Optical Mesh Network Topology Design using Node-Pair Encoding
Genetic Programming

Mark C. Sinclair
Electronic Systems Engineering,
University of Essex,
Colchester, Essex, CO4 35Q, UK

mcs@essex.ac.uk

Abstract

Two variants of a new node-pair encoding ge-
netic programming (GP) approach for optical
mesh network topology design are presented.
In addition, a new variant of the earlier
connected-nodes encoding is described. Ex-
perimental work on 15- and 20-node networks
demonstrates that both GP approaches can
almost match the design quality of bit-string
genetic algorithms, particularly for the larger
network size investigated.

1 INTRODUCTION

Telecommunications is a vital and growing area, im-
portant not only in its own right, but also for the ser-
vice it provides to other areas of human endeavour.
Moreover, there currently seems to be a demand for
an ever-expanding set of telecommunication services of
ever-increasing bandwidth. One particular technology
that has the potential to provide the huge bandwidths
necessary if such broadband services are to be widely
adopted, is multi-wavelength all-optical transport net-
works. However, the development of such networks
presents a challenging range of difficult design and op-
timisation problems.

One such problem is mesh network topology design.
In the general case, this starts with a set of node lo-
cations and a traffic matrix, and determines which
of the node pairs are to be directly connected by a
link. The design is guided by an objective function,
often cost-based, which allows the ‘fitness’ of candi-
date networks to be evaluated. In the more specific
problem of the topology design of multi-wavelength
all-optical transport networks, the nodes would be op-
tical cross-connects, the links optical fibres, and the
traffic static. Suitable routing and dimensioning algo-

rithms must be selected, with sufficient allowance for
restoration paths, to ensure that the network would at
least survive the failure of any single component (node
or link).

In previous papers, Sinclair has applied a simple bit-
string genetic algorithm (GA) (1995), a hybrid GA
(1997) and, with Aiyarak & Saket, three different ge-
netic programming (GP) approaches (1997) to this
problem. In this paper, a new GP approach, inspired
by edge encoding (Luke, 1996), is presented. It was
hoped that this would provide better results than the
best previous GP approach, and perhaps even prove
competitive with GAs. The eventual aim of the au-
thor’s current research into GP encoding schemes for
mesh network topologies is to provide a more scalable
approach than the inherently non-scalable encoding
provided by bit-string GAs.

2 EC FOR TOPOLOGY DESIGN

Over the years, at least 30 papers have been pub-
lished on evolutionary computation (EC) approaches
to network topology design. Two of the earliest
are by Michalewicz (1991) and Kumar et al. (1992).
Michalewicz uses a two-dimensional binary adjacency
matrix representation, and problem-specific versions of
mutation and crossover, to evolve minimum-spanning-
tree topologies for computer networks. Kumar et
al. tackle three constrained computer network topol-
ogy problems, aiming for maximum reliability, min-
imum network diameter or minimum average hop
count. Their GA is bit-string, but uses problem-
specific crossover, as well as a repair operator to cor-
rect for redundancy in their network representation.

For optical network topology design, in addition to the
papers by Sinclair, mentioned above, there is the work
of Paul et al. (1996) and Brittain et al. (1997). Both
these groups of authors have addressed constrained

minimum-cost passive optical network (PON) topol-
ogy design for local access. However, while problem-
specific representations are used by both, as well as
problem-specific genetic operators by Paul et al., only
Brittain et al. provide full details of their algorithm.
This employs a two-part chromosome comprising a bit-
string and a permutation, with each part manipulated
using appropriate standard genetic operators.

Other recent work of interest includes papers by Den-
giz et al. on a hybrid GA for maximum all-terminal
network reliability (1997); Ko et al., who use a
three-stage GA for minimum-cost design of computer
network topology, routing and capacity assignment
(1997); and Pierre & Legault, who employ a bit-string
GA for computer mesh network design (1998).

3 PROBLEM DESCRIPTION

Given the locations of the n nodes (optical cross
connects) and the static traffic requirements between
them, the problem is to determine which of the
n(n — 1)/2 possible bi-directional links (optical fibres)
should be used to construct the network. The number
of possible topologies is thus 2(»=1)/2,

The cost model used to guide the design was first devel-
oped by Sinclair (1995) for minimum-cost topology de-
sign of the European Optical Network (EON) as part
of COST 239. It assumes static two-shortest-node-
disjoint-path routing is used between node pairs, and
that a reliability constraint is employed. The latter is
to ensure that there are two, usually fully-resourced,
node-disjoint routes between node pairs, thereby guar-
anteeing that the network will survive the failure of
any single component. The intention is to approximate
the relative contribution to purchase, installation and
maintenance costs of the different network elements,
while ensuring that the model is not too dependent on
the details of the element designs, nor too complex for
use in the ‘inner loop’ of a design procedure.

4 PREVIOUS APPROACHES

Two previous attempts at optical mesh topology de-
sign using the same cost model are outlined below. An
additional attempt with a hybrid GA (Sinclair, 1997)
has been excluded from consideration due to the highly
problem-specific nature of its encoding and operators.

In 1995, Sinclair used a bit-string GA to tackle two
variants of the EON: a small illustrative problem con-
sisting of just the central 9 nodes, as well as the
full network of 20 nodes. The encoding simply con-
sisted of a bit for each of the n(n —1)/2 possible

links. Clearly, this representation scales poorly as
problem size increases, as the bit string grows O(n?),
rather than only with the number of links actually re-
quired, m, i.e. O(m) ~ O(n) provided node degree re-
mains approximately constant with network size. The
genetic operators were single-point crossover (prob-
ability 0.6) and mutation (probability 0.001); and
fitness-proportionate selection (window-scaling, win-
dow size 5) was used. The GA was generational, al-
though an elitist strategy was employed. For the full
EON, with a population of 100 and ten runs of less
than 48,000 trials each, a network design was obtained
with a cost (at 6.851 x 10°) which was some 5.1% lower
than an earlier hand-crafted design. In addition, the
GA network design was of superior reliability, at least
in terms of the reliability constraint.

More recently, Aiyarak, Saket & Sinclair (1997) de-
scribed three different approaches to applying GP to
the problem. The most successful of these, connected
nodes (CN), encodes the design as a program describ-
ing how the network should be connected. Only one
terminal and one function are required. The terminal
is the ephemeral random integer constant (R), over
the range of n node identification numbers (ids). The
function is con, which takes two arguments, represent-
ing the ids of two nodes that are to be connected in
the network topology represented by the program!. As
each con function must also provide a return value, it
simply returns its first argument. However, if its two
id arguments are equal, it does nothing apart from re-
turning their value. The program tree is evaluated
depth-first: children before parents. For example,
Fig. 1 shows a small target network and Fig. 2 a corre-
sponding ‘hand-crafted’ connected-nodes GP tree. Ex-
ecuting the tree would connect those node pairs indi-
cated above each of the con functions: (4,3), (1,4),
(1,3), etc., resulting in the desired network. Clearly,
with this representation, minimum program size grows
only with the number of links (O(m) =~ O(n)), as only
a single con and at most two terminals are required
for each node pair connected. In (Aiyarak, 1997), the
only genetic operator used was crossover, and tour-
nament selection was employed. Experimental results
were obtained for both the 9 central nodes, as well as
the full EON, establishing the superiority of the CN
approach over the two other GP encoding methods.
In addition, the network design cost obtained with CN
(6.939 x 105) was only some 1% above Sinclair’s earlier
GA result (1995). However, the computational burden
of CN was far greater: the best design was obtained
using two runs of 500,000 trials each on a population
of 1,000 individuals.

n (Aiyarak, 1997), this function was called connect2

(1,3) (2,3) (0.4

(con) (eon’) (oon)

Figure 2: CN Program for Target Network

5 NODE-PAIR ENCODING GP

The two node-pair encoding (NP) GP approaches pro-
posed in this paper are based on an earlier edge encod-
ing for graphs described by Luke & Spector (1996).
Their approach evolved a location-independent topol-
ogy, with both the number of nodes and their intercon-
nections specified by the GP program. Here, however,
the number of nodes is fixed in advance, and the GP
program is only required to specify the links.

As in the CN approach, the program again describes
how the network should be connected. However, for
NP, the program tree is evaluated top-down: children
after parents. The functions operate on a node pair
(represented by two node ids, a and b), then pass
the possibly-modified node-pair to each of their chil-
dren. In a similar way, the terminals simply operate
on the node pair passed to them. Overall execution
of the program tree commences with (a,b) = (0,0).
It should be noted that this use of a current node
pair is similar to the concept of the current edge in
Luke & Spector’s work (1996), but without any struc-
ture equivalent to their node stack.

Two different variants of node-pair encoding are pro-
posed here (NP1 and NP2); the difference is due to the
arities of their functions/terminals. These are given,
for both variants, in Table 1.

The function/terminal add adds a link between the

Table 1: NP Function/Terminal Sets

ARITY
ABBR. NP1 NP2 DESCRIPTION
rev 1 1 reverse: (a,b) = (b,a)
da 1 2 (decrement a) mod n
ia 1 2 (increment a) mod n
ia2 1 2 (increase a by 2) mod n
iad 1 2 (increase a by 4) mod n
ia8 1 2 (increase a by 8) mod n
dbl 2 2 double: pass current node

pair to both children
triple: pass current node
pair to all three children
add link (a,b)

cut link (a,b)

do nothing

tpl 3 3

add 1 0
cut
nop 0 0

o

current node pair (a,b), provided a # b; whereas ter-
minal cut removes the link between the current node
pair, if there is one. To allow the current node pair
to change, thus moving the focus of program execu-
tion to a different point in the network, five of the
functions (da, ia, ia2, ia4, ia8) modify the value of
variable a. The choice of 1, 2, 4 and 8 for the val-
ues by which a may be increased was motivated by
minimum-description length considerations. By pro-
viding the reverse function (rev), similar modifications
can be made, in effect, to variable b. The double (dbl)
and triple (tpl) functions allow operations on node
pairs that are numerically close together to be accom-
plished using a smaller depth of tree. For example, in
Fig. 3, the tpl in the lower left of the diagram, which
refers to node pair (2,1), enables links (2,1), (3,1)
and (4,1) to be added by its subtrees. Without this
tpl, an equivalent subtree based on just adds, ia?s
and nops would be two levels deeper. Finally, termi-
nal nop does nothing to its node pair, thus allowing a
program branch to terminate without either adding or
removing a link.

In NP1, add is a function and has a single child,
whereas in NP2 it is a terminal. Further, in NP1,
the functions that modify variable a all have just one
child, whereas in NP2, they have two. The effect of
these differences is to encourage taller, narrower pro-
gram trees in NP1, with further operations following
the addition of a link, and shallower, broader trees
in NP2, with link addition ending a program branch.
This is illustrated by the ‘hand-crafted’ program trees,
for the target network of Fig. 1, given in Fig. 3 and 4
using NP1 and NP2 respectively. In both diagrams,
the current node pair is indicated above each of the
add function/terminals. It should be noted that the

Figure 4: NP2 Program for Target Network

tree in Fig. 3 has a depth of 10 and uses 28 program
nodes, whereas that in Fig. 3 is only 7 levels deep and
uses just 24 function/terminals.

6 EXPERIMENTAL RESULTS

For the relative assessment of the different approaches
to optical mesh network topology design, it was de-
cided to use the full 20-node EON (Sinclair, 1995)
and five additional network design problems. For the
latter, the initial node locations and traffic require-
ments were generated using the approach described
by Griffith et al. (1996), although further modified to
ensure reasonable node separations. Each network has
15 nodes, covers a 1,000 km x 1,000 km area and car-
ries an overall traffic of 1,500 Gbit/s.

The bit-string GA developed by Sinclair (1995), and

Table 2: GA Parameters

POPULATION MAXIMUM MUTATION

ALG. SIZE TRIALS PROB.
GA1l 100 15,000 0.001
GA2 100 25,000 0.01
GA3 700 210,000 0.001
GA4 100 50,000 0.001
GA5 100 100,000 0.002
Table 3: Results for EON
BEST MEDIAN SIGN. LEVEL
ALG. (x10°) (x10%) (%)
GA4 6.851 6.926 GA5<GA4 —
GA5 6.856 6.891 CN2<CN1 1.15
CN1 6.961 7.002 NP2<NP1 1.15
CN2 6.888 6.930 GA5<CN2 —
NP1 6.898 6.962 GA5<NP2 —
NP2 6.862 6.900 NP2<CN2 —

described in §4 above, is referred to here as GA1 (with
a maximum of 15,000 trials) when used on the five
15-node problems, and as GA4 (with a maximum of
50,000 trials) on the EON (Table 2). In addition, in an
attempt to improve on Sinclair’s results, both a higher
mutation rate and a larger population size were also
tried for both the 15-node problems and the EON.
From a few trials runs, reasonably successful algo-
rithms with a higher mutation rate (GA2) and a larger
population size (GA3) were discovered for the 15-node
problems. Also, for the EON, algorithms with an in-
creased mutation probability of 0.01, and increased
population sizes of 200, 500 and 1,000 (the latter three
still with mutation probability 0.001) were tried, with-
out good results, for runs of up to 1,000,000 trials.
However, a reasonable algorithm was found with mu-
tation probability 0.002 (GAS5).

To allow a statistical comparison of the genetic algo-
rithms, GA1, GA2 and GA3 were applied to all five
15-node test problems, plus GA4 and GA5 to the
EON. In every case, ten runs were made with dif-
ferent pseudo-random number seeds. GENESIS v5.0
(Grefenstette, 1990) was used for the implementation.
A non-parametric median test (Sprent, 1992) was ap-
plied to establish if there were significant differences
in the medians from the different GAs. The results
for the EON are given in Table 3; both the best and
median of each set of runs is recorded, as well as the
significance levels for the median differences.

For the 15-node problems, GA3 is the best algorithm,
providing not only all five of the best individual runs,
but also the best median for four of the problems (with

Table 4: Comparative Results for Problems 1-5

GA3 CN2 NP2 SIGN. LEVEL
BEST MEDIAN BEST MEDIAN BEST MEDIAN (%)
PROB. (x109) (x10%) (x10%) (x10%) (x10°%) (x10%) GA3<CN2 GA3<NP2 NP2<CN2
1 4.935 4.940 4.944 4.959 4.937 4.950 0.05 — —
2 4.737 4.744 4.743 4.750 4.743 4.752 1.15 1.15 —
3 4.404 4.407 4.404 4.416 4.404 4.414 — — —
4 4.587 4.589 4.589 4.597 4.590 4.595 1.15 0.05 —
5 4.416 4.418 4.417 4.428 4.417 4.436 1.15 0.00 —

very highly significant differences). In addition, for
the EON (Table 3), GA5 provided the better median
(not a significant difference) although the best indi-
vidual run still used GA4. However, it should be
noted that both these improvements over Sinclair’s
GA1/GA4 (1995) were achieved at the cost of a larger
number of trials for both network sizes (Table 2).

For the connected-nodes GP approach, the decision
was taken to use a tournament size of 4, rather than
the over-large value of 30 used in previous work (Ai-
yarak, 1997). In addition, as well as Aiyarak et al.’s
original function set, here designated CN1, a second
variant was introduced, CN2. The latter, in addition
to the con function, also provides a dis function. This
takes two node id arguments, and removes the link be-
tween them, if there is one. For the 15-node problems,
the population size was 700 and the maximum num-
ber of trials 210,000; for the EON, 1,000 and 500,000,
respectively (after Aiyarak, 1997). GP parameters are
given in §4 above or followed Koza (1992).

Both CN1 and CN2 were applied to all five 15-node
test problems and the EON. As with the GAs, ten
runs were made with different seeds. The implemen-
tation used 1il-gp v1.02 (Zongker, 1995). The re-
sults for the EON are again given in Table 3. On the
15-node problems, the CN2 connected-nodes encoding
provided the best individual runs in three of the five
networks, and the best median in three (very highly
and highly significant differences). For the EON, CN2
also provided both the best individual run and the best
median (highly significant difference). Thus including
the new dis function, whose role in removing links
may seem counter-intuitive, has resulted in a marked
improvement in the results. This can perhaps be at-
tributed to increased redundancy in the encoding, al-
lowing greater freedom in program tree composition.

For the node-pair encoding GP approach, exactly the
same parameters were used as for the corresponding
CN runs. The results of applying both NP1 and NP2
encodings to the EON are recorded in Table 3. On the
15-node problems, the NP2 node-pair encoding pro-

vided the best individual runs in four of the five net-
works, and the best median in one (highly significant
difference). For the EON, NP2 also provided both
the best individual run and the best median (highly
significant difference). These differences perhaps arise
from the NP2 encoding’s ability to use shallower trees,
giving an advantage in tree composition, as the usual
maximum tree depth of 17 was imposed on all runs
(Koza, 1992).

The results of the three leading approaches, GA3, CN2
and NP2, are summarised in Table 4 for the 15-node
problems, and in Table 3 for the EON. For the smaller
networks, GA3 has shown itself to be the best ap-
proach, both in terms of individual runs and median
differences. Nevertheless, one of the five best indi-
vidual runs were performed using NP2 (Network 3),
and for the other four networks the NP2 results were
very close to those of GA3. For the larger EON, how-
ever, there is no overall best algorithm in terms of
median differences, although both GA5 and NP2 per-
formed well. The best individual run is still that from
(Sinclair, 1995), using GA4. However, execution time
for all the different approaches was almost entirely de-
termined by the number of trials, due to the time-
consuming fitness assessment. Consequently, while all
the runs on the 15-node networks required approxi-
mately the same time, the GP runs on the EON took
some five times longer than the GA.

7 CONCLUSIONS

In this paper two variants (NP1 and NP2) of node-
pair encoding genetic programming (GP) for optical
mesh network topology design have been proposed. In
addition, a new variant (CN2) of the earlier connected-
nodes encoding has been described. Experimental re-
sults have shown that both NP2 and CN2 are compa-
rable in design quality to the best bit-string genetic
algorithms (GA) developed by the author, particu-
larly for the larger network size examined, although
in that case requiring much greater computational ef-

fort. While node-pair encoding has only been applied
to optical network design here, it may also be useful
for graph construction in other applications, such as
the interconnection of artificial neural networks.

Future work with node-pair encoding could include in-
vestigating its sensitivity to the choice of cost model,
starting node pair or GP parameters, such as tree
depth. In addition, the author hopes to develop fur-
ther encodings that are both computationally efficient
and scale well with network size. In particular, it is
anticipated that removing or reducing dependency on
explicit node ids will result in more powerful encod-
ings. Also, for regular or near-regular networks, ADF's
(Koza, 1994) may well provide a mechanism to capture
and succinctly express network regularities.

Acknowledgements

The node-pair encodings used in this paper are based
on an earlier encoding developed by Christos Dimi-
trakakis as part of an MSc in Telecommunication &
Information Systems, supervised by the author.

The author is grateful to Rob Smith (University of the
West of England) and Brian Turton (Cardiff Univer-
sity) for their encouragement to further improve the
bit-string GA results obtained using GA1/GAA4.

References

Aiyarak, P., Saket, A.S. & Sinclair, M.C. (1997),
“Genetic programming approaches for minimum cost
topology optimisation of optical telecommunication
networks”, Proc. 2nd IEE/IEEE Intl. Conf. on Genetic
Algorithms in Engineering Systems: Innovations and
Applications (GALESTA’97), Glasgow, UK, Septem-
ber 1997, pp. 415420

Brittain, D., Williams, J.S. & McMahon, C. (1997),
“A genetic algorithm approach to planning the
telecommunications access network”, Proc. 7th Intl.
Conf. on Genetic Algorithms (ICGA’97), July 1997,
Michigan State University, East Lansing, Michigan,
USA, pp. 623-628

Dengiz, B., Altiparmak, F. & Smith, A.E. (1997), “Lo-
cal search genetic algorithm for optimal design of re-
liable networks”, IEEE Transactions on Evolutionary
Computation v1 n3, pp. 179-188

Grefenstette, J.J. (1990), A User’s Guide to GENE-
SIS, Version 5.0

Griffith, P.S., Proestaki, A. & Sinclair, M.C. (1996),
“Heuristic topological design of low-cost optical
telecommunication networks”, Proc. 12th UK Per-
formance Engineering Workshop, Edinburgh, UK,

September 1996, pp. 129-140

Ko, K.-T., Tang, K.-S., Chan, C.-Y., Man, K.-F. &
Kwong, S. (1997), “Using genetic algorithms to design
mesh networks”, Computer v30 n8, pp. 5661

Koza, J.R. (1992), Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-
tion, MIT Press

Koza, J.R. (1994), Genetic Programming II: Auto-
matic Discovery of Reusable Programs, MIT Press

Kumar, A., Pathak, R.M., Gupta, M.C. & Gupta, Y.P.
(1992), “Genetic algorithm based approach for design-
ing computer network topology”, Proc. 21st ACM An-
nual Comput. Sci. Conf., Indianapolis, USA, pp. 358—
365

Luke, S. & Spector, L. (1996), “Evolving graphs and
networks with edge encoding: Preliminary report”,
Late Breaking Papers at the Genetic Programming
1996 Conference, Stanford, USA, 1996, pp. 117-124.

Michalewicz, Z. (1991), “A step towards optimal topol-
ogy of communications networks” , Proc. Conf. on Data
Structures and Target Classification, Orlando, Florida,
USA, April 1991, pp. 112-122

Paul, H., Tindle, J. & Ryan, H.M. (1996), “Expe-
riences with a genetic algorithm-based optimization
system for passive optical network planning in the
local access network”, Proc. Broadband Superhigh-
way (NOC’96-I), Heidelberg, Germany, June 1996,
pp. 105-112

Pierre, S. & Legault, G. (1998), “A genetic algo-
rithm for designing distributed computer network
topologies”, IEEE Transactions on Systems, Man and
Cybernetics-Part B: Cybernetics v28 n2, pp. 249-258

Sinclair, M.C. (1995), “Minimum cost topology op-
timisation of the COST 239 European optical net-
work”, Proc. 2nd Intl. Conf. on Artificial Neural Net-
works and Genetic Algorithms (ICANNGA’95), Ales,
France, April 1995, pp. 2629

Sinclair, M.C. (1997), “NOMaD: Applying a genetic-
algorithm /heuristic hybrid approach to optical net-
work topology design”, Proc. 3rd Intl. Conf. on Artifi-
cial Neural Networks and Genetic Algorithms (ICAN-
NGA’97), University of East Anglia, Norwich, UK,
April 1997, pp. 299-303

Sprent, P. (1992), Applied Nonparametric Statistical
Methods, 2nd Ed., Chapman & Hall

Zongker, D. & Punch, B., (1995) lil-gp 1.0 User’s Man-
ual

