
Coevolution for Problem Simpli�cation

Gary L. Haith�

Recom Technologies
Computational Sciences Division
NASA Ames Research Center

Silvano P. Colombano
Computational Sciences Division
NASA Ames Research Center

Jason D. Lohn
Caelum Research Corporation

Computational Sciences Division
NASA Ames Research Center

Dimitris Stassinopoulos
National Research Council

Computational Sciences Division
NASA Ames Research Center

Abstract

This paper explores a coevolutionary ap-
proach applicable to di�cult problems with
limited failure/success performance feedback.
Like familiar \predator-prey" frameworks
this algorithm evolves two populations of in-
dividuals { the solutions (predators) and the
problems (prey). The approach extends pre-
vious work by rewarding only the problems
that match their di�culty to the level of so-
lution competence. In complex problem do-
mains with limited feedback, this \tractabil-
ity constraint" helps provide an adaptive �t-
ness gradient that e�ectively di�erentiates
the candidate solutions. The algorithm gen-
erates selective pressure toward the evolu-
tion of increasingly competent solutions by
rewarding solution generality and uniqueness
and problem tractability and di�culty. Rel-
ative (inverse-�tness) and absolute (static
objective function) approaches to evaluating
problem di�culty are explored and discussed.
On a simple control task, this coevolutionary
algorithm was found to have signi�cant ad-
vantages over a genetic algorithm with either
a static �tness function or a �tness function
that changes on a hand-tuned schedule.

�Mail Stop 269-3, Mountain View, CA 94035-1000
e-mail: haith@ptolemy.arc.nasa.gov

1 Theoretical Background

Traditional evolutionary algorithms evaluate the �t-
ness of an individual by evaluating its ability to mini-
mize an objective function which is typically static and
independent of the evolutionary algorithm. For exam-
ple, if the goal is to evolve a posture controller for a
robot, the �tness of an individual controller could be
its success in minimizing movement in the robot body
under a gravity load. In coevolutionary algorithms,
the �tness of an individual in the evolving popula-
tion(s) depends on interactions with other individu-
als in the same generation. The problems (e.g. the
forces on the robot) faced by individuals in a coevolu-
tionary algorithm are dynamic and are shaped by the
algorithm itself. Extending the robot example, the
situations that a robot faces (e.g. forces on the robot
like gravity) could be coevolving with the controllers
such that the set of situations on which controllers are
evaluated changes from generation to generation.

1.1 Coevolution: Competition and
Cooperation

A growing body of research explores coevolutionary
approaches that capitalize on this dynamic quality (for
review, see Paredis, 1998) . This coevolutionary work
has largely concentrated on competitive interactions.
The interactions can be between individuals that com-
pete in a symmetric game-like context (Pollack et al.,
1996; Sims, 1994; Rosin, 1997) or between popula-
tions of di�erent types of individuals that compete in
predator/prey type relationships (Hillis, 1991; Paredis,
1994b; Paredis, 1994a; Cli� & Miller, 1996; Juille &

Pollack, 1998; Rosin, 1997; Rosin & Belew, 1996). In
these cases, individuals are rewarded if they defeat the
individuals with which they compete. These interac-
tions can support \arms-races" in which the individu-
als force each other to become increasingly competent.

A few studies have investigated the role of coopera-
tion and how it can help solve some problems endemic
to evolutionary methods, like the di�culty of choos-
ing an appropriate encoding for the individuals (Pare-
dis, 1995) and the di�culty of decomposing composite
problems (Jong & Potter, 1995). Other studies have
found that a balance of cooperation and competition
is necessary to prevent evolutionary algorithms from
getting trapped in local minima, or \Mediocre Stable
States" (Ficici, 1995).

1.2 The Current Approach

The approach outlined in this paper has features of
both competitive and cooperative coevolutionary ap-
proaches. The algorithm tries to ensure a tractable
learning gradient for the solutions by rewarding only
those problems on which at least one solution was suc-
cessful. The �tness of these tractable problems is pro-
portional to their absolute and/or relative di�culty |
providing pressure for the solutions to become more
generally competent. In practice, this requirement
generates an initial simpli�cation and gradual increase
in problem di�culty over evolution. The aim is to se-
lect for problems that are on the edge of what is solv-
able by the current population of solutions, ensuring a
useful �tness gradient throughout evolution.

This requirement that the problem must be tractable
has been relatively unstressed in the literature, with
a couple notable exceptions. Rosin (1997) suggests
a mechanism (the \Phantom Parasite") that rewards
problems that are solvable by at least one solution.
This mechanism will tend to allow easy problems to
survive in a population of very di�cult problems.
Juille and Pollack (1998) use a domain speci�c ap-
proach to selecting for problem tractability by reward-
ing problems that tend to be easier by an objective
measure.

Dealing with problem tractability is not an issue in
problem domains where the problems provide partial
�tness measures (Hillis, 1991; Ficici, 1995) or have a
baseline success rate that is fairly high, akin to a mul-
tiple choice problem (Juille & Pollack, 1998; Paredis,
1994b). In these cases, there is always a �tness gradi-
ent for the solutions to follow in the form of the number
of problems solved. However, in many real problem
domains the performance of a set of randomly chosen
solutions on a randomly chosen problem would be so

low that an observer or �tness function would be un-
able to di�erentiate between the performance of the
candidate solutions.

1.3 Di�cult Tasks

Many problems require a surprisingly high level of ex-
pertise to even be approached. Faced with such a prob-
lem a naive learner must be given some bias, or a struc-
tured learning environment (termed a \gradient engi-
neered �tness landscape" by Ficci and Pollack, 1998)
to have a hope of mastering the task. In developmen-
tal terms, the current task must be kept in the \Zone
of Proximal Development" (Vygotsky, 1986), or ZPD,
in order to be tractable and useful to the learner. If
the problem is outside the ZPD, then the learner will
be unable to gain competence through experience with
the task. In evolutionary terms, a �tness function that
is too far beyond the competency of the individuals will
fail to usefully di�erentiate between the individuals,
and evolution will be unable to select for competency.

The challenge of staying within the ZPD is especially
relevant in di�cult reinforcement learning problems.
In these problems: there is an absolute measure of
performance (as opposed to a game with relative per-
formance), the measure of performance is mainly lim-
ited to success/failure, and the baseline probability of
success for a solution given a typical problem is very
low. For example, the control or design of a complex
structure like an automobile engine depends on many
pieces coming together in just the right way before any
success at all is achieved. This seemingly impossible
design task has only been tractable because the task
itself has evolved over history. Originally the task was
simply to translate heat into rotational energy. Details
that are crucial to current engines like gearing, inter-
nal combustion, carburation, etc. were only added as
each progressively more complex design was realized.
In this paper we explore some mechanisms that could
help make complex problems tractable to evolutionary
algorithms by providing a gradient of problem di�-
culty/complexity over evolution.

2 Problem/Control Framework: 2D
Free-Space Vehicle

This work uses a relatively simple simulation frame-
work that allows for quick exploration of coevolu-
tionary mechanisms. The problem is to control the
thrusters on a craft
oating in free space such that the
craft goes to a given point (the "origin") and comes to
rest within a given period of time (1 sec, 5 time-steps).
The movement of the craft is limited to 2 dimensions,

and is simulated approximately using discreet time-
steps. At the end of the time period, a solution "suc-
ceeds" if the craft is resting (within some error) at the
origin at the end of the time period | otherwise it
"fails". This method of evaluation converts the avail-
able continuous error signals to a reinforcement learn-
ing signal.

Problem di�culty can be easily parameterized in this
framework. An optimal solution in this framework
would be able to steer the craft toward the origin from
any position and initial velocity and would learn to
stop at the origin within the time period. Because so-
lution performance is evaluated over a limited period
of time, a large initial distance and velocity require the
solution to generate strong and accurate thruster �r-
ing. In contrast, small initial distances and velocities
can be successfully navigated with weak and relatively
inaccurate thruster �ring (see Sec. 5.1 for limitations
of this interpretation). In general, problem di�culty
is proportional to the craft's initial distance (Dp) from
the origin and initial velocity (Dv).

Candidate solutions in this simulation are simple linear
networks where the change in the XY thrust at each
the next time step is a weighted sum of the current XY
thrust, velocity, and position.1 A candidate solution
is a set of weights for this network.

3 Evolutionary Framework:
Coevolutionary GA

Each problem is described by 2 scalars (see Fig. 1):
initial distance from the origin (Dp), and initial ve-
locity (Dv). The actual position and velocity of each
problem in each generation is chosen randomly from
the points on the circles described by the two problem
scalars, thus at each generation a problem describes
an initial XY position and velocity. In this way the
di�culty of the problems (the magnitude of the prob-
lem scalars) can be preserved or changed from gen-
eration to generation, while the speci�c problems are
randomly sampled each generation.

Each generation every solution is evaluated on every
problem. The weights of the solutions/networks are
evolved using a genetic algorithm.2 In simulations,
an initial population (N = 50) of solutions is cho-

1Some simulations were run using a feed-forward neu-
ral network architecture (2 layer, 2 hidden units with a
hyperbolic transfer function). These simulations yielded
qualitatively similar results.

2Although in this case the control networks could be
trained using backpropogation or a similar neural network
training algorithm, a genetic algorithm was used to �nd ef-
fective weights so as to explore coevolutionary mechanisms.

Dp

Dv

Figure 1: The �gure represents the possible initialization
conditions represented by a given problem (Dp, Dv). The
square at the center of the large circle is the origin. Dp

is the di�culty/distance of the initial position, Dv is the
di�culty/magnitude of the initial velocity. The actual ini-
tial con�guration, a starting position in the case of Dp (the
star) and a velocity vector in the case of Dv, is chosen ran-
domly from the set of points on the circles. The dotted
circles represent other possible starting positions (dotted
stars) with their associated sets of possible velocity vec-
tors.

sen at random with relatively small weights ([-.05,
.05]). These solutions are then evaluated on the set
of problems (N = 50) present that generation. The
genomes of the solutions are lists of the 12
oating
point weights in the network. Each generation new
candidate solutions are generated by probabilistically
choosing parents (based on their sigma-scaled �tness,
Mitchell, 1996), re-combining them in pairs via 2 point
cross-over, and with some probability (%10 mutation
rate) mutating each weight of the new solutions by
adding a random number (selected from [-1,1]). The
best 5% of the solutions at each generation are repli-
cated exactly in the following generation.

The focus of this paper is on di�erent methods of
choosing the evaluation problems (initial conditions).
This work compares three methods of generating prob-
lem di�culties (Dp's and Dv's) for the sample prob-
lems at each generation: the standard evolutionary ap-
proach, the gradient/developmental approach, and the
coevolutionary approach (with 2 particular instantia-
tions). Note that in all methods the speci�c problems
(starting position and velocity) were randomly gener-
ated by selecting the starting point and velocity vector
from the circles described by Dp and Dv. Even if the
problem di�culties were identical across generations,
the speci�c problems would be di�erent.

3.1 Standard Evolutionary Approach

The �rst method is to randomly select each (Dp, Dv)
from a uniform distribution across [0,Dm], where Dm

is the maximum problem di�culty (typically 50). In
this method the average problem di�culty is constant
at Dm

2
(see Fig. 2, heavy line). This �rst method is

meant to re
ect the most common/standard practice
where throughout evolution the solutions are evalu-
ated on the full set of possible problems, or a fully
complex target problem.

3.2 Gradient/Developmental Approach

The second method is inspired by the developmental
considerations discussed above. This method presents
an increasingly di�cult set of problems to the popula-
tion of solutions. The di�culties (Dp, Dv) at each gen-
eration are chosen from a uniform distribution across
[0,Dm �G(t)], where G(t) is a monotonically increas-
ing function of generation number (t). Typically G(t)
is a simple linear increase from 0 at generation 1 to
Dm at the last generation (see Fig. 2, medium lines).
In this method the average problem di�culty increases
monotonically over training. This second method re-

ects the developmental theory (Elman, 1991; New-
port, 1988) and intuitive heuristic, that hard problems
are easier to learn if problem complexity starts o� low
and increases gradually over training as the compe-
tency of the solution improves.

3.3 Coevolutionary Approach

The third method coevolves the di�culties of the eval-
uation problems and the the weights of the candidate
solutions. Like the solutions, problem di�culties are
evolved with selection, cross-over and mutation. The
average problem di�culty is under the control of the
evolutionary algorithm in this method. A central fo-
cus of this paper is to determine if this coevolutionary
algorithm can discover and optimize the hand-coded
gradient/developmental method described in the pre-
vious section (for actual behavior see Fig. 2, �ne lines).

We explored two methods of evaluating the raw �t-
nesses of the solutions and problems: absolute and
relative. In the absolute method, the raw �tness of
a solution (Fp) is the sum of the di�culties of the
problems that it completed successfully, where N is
the number of problems, and Sij is 1 if problem i is
successfully solved by solution j and 0 otherwise (see
Eq. 1).

Fpj =
1

2

NX

i=1

(Di
v +Di

p)� Sij (1)

The absolute raw �tness of a problem is its di�-
culty (1

2
(Dv + Dp)) if it was completed successfully

by at least one solution and 0 otherwise, satisfying the
tractability constraint.

The relative method is similar to the \inverse-�tness",
or \competitive �tness sharing" method used by previ-
ous researchers (Paredis, 1998; Juille & Pollack, 1998;
Rosin, 1997; Rosin & Belew, 1996). Fitness of the
solutions is proportional to the number of problems
that they successfully solve, with the reward for each
problem being inversely proportional to the number of
solutions that solved it (see Eq. 2) | a rough measure
of how \easy" it is.

Fpj =

NX

i=1

SijPN

j=1 S
i
j

(2)

The �tness of each problem is inversely proportional
to the number of solutions that complete it success-
fully, with a tractability constraint. A problem not
successfully completed by any solution gets zero �t-
ness (instead of the maximum �tness in the traditional
\inverse-�tness" approach).

Fsi =
T i

PN

j=1 S
i
j

(3)

Here T i (the tractability of problem i) is 1 if any of
the solutions successfully completed problem i and 0
otherwise.

4 Results

Two measures are displayed for each of the 3 evolu-
tionary methods. Displayed results are the average
of 10 runs in each method, with the same parameters
in all runs.3 The �rst reports the mean di�culty of
the problems (1

2N

PN

i=0 (D
i
v +Di

p)). The second is a
measure of the performance of the most �t solution.
In order to get a standardized measure of the solu-
tion performance, the solution with the highest �tness
in each generation was evaluated on a standard set of

3Simulation Parameters: 50 problems, 50 solutions, 2
seconds of controller time, time step of .2 sec, 250 genera-
tions total, linear solution networks, .05 elitism, .1 muta-
tion rate, and mutation step size is randomly drawn from
[�1; 1].

625 initial conditions selected so as to sample a regular
grid of initial positions and velocities.

Pj = 100� (1�

PT

i=1 (D
i
pj +Di

vj)PT

i=1 (D
i
p0 +Di

v0)
) (4)

The performance of the highest �tness network (Pj)
was evaluated by summing the errors in the �nal po-
sition (Dpj) and velocity (Dvj) reached from the test
set of initial conditions (indexed by i, T total) with
thrusters controlled by the highest �tness network
(network j). This sum was then compared to the
�nal errors in position and velocity reached with no
thrusters �ring Dp0 and Dv0, and the proportion was
normalized such that perfect performance would cor-
respond to a performance score of 100 (see Eq. 4). It
should be noted that the performance score is negative
if the given solution is worse (i.e. results in largerDpj 's
and Dvj 's) than the 0 thrust case. In fact, a nega-
tive performance score is overwhelmingly likely given a
randomly generated solution (only 11/1000 randomly
generated solutions had a positive performance score,
and the average performance was -5000).

Figure 2: Each line shows the problem di�culty at each
generation for a given approach. Each line is averaged over
all the problems in that generation and over 10 runs. 50 is
the maximum initial di�culty in the coevolutionary runs,
�nal di�culty in the gradient runs, and maximum di�-
culty throughout the standard run. The heavy line is the
standard approach. The �ne lines are coevolutionary ap-
proaches with problem di�culty evaluated absolutely (dot-
ted) and relatively (solid). The medium lines are hand-
tuned gradient approaches with a fast rise in task di�culty
(dotted) and a slow rise in task di�culty (solid). See text
for details.

Figure 3: Each line shows the performance of the best so-
lution at each generation for a given approach. Each line
is the average of 10 runs, and 100 is the maximum per-
formance. The solid heavy line is the standard approach.
The �ne lines are coevolutionary approaches with prob-
lem di�culty evaluated absolutely (dotted) and relatively
(solid). The medium lines are hand-tuned gradient ap-
proaches with a fast rise in task di�culty (dotted) and a
slow rise in task di�culty (solid) | see Fig. 2. The main
parameters were held constant in all runs. See text for
details.

4.1 The Standard Approach

In some parameter regimes, the standard case (select-
ing Dp and Dv from a uniform distribution across
[0,Dm] throughout evolution) generally failed to �nd
a generally successful solution (See Fig. 3, heavy line)
over the course of evolution. The negative performance
of the solutions is probably due to \fortuitous" initial-
ization/solution matches, where the solution is unable
to generalize its successful performance to the test set
of initializations/problems. For example, a solution
that continually �res the left thruster might be suc-
cessful in a generation where one of the initial positions
is just o� to the left, but it (and its o�spring) will be
unable to generalize that success to another random
sample of problems. In these 10 runs the standard al-
gorithm came up with a relatively poor solution with
an average performance of 15.

4.2 The Gradient/Developmental Approach

The evolution of competent solutions is made much
more robust by gradually increasing the average prob-
lem di�culty over evolution (see Fig. 3, solid medium
line). The general success of this approach is due to
the fact that it can ensure that the problems are al-
ways simple enough for some of the solutions to solve,
enabling evolution to get a foothold in di�erentiating

solution �tness based on performance. Only solutions
that have been selected for many generations face dif-
�cult problems late in a given evolutionary run.

This approach has the shortcoming that the rate of
problem di�culty increase must be tuned to the given
problem and rate of competency growth in the solu-
tions. If the di�culty of the problems is increased
too quickly, then the success of some solutions is not
overwhelmingly likely and, as in the standard case,
the run may fail to �nd a generally successful solution
(see Fig. 3, dotted medium line). In the case of a too-
steep gradient, the gradient approach yielded a �nal
controller with a �tness of only 25. Generally speak-
ing, if the di�culty of the problem is increased too
slowly, then little evolutionary pressure is put on the
solutions to have general competency and suboptimal
solutions will result (but see Sec. 5.1 for discussion of
this problem as an exception).

4.3 The Coevolutionary Approach

The coevolutionary method retains advantages of the
gradient/developmental approach, but avoids the ne-
cessity of selecting the schedule of increasing problem
di�culty at an arbitrary rate (See Fig. 3, �ne lines).
The coevolutionary approach has the advantage of au-
tomatically adjusting problem di�culty to match solu-
tion competence (see Fig. 4). Even though the average
problem di�culty starts o� large, easy problems have
much higher �tness early in evolution because they are
the only problems that can be successfully completed
by relatively incompetent solutions. Easy problems
tend to take over the population of problems just after
a tractable problem is found, (see Fig. 4) while the so-
lutions are still relatively incompetent. Problems tend
to get harder over evolution because they are rewarded
for being solvable only by a few solutions (relative) or
for being more di�cult by some absolute measure (ab-
solute). Any problem that increases in di�culty too
quickly will be penalized because it will not be suc-
cessfully completed by any of the solutions.

5 Discussion

This paper presents an approach to using coevolution
to simplify complex problems. By rewarding a coe-
volved population of problems for being at the edge of
what is currently solvable by the population of solu-
tions, the method generates a usable �tness gradient
for the solutions while encouraging general solution
competency at di�cult problems. This approach takes
some small steps toward making coevolutionary algo-
rithms more applicable to a di�cult and important

Figure 4: The average di�culty of the population of prob-
lems during a representative run (taken from the 10 aver-
aged runs) using coevolution with selection for absolute
problem di�culty. Note the random search, followed by
problem simpli�cation and a gradual increase in problem
di�culty. See text for details.

class of problems. The results that were presented
demonstrate that, in some domains, the approach can
be more e�ective than a traditional evolutionary ap-
proach and more
exible than a hand-coded approach.

5.1 Limitations

This work has some limitations that are important for
proper interpretation.

First, initial success in the coevolutionary and stan-
dard approaches is simply probabilistic. Even with the
tuned parameters in the simulations reported above,
several generations often pass without any success-
ful solution/problem pairings. Indeed this di�culty
was explicitly chosen, because if the problem is made
too simple (e.g. by increasing the error threshold for
successful performance) than there is a su�cient �t-
ness gradient for the standard approach to perform as
well as the coevolutionary approach. During these un-
successful generations, the algorithm does a random
search for solvable problems, and all but the elite so-
lutions undergo random evolution or genetic drift. In
a very di�cult problem domain, randomly generated
solutions will almost never successfully solve randomly
generated tasks. This issue could be addressed by
seeding the initial population with simple problems
that are thought to be applicable to the fully complex
problem, thus ensuring some success in even a random
population of solutions.

Second, the algorithm here involves problem simpli�-
cation instead of problem decomposition. In the case

of simpli�cation it is straightforward to generate esti-
mates of problem di�culty or problem match to a tar-
get objective function, therefore is it easy to evaluate
problems on their absolute di�culty. In problems that
are compositional, hierarchical, or otherwise complex
this assignment of absolute di�culty is not as straight-
forward. Unfortunately, it is also hard to get a useful
measure of the intrinsic di�culty in complex problems.
The issue is that an evolving problem must be di�cult
in the same way as the ultimate target problem, and
usually there are many other ways to be di�cult. The
challenge is to �nd a problem representation that al-
lows simple evaluation of the similarity or applicability
of candidate problems to the target problem. Such a
representation allows an absolute di�culty measure to
help guide the explorations generated by the intrinsic
di�culty measure.

Third, the fact that this domain provides only for
problem simpli�cation ensures that solutions that suc-
ceed at simple problems will tend to succeed at hard
problems as well. The most vivid illustration of this
fact is that runs with the gradient/developmental ap-
proach and with a very low maximum problem di�-
culty (Dm) evolve a solution with competence nearly
matching a gradient/developmental approach with a
relatively high Dm. The result is that there is rela-
tively little intrinsic pressure for the problems to be-
come more di�cult. This fact limits the usefulness of
this problem domain for study of these coevolutionary
mechanisms.

5.2 Future work

We plan to test this coevolutionary approach in prob-
lem domains that avoid the limitations mentioned
above. One candidate domain is coevolving analog
�lters and their target frequency response. Previous
work on the evolution of simple analog �lters has found
the e�ciency of evolutionary search to be highly de-
pendent on a proper choice of �tness functions (Lohn &
Colombano, 1998). In addition, somewhat complex �l-
ters, like passive cross-over �lters are relatively di�cult
to design and optimize by hand. This well-explored do-
main should allow us to test the ability of coevolution
to provide a usable gradient through simpli�cation and
decomposition.

A second candidate domain coevolving a gait con-
troller for a walking robot. Previous work has found
that decomposing a locomotion problem into behav-
iors provides a many fold speed-up in controller evo-
lution (Gruau, 1996). The chore of deciding how to
usefully decompose a robotic control task is generally
not straightforward and thus far has depended on the

insights and patience of a human programmer. We
plan to use a coevolutionary approach to evolve a con-
troller for a semi-rigid walking robot under current
development at NASA Ames Research Center.

Acknowledgments

References

Cli�, D., & Miller, G. F. 1996. Co-evolution of pursuit
and evasion ii: Simulation methods and results.
Pages 506{515 of: Maes, P., Mataric, M., Meyer,
J. A., Pollack, J., & Wilson, S. (eds), From ani-
mals to animats 4: Proceedings of the fourth in-
ternational conference on simulation of adaptive
behavior (sab96). MIT Press Bradford Books.

Elman, Je�rey L. 1991. Incremental learning, or the
importance of starting small. Tech. rept. 9101.
Center for Research in Language, University of
California, San Diego, CA.

Ficici, Sevan G. 1995. Challenges in coevolutionary
learning: Arms-race dynamics, open-endedness,
and mediocre stable states.

Gruau, F. 1996. Cellular encoding for interactive
robotics. Tech. rept. Sussex University.

Hillis, Daniel W. 1991. Co-evolving parasites im-
prove simulated evolution as an optimization pro-
cedure. Pages 313{324 of: Langton, C., Taylor,
C., Farmer, J. D., & Rasmussen, S. (eds), Arti�-
cial life 2, vol. X. Redwood City, CA: Addison-
Wesley.

Jong, Kenneth A. De, & Potter, Mitchell A. 1995.
Evolving complex structures via cooperative co-
evolution. Pages 307{317 of: Proceedings of
the fourth annual conference on evolutionary pro-
gramming. MIT Press.

Juille, Hugues, & Pollack, Jordan B. 1998 (July 22-
25). Coevolving the \ideal" trainer: Application
to the discovery of cellular automata rules. In:
Proceedings of the third annual genetic program-
ming conference (gp-98).

Lohn, Jason D., & Colombano, Silvano P. 1998. Auto-
mated analog circuit synthesis using a linear rep-
resentation. Pages 125{133 of: Proceedings of the
second international conference on evolvable sys-
tems: From biology to hardware. Berlin: Springer-
Verlag.

Mitchell, Melanie. 1996. An introduction to genetic
algorithms. Cambridge, MA: MIT Press.

Newport, Elissa L. 1988. Constraints on learning and
their role in language acquisition: Studies of the
acquisition of american sign language. Language
sciences, 10, Number 1, 147{172.

Paredis, Jan. 1994a. Coevolutionary constraint satis-
faction. Pages 46{55 of: Proceedings of the third
international conference on parallel problem solv-
ing from nature, vol. 866. Springer-Verlag.

Paredis, Jan. 1994b. Steps towards co-evolutionary
classi�cation neural networks. Pages 102{108 of:
Brooks, R., & Maes, P. (eds), Arti�cial lie iv.
Cambridge, MA: MIT Press.

Paredis, Jan. 1995. The symbiotic evolution of solu-
tions and their representations. Pages 359{365
of: Eshelman, L. (ed), Proceedings of the sixth in-
ternational conference on genetic algorithms. San
Mateo, CA: Morgan Kaufmann.

Paredis, Jan. 1998. The handbook of evolutionary com-
putation. Oxford University Press. Chap. Coevo-
lutionary Algorithms.

Pollack, J., Blair, A., & Land, M. 1996. Coevolution
of a backgammon player. In: Langton, C. (ed),
Proceedings arti�cial life 5. MIT Press.

Rosin, Christopher D. 1997. Coevolutionary search
among adversaries. Ph.D. thesis, University of
California, San Diego.

Rosin, Christopher D., & Belew, Richard K. 1996. New
methods for competitive coevolution. Tech. rept.
CS96-491. Department of Computer Science and
Engineering, University of California, San Diego.

Sims, Karl. 1994. Evolving 3d morphology and behav-
ior by competition. Pages 28{39 of: Brooks, R.,
& P.Maes (eds), Arti�cial life 4 proceedings. MIT
Press.

Vygotsky, Lev Semonovich. 1986. Thought and lan-
guage. Cambridge, Mass.: MIT Press.

