the SBP algorithm cannot be used to train net-
works with step activation function.

Many methods of speeding up the SBP algorithm have been
proposed [18, 21, 22, 14]. Rprop is one of the fastest vari-
ation of the SBP algorithm [18, 21, 22]. Rprop stands for
’Resilient backpropagation’. It is a local adaptive learn-
ing scheme, performing supervised batch learning in mul-
tilayer perceptrons. For a detailed discussion see [18]. Al-
though Rprop is considerably faster than SBP, it still suffers
from many problems [3] and, like SBP, it cannot train net-
works with step activation function.

3 PREVIOUS WORK

A considerable amount of work has been done on the evolu-
tion of the weights and/or the topology of neural networks.



See for example [8, 15]. However only a relatively small
amount of work has been reported on the evolution of learn-
ing rules for neural networks. Given the topology of the
network, GAs have been used to find optimum learning
rules. For example, Montana [13] used GAs for training
feedforward networks and created a new method of train-
ing which is similar to SBP. Chalmers [2] applied GAs to
discover supervised learning rules for single-layer neural
networks. He discussed the role of different kinds of con-
nectionist systems and verified the optimality of the Delta
rule, a simpler variant of SBP applicable to single-layer
neural networks [20]. The author noticed that discovering
more complex learning rules like the SBP using GAs is not
easy because either one uses a highly complex genetic cod-
ing, or one uses a simpler coding which allows SBP as a
possibility. In the first case the search space is huge, in the
second case we bias the search using our own prejudices.

All the methods mentioned above are limited as they
choose a fixed number of parameters and a rigid form for
the learning rule. GP has been applied successfully to a
large number of difficult problems like automatic design,
pattern recognition, robotics control, synthesis of neural
networks, symbolic regression, music and picture genera-
tion, etc. GP may be a good way of getting around the lim-
itations inherent to fixed genetic coding which GAs suffer
from. However, only one attempt to use GP to induce new
learning rules for neural networks has been reported before
our own work.

Bengio [1] used GP to find learning rules for neural net-
works with sigmoid activation function. Bengio used the
output of the input neuronoljp, the error of the output neu-

ron"l+1ip and the first derivative of the activation function of
the output neuron as terminals and algebraic operators as
functions for GP. Bengio used a very strong search bias to-
wards a certain class of SBP-like learning rules as only the
ingredients to rediscover the SBP algorithm were used. GP
found a better learning rule compared to the rules discov-
ered by simulated annealing and GAs. However, the new
learning rule suffered from the same problems as SBP, was
only tested on a very specific problem and can not train net-
works with step activation function. We will describe our
approach to discovering learning rules based on GP in the
next section.

4 EVOLUTION OF NEURAL NETWORK
LEARNING RULES WITH GP

Our work is an extension of Bengio’s work with the objec-
tive to explore a larger space of rules using different param-
eters and different rules for the hidden and output layers.
We also want to train networks using step activation func-
tion. Our objective is to obtain rules which are general,

like SBP, fast, stable, and which can work in different con-
ditions. We want to discover learning rules of the following
form:

�wl
ij =

(
F (wl

ij ; o
l
jp; tip; o

l+1
ip ) for the output layer,

F (wl
ij ; o

l
jp; o

l+1
ip ; El+1

ip ) for the hidden layers,

whereoljp is the output of neuronulj when patternp is pre-

sented to the network andEl+1
ip =

P
j w

l+1
ji �l+2jp . So, in

our approach we used two different learning rules one for
the output layer and one for the hidden layers like in the
SBP learning rule. In our previous research [17, 16], GP
was successful in discovering a number of learning rules
for the output and hidden layers of feed-forward neural net-
works with sigmoid activation functions. Among them we
found one which was better than SBP in all problems con-
sidered. This paper extends that work by applying GP to
evolve rules for both the output and hidden layers of net-
works with step activation function.

The tasks that the networks are supposed to learn with each
learning rule in the population are described in the next sec-
tion together with the functions and the terminals used by
GP.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

We considered five problems from the following three
classes which have been widely used in the literature: a) the
’exclusive or’ (XOR) problem and its more general form,
the N-input parity problem with 3 and 4 inputs, b) the fam-
ily of the N-M-N encoder problems which force the net-
work to generalise and to map input patterns into similar
output activations [16], c) the character recognition prob-
lem with 7 inputs representing the state of a 7-segment light
emitting diode (LED) display and 4 outputs which repre-
sent the digits 1 to 9 binary encoded [1].

For the XOR problem, we used a three-layer network con-
sisting of 2 input, 2 hidden, and 1 output neurons. For the
3-input parity problem, we used a three-layer network con-
sisting of 3 input, 3 hidden, and 1 output neurons. For the
4-input parity problem, we used a three-layer network con-
sisting of 4 input, 4 hidden, and 1 output neurons. The
weights were randomly initialised within the range [-1,1].
For the Encoder problems we used a three-layer network
consisting of 10 input, 5 hidden, and 10 output neurons.
For the character recognition problems we used a three-
layer network consisting of 7 input, 10 hidden, and 4 out-
put neurons. The weights were randomly initialised within
the range [0,1].

The fitness of each learning rule was computed after ap-
plying the rule to the XOR problem for 1000 iterations 20



times. Each time the network was initialised with different
random weights. If the rule was able to train the network
(i.e., the network was capable of reproducing correctly all
the patterns in the training set) in at least 1 case, the fitness
of the rule was the number of times (out of 20) the rule
successfully trained the network. If the rule was unable to
train the network in all cases, then the fitness of the rule
wasf = �(Emax �E), whereE is the average TSS error
over the 20 cases (the value ofE is measured at the maxi-
mum number of learning epochs),Emax is a constant such
thatf � 0, and� is factor such thatf < 1. When a rule
was successful on the XOR problem in at least 19 cases, we
also tested the rule on the 3-input parity problem (initialis-
ing the network 20 times with different random weights and
applying the rule for 5000 epochs) to see if the rule would
generalise. The results of these tests were not used in the
fitness function, but were used to later select good rules
which deserved further off-line testing on all the problems
considered (for the 4-input parity, the encoder, and char-
acter recognition problems we used 10000, 500, and 500
epochs, respectively).

GP was run for 30-100 generations with a population
size of 2000-5000 and a crossover probability 0.9. Af-
ter applying crossover, subtree mutation was applied with
a probability of 0.01 to all the population. In these
experiments, GP was allowed to evolve learning rules
for both the output and the hidden layers as in the
SBP but for networks with step activation function. We
used the function setf+;�;�g, and the terminal set
fwl

ij ; o
l
jp; tip; o

l+1
ip ; 0:5; 0:1g for the output layer while for

the hidden layers we usedfwl
ij ; o

l
jp; o

l+1
ip ; El+1

ip ; 0:5; 0:1g.

We used the “full” initialisation method with a maximum
depth of 3 or 5, and tournament selection with a tourna-
ment size of 4. The experiments were performed using our
own neural network and GP simulators. The simulators are
written in POP11 and run on a Digital Alpha machine with
233 MHz processor and on two Sun UltraSPARC 5 and 10
running at 270 and 300 MHz, respectively. In these condi-
tions a GP run takes ten days of CPU time on average.

5.2 RESULTS

In the experiments GP discovered several New Learning
Rules (NLRs). The following are same of these (after man-
ual simplification):

NLRO
1 = �[0:1oljp"

l+1
ip � 0:0005];

NLRH
1 = �[0:11ol+1ip � (0:1�El+1

ip )(oljpo
l+1
ip � oljp)];

NLRO
2 = �[0:1oljp"

l+1
ip � 0:001];

NLRH
2 = �[0:11� (0:01�El+1

ip )(oljpo
l+1
ip � oljp)];

and

NLRO
3 = �[0:1"l+1ip (oljp � 0:5)(oljp � 0:1)];

NLRH
3 = �[(oljp � 0:51)�

((ol+1ip El+1
ip ) + (oljp � 0:1)(El+1

ip + 0:1))];

where"l+1ip = (tip � ol+1ip ) and the superscriptsO andH
refer to the output and hidden layer, respectively.

By testing them on the five problems mentioned above we
obtained the results in Table 1 which indicate the reliability
and efficiency ofNLR1, NLR2 andNLR3 in different
conditions.

In these tests each algorithm was run with the best set of
parameters which we determined empirically. The table re-
ports, for each algorithm, the learning rate�, the minimum,
maximum and mean number of epochs (the period during
which every pattern of the training set is presented once)
which the algorithm needs to converge in 20 independent
attempts to train the network, the number of successes (i.e.
times in which the learning algorithm succeeded in train-
ing the network), and the range of learning rates within
which the algorithm converges with a probability of at least
50%. If the network had not converged within the maxi-
mum number of epochs, the run was declared unsuccess-
ful. It should be noted thatNLR1 is the best rule discov-
ered in our runs since it works for the XOR, 3-parity, 4-
parity, Encoder, and Character Recognition problems con-
verging in 100% of the cases. It should be noted that for
the XOR problem the minimum and maximum number of
epochs required byNLR1 to converge is 3 and 42, re-
spectively. This compares very favourably with the min-
imum and maximum number of epochs required to train an
equivalent network with sigmoid activation function using
SBP (101 and 870, respectively) or SBP with Rprop (12
and 56, respectively)[16]. Indeed the average number of
epochs necessary for convergence with theNLR1 is 15.8
which compares well with the results reported in [16] for
this problem using SBP with Rprop which required on av-
erage 25.9 epochs to converge. Similar performance im-
provements were obtained for the other problems. Also,
the range of learning rates within whichNLR1 converges
is quite large for most problems indicating that the rule is
very stable. The learning rule is also very simple.

By looking at all the learning rules, we can see that each
one includes the term�oljp"

l+1
ip in the output learning rule.

This term is the Delta learning rule. So, the experiments
with GP suggested that a good learning rule for the output
layer of networks with step activation function should in-
clude the Delta learning rule. Table 2 analyses the strategy
used byNLR1 to train the hidden layers.

The strategy is simple to understand considering that in our
tests the variablesoljp represent the inputs to the network.
Let us consider what happens to the connection between
neuronj in the input layer and neuroni in the hidden layer.



Table 1: Performance of the new learning rules discovered
by GP.

XOR(2-input parity)
Learning Epochs Successful

Algorithm � Min Max Mean Runs Range
NLR1 2.35 3 42 15.8 20 [0.25-10]
NLR2 2.35 5 35 15.3 20 [0.15-10]
NLR3 2.35 4 76 28.5 20 [0.15-10]

3-input parity
Learning Epochs Successful

Algorithm � Min Max Mean Runs Range
NLR1 0.95 25 364 147.5 20 [0.15-2.25]
NLR2 0.95 16 266 105.4 20 [0.25-2.25]
NLR3 0.08 26 401 167.6 20 [0.25-1.55]

4-input parity
Learning Epochs Successful

Algorithm � Min Max Mean Runs Range
NLR1 0.42 132 3535 1285.1 20 [0.3-0.5]
NLR2 0.3 353 100002234.8 5 –
NLR3 – 100001000010000 0 [0.005-1]

Encoder
Learning Epochs Successful

Algorithm � Min Max Mean Runs Range
NLR1 0.52 42 305 171.8 20 [0.34-0.82]
NLR2 0.52 17 391 179.9 20 [0.34-0.82]
NLR3 0.505 40 288 123.4 20 [0.45-0.68]

Character recognition
Learning Epochs Successful

Algorithm � Min Max Mean Runs Range
NLR1 0.2 67 398 194.5 20 [0.1-0.36]
NLR2 0.2 25 475 190.7 20 [0.1-0.3]
NLR3 0.28 244 500 387.5 16 [0.28-0.6]

If neuroni is active, the weight will be increased whatever
the state of the input neuron. This means that the learning
rule tries to increase the probability of the hidden neurons
to be active, because only if the hidden neurons are active
the error on neurons in the output layer can be reduced (by
appropriately setting the weights of the output layer). This
in turn causes a reduction of the errors in the hidden layer.
However, this strategy of activating the neurons in the hid-
den layer must be used carefully, since the neurons in the
hidden layer have to transmit information from the input
layer so that the output neurons can make the right deci-
sions. So, they cannot always be on. This is achieved by
the remaining two cases, i.e. when neuroni is inactive.

If no input is present (oljp = 0) and the state of the hidden

neuron is 0 (ol+1ip = 0) there is no reason to change the
connection. In fact, even if there is an error on neuroni,
this could be changed (in future epochs) only by changing
the state of neuroni, which cannot be done sinceoljp = 0.

Table 2: Analysis ofNLR1.

oljp ol+1ip NLRH
1

0 0 0
0 1 0.11�
1 0 �(El+1

ip � 0:1)

1 1 0.11�

The most important case, is when the hidden neuron is in-
active but the input neuron is active. In this case, the rule
considers the error signal on the hidden neuronEl+1

ip . If the
error is smaller than 0.1 (i.e. it is negative or only weakly
positive), then the strength of the connection will be de-
creased. This is to reduce the probability that the hidden
neuron become active. This prevents the hidden neurons
from being always active thus allowing the transmission of
information through the network. However, if the error is
positive and large, then it is better to help this hidden neu-
ron to become active, since this is the only way in which the
error on the output layer can be reduced. The information
to the output neurons will have to be transmitted by some
other hidden neuron.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have applied GP to find supervised learn-
ing rules for the output and hidden layers of multi-layer
neural networks using step activation functions. No rules
exist in the literate to train this kind of neural networks.
GP has discovered a useful way of using the Delta learn-
ing rule (originally developed for single-layer neural net-
works) for the output layer. Also, GP has discovered an
effective learning rule for the hidden layers. These two
learning rules together have performed well on a number
of problems. Whether these rules are general remains to be
seen.

This study indicates that there are efficient supervised
learning algorithms for multilayer neural networks with
step activation function and that GP can do better than hu-
mans at discovering them.

If the rule discovered by GP to train multi-layer neural nets
with step activation function is general, then GP will have
done what neural network researchers have been unable to
do in the last 40 years: it will have continued the research
of the fathers of the field of neural networks, reestablishing
the usefulness and reputation of neural networks with step
activation function.



Acknowledgements

The authors wish to thank the members of the EEBIC group
for useful discussions and comments.

References

[1] S. Bengio, Y. Bengio, and J. Cloutier. Use of ge-
netic programming for the search of a learning rule
for neural networks. InProceedings of the First Con-
ference on Evolutionary Computation,IEEE World
Congress on Computational Intelligence, Orlando-
Florida, USA, pages 324–327, 1994.

[2] D. J. Chalmers. The evolution of learning: An ex-
periment in genetic connectionism. InConnectionist
Models Summer School. San Mateo, CA., 1990.

[3] M. Gori and A. Tesi. On the problem of local min-
ima in backpropagation.IEEE Transactions on PAMI,
14(1):76–86, 1992.

[4] S. Haykin.Neural Networks: A Comprehensive Foun-
dation. IEEE Society Press, Macmillan College Pub-
lishing, New York 10022, 1994.

[5] J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
Michigan, 1975.

[6] J. J. Hopfield. Neural networks and physical sys-
tems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences,
79:2554–2558, 1982.

[7] K. K. John and R. J. Movellan. Fast learning algo-
rithms for neural networks.IEEE Transactions on
Circuits and Systems-II: Analogy and Digital Signal
Processing, 39(7):453–473, 1992.

[8] H. Kitano. Neurogenetic learning: an integrated
method of designing and training neural networks us-
ing genetic algorithms.Physica D, 75:225–238, 1994.

[9] J. Koza.Genetic Programming: on the programming
of computers by means of natural selection. MIT
Press, Cambridge, Massachussetts, 1992.

[10] L.E.Scales.Introduction to non-linear optimization.
New York:Springer-Verlag, 1985.

[11] W. McCulloch and W. Pitts. A logical calculus of
the ideas immanent in nervous activity.Bulletin of
Mathematical Biophysics, 5:115–133, 1943.

[12] M. Minsky and S. Papert. Introduction. InPercep-
trons, pages 1–20, and p,73 (figure 5.1). Cambridge,
MA:MIT Press, 1969.

[13] D. J. Montana and L. Davis. Training feedforaward
neural networks using genetic algorithms. InPro-
ceedings of Eleventh International Joint Conference
on Artificial Intelligence (IJCAI-89), Detroit, MI,
pages 762–767. Morgan Kaufmann, Palo Alto, CA,
1989.

[14] D. L. Prados. New learning algorithm for
training multilayered neural networks that uses
genetic-algorithm techniques.Electronics Letters,
28(16):1560–1561, 1992.

[15] J. Pujol and R. Poli. Evolving the topology and the
weights of neural networks using a dual representa-
tion. Special Issue on Evolutionary Learning of the
Applied Intelligence Journal, 8(1):73–84, 1998.

[16] A. Radi and R. Poli. Discovery of backpropaga-
tion learning rules using genetic programming. In
1998 IEEE International Conference of Evolutionary
Computational (ICEC’98), Anchorage, Alaska, pages
371–375. IEEE, May 1998.

[17] A. Radi and R. Poli. Genetic programming can dis-
cover fast and general learning rules for neural net-
works. InThird Annual Genetic Programming Con-
ference (GP’98), Madison, Wisconsin, pages 314–
323. Morgan Kaufmann, July 1998.

[18] M. Riedmiller. Advanced supervised learning in
multi-layer perceptrons from backpropagation to
adaptive learning algorithms.Computer Standards
and Interfaces Special Issue on Neural Networks,
16(3):265–275, 1994.

[19] F. Rosenblatt. The perceptron: A probabiliistic model
for information storage and organization in the brain.
Psychological Review, 65:386–408, 1958.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Parallel Distributed Processing. MIT Press, Cam-
bridge, MA, 1986.

[21] D. Sarkar. Methods to speed up error back propa-
gation learning algorithm.ACM Computing Surveys,
27(4):519–542, 1995.

[22] W. Schiffmann, M. Joost, and R. Werner. Optimi-
sation of the backpropagation algorithm for training
multilayer perceptrons. Technical report 16/1992,
University of Koblenz, Institute of Physics, 1992.

[23] W. M. Spears, K. A. D. Jong, T. Baeck, D. Fogel, and
H. de Garis. An overview of evolutionary computa-
tion. In Proceedings of the European Conference on
Machine Learning, pages 442–459, 1993.

[24] J. G. Taylor. The Promise of neural networks.
Springer-Verlag, London, 1993.


