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Abstract

This paper develops a framework for opti-
mizing global-local hybrids of search or op-
timization procedures. The paper starts by
idealizing the search problem as a search
by a global algorithm G for either (1) ac-
ceptable targets|solutions that meet a spec-
i�ed criterion|or for (2) basins of attrac-

tion that then lead to acceptable targets un-
der a speci�ed local search algorithm L. The
paper continues by abstracting two sets of
parameters|probabilities of successfully hit-
ting targets and basins and time-to-criterion
coe�cients|and writing equations to ac-
count for the total time of search and for
the reliability in reaching an acceptable so-
lution. A two-basin optimality criterion is
derived and applied to important representa-
tive problems. Continuations and extensions
of the work are suggested, but the theory
appears to be useful immediately in better
understanding the economy of e�ective hy-
bridization.

1 INTRODUCTION

Many industrial-strength genetic and evolutionary al-
gorithms (GEAs) are explicit hybrids, combining the
underlying GEA with one or more problem-speci�c lo-
cal search procedures. While a good argument can
be made that all GEAs are themselves implicit hy-
brids because they combine the actions of selection on
the one hand with one or more variation operators,
the usual motivation for hybridization in optimiza-
tion practice is the achievement of increased e�ciency.
That is, practitioners seek adequate solution quality in
minimum time or they seek maximum quality in spec-
i�ed time, although it is rare that practitioners have

been even this precise in stating their goals. Moreover,
when any theory has been adopted in the formulation
of hybrid practice, it has been a micro-level theory,
mainly useful for detailed operator design. There still
remains a need to better understand e�cient hybrids
at the macro- or systems level.

This paper considers a systems-level theoretical frame-
work for creating e�cient hybrids of di�erent opti-
mization procedures. Although the paper is motivated
by the practice of genetic and evolutionary algorithms,
the framework is fairly general and should work well
in other settings.

The paper starts with a brief review of hybridization in
GEA practice and theory. It continues by establishing
the idealization of optimization search methods and
space that will enable us to construct a systems-level
theory. Thereafter, the time accounting and reliabil-
ity conditions are written and solved, yielding either
maximum reliability in �xed time or minimum time
to a speci�ed reliability. The framework of optimizing
optimization hybrids is then applied to a number of
representative situations. The paper concludes with
some comments on how these abstractions might be
veri�ed, used, and extended in real hybrid settings.

2 GEA HYBRIDS-A REVIEW

It is part of the folklore of GEAs that hybrids often im-
prove the e�ciency of search (Ibaraki, 1997). Smith
(1985) and Grefenstette, Gopal, Rosmaita, and Van
Gucht (1985) presented early hybrids algorithms in
relatively small prototype systems, and Powell, Tong,
and Skolnick (1989) were among the �rst to incorpo-
rate hybridization techniques in their commercially vi-
able system for design of a gas turbine engine. Davis
has perhaps been the foremost advocate of GEA hy-
bridization (Davis, 1991), to the point where today,
it is rare that the serious GEA application is under-



taken without some kind of GEA combined with some
specialized search method (Goldberg, 1994).

Along the way, theoreticians have made useful contri-
butions to the state of hybrid knowledge. The dis-
tinction made between Baldwinian and Lamarckian
learning by Hinton and Nowlan (1987) is particularly
important and suggests that a local search method
appended to a GEA can have a useful e�ect with-
out backsubstituting the genotype corresponding to
the termination point of the local search algorithm.
Orvosh and Davis (1993) support this point of view
with their empirically derived rule of 20 that suggests
that a Lamarckian step|if used at all|should only
be used one in twenty trials in order that population
diversity not be overly disturbed.

Another theoretical thread picked up in the literature
is that of adaptive frequency of operator use. A num-
ber of practitioners have viewed the probabilistic mix-
ture of di�erent operators as something that should
be adapted to achieved various search goals. This was
picked up early and often in the literature of evolu-
tion strategies (see B�ack & Schwefel, 1995, for a good
survey) and the same theme has been picked up else-
where (Davis, 1989; Shaefer, 1987) fairly early in the
genetic algorithm tradition. More recently, this theme
has been mapped to the k-armed bandit problem by
Lobo and Goldberg (1997) who recast the problem in
stochastic automaton form and perform empirical test-
ing on a simple test problem.

Whitley (1995) formulated the precise di�erence equa-
tion and Markov chain models for a genetic algorithm
hybridized with some speci�ed number of steps of lo-
cal search in either Lamarckian or Baldwinian updates.
The formulation is clever and exact; however, as any-
one who has tried to apply results from exact di�er-
ence or Markov chain equations knows, the sledding
is tough and usually thwarts the kind of systems-level
understanding we are seeking here.

The foregoing contributions have been important to
hybrid practice, but the detailed or micro-level anal-
ysis common across these studies leaves us without a
macro-level framework of hybrid e�ciency, a matter
to be taken up in the next section.

3 THE PROBLEM, 2 SEARCHERS,

AND THEIR HYBRID

To build a macro-level model of optimization hybrids
that will allow us to address the quality-e�ciency
tradeo� requires that we abstract critical features of
three things: (1) the search problem to be solved,

β

β

Ω

Passive Dead Zone

β

Active 
Dead
Zone

41

β1 3

2

 .

.

.xx

x

τ

τ

1
*

*

*
3

2

2

Figure 1: A two-dimensional sketch of an idealized
search space depicts target islands �i, basins of attrac-
tion under local method L to those targets, �i, and
two types of dead zone, active and passive.

(2) the searchers to be combined, and (3) the hybrid
scheme to coordinate the searchers. This section con-
structs that framework, which draws heavily on ideas
developed elsewhere (Goldberg, 1991).

Consider an idealized hybrid algorithm (IHA or simply
H) operating over a solution space 
 on a minimization
problem � : 
 ! R (maximization may be accommo-
dated with appropriate reversal of inequality and sign
in what follows). The hybrid H works by coordinating
the activities of a global method G and a local method
L as follows. Each iteration, G is invoked once (taking
unit time, without loss of generality) to generate some
new candidate solution and this is followed by multiple
invocations of L consuming no more than an allowable
time �a : 0 � �a � �max. This process proceeds until
either an allowable time Ta is exceeded or a solution
accuracy target value � � �� is reached.

This straightforward outline of H contains our �rst
clues as to how we must view the solution space 

if we are to make some progress on the e�ciency ques-
tion. Given that we wish solutions better than some
target value (ostensibly within some �� of the global,
�� = ��+��), we �rst identify the level set with value
�� and better, subdivide the level set into one or more
discrete island targets �i as depicted in �gure 1, and
then consider how G and L might combine to lead us
to one of the targets.

The �rst thing to understand is that G may be success-
ful all on its own. Calling the union of the targets the
global region, RG =

S
i �i, we denote the probability of

hitting RG in a single invocation of the global searcher
PG. We do not consider the calculation of PG in detail
except to note that with G taken as uniform random



search, PG may be calculated by summing the areas
(hypervolumes) of the targets and dividing by the total
area (hypervolume) of the space. With random search
done according to some other probability distribution,
this calculation becomes somewhat more complex, re-
quiring us to integrate the distribution over the tar-
get region, and with a more involved global searcher,
the calculation may become even more di�cult still.
In fact, for searchers other than random search, these
probability parameters may not be stationary; how-
ever, here we assume that they are or that they vary
slowly enough that constant values provide a useful
approximation.

Outside of RG, G needs help from L, but to describe
the cost of this help and its interaction with the in-
vocation of L, we need to further idealize the search
space with two families of parameters. Recognizing
that local search is a dynamic system, we know that
it usually works by iterating from some starting posi-
tion to some solution. We simplify things somewhat
by assuming that in the usual case L converges toward
a �xed-point solution xi. We de�ne the local time-to-
criterion (TTC) values �i as the average number of
time units required to get to the target starting from
within the basin of attraction �i. In �gure 1, the basins
are shown as tessellation polygons, but of course, more
general basin geometries should be expected to occur.
The key thing is that we've identi�ed the local time
constant values �i to help quantify times of arrival.
In reality, di�erent starting points within a basin may
result in di�erent arrival times to the basinic solution,
and a more accurate formulation would treat arrival
times probabilistically, but here we keep things simple
and interpret the local TTC constants as mean values
over the basin.

The other parameter needed in our analysis is sug-
gested by the basins �i. In di�cult problems, hitting
the targets directly is unlikely, but the chances of hit-
ting one of the basins and converging with L to a target
is quite good. To quantify this, we say that the prob-
ability of hitting the basin �i (exclusive of the target
�i) with an invocation of G is Pi. Again, as with PG,
it is fairly straightforward to imagine a calculation of
the Pi when G is chosen as random search with some
�xed and known probability distribution.

One additional feature of the space should be men-
tioned before optimizing our idealized hybrid. Sup-
pose instead of landing in the global zone or one of the
tractable basins, G places the search at points in the
space that do not lead to the global zone under local
search. There are two cases to consider. Suppose G
lands in a basin such as �3 in which local search leads

to a solution that does not meet criterion (� > �� ).
Or worse, suppose G goes to a basin (�4) where L fails
to converge in � � �max time units. We call both of
these types of regions dead zones. The �rst, a type

I dead zone is distinguished in that L converges to a
solution, but the solution is inadequate. The second,
a type II dead zone, is distinguished in that there is
no indication of convergence and if the solution were
permitted to continue, it would consume all remain-
ing computational time. Although dead zones are not
places we wish G to land, it is useful to calculate the
probability of hitting the dead zone (region RD) as
follows:

PD = 1� PG �
X
i

Pi (1)

In words, the dead zone is what's left over when the
global zone and tractable basins are removed, and the
probability of hitting the dead zone is the complement
of hitting the union of the global zone and tractable
basins. Note that we only count as dead zone those
basins that can never reach an acceptable solution
under the permitted variation in �a. In optimizing
the division of computation between global and local
search, we may choose to ignore some of the tractable
basins, because L will take too long on them, but this
is exactly the decision we are trying to highlight (and
make).

With these de�nitions, we are now in a position to con-
sider time and reliability together, thereby optimizing
our hybrid, a matter taken up in the next section.

4 TIME AND RELIABILITY

With the idealization of the last section under our
belts, we examine the key relationships between the
parameters of the last section and overall solution time
and reliability. These together with appropriate opti-
mization conditions will allow us to decide how to allo-
cate our time wisely between local and global search.
We start by accounting for the division of time be-
tween L and G and then calculate the probability of
meeting criterion.

Accounting for time is straightforward. The key deci-
sion we make in setting up the hybrid is determining
the split between local and global search. Calling the
allowable local time constant �a, and the average lo-
cal time constant ��, we may write the solution time T
consumed in n global-local iterations as follows:

T = (1 + ��)n: (2)

Here, without loss of generality, global search is as-
sumed to occupy unit time, and the cost of L is mea-
sured relative to that value. The relationship between



�a and �� depends on the rules of H and will be explored
in a moment, but we now turn to the calculation of the
reliability relationship.

Our goal is to have the hybrid H converge to one of
the targets, but with a limit on the time that local
search can operate, only those targets with local time-
to-criterion constant values less than the allowable can
be counted as successes. Thus, the probability of a
successful hybrid iteration may be determined by sum-
ming the probability of hitting the global zone initially
and the probability values of all those targets with
TTC constants less than the allowable. Calling this
probability P�a , we calculate as follows:

P�a = PG +
X

i:�i 6=;;�i��a

Pi (3)

In words, the probability of success at level �a is the
probability of hitting the global zone with G plus the
sum of probabilities of G hitting any basin that leads
to a target in time less than the allowable setting.

With the single trial calculation in hand, the success
probability Ps of at least one success in n global-local
iterations is given by elementary probability as

Ps = 1� (1� P�a)
n (4)

Once the allowable limit �a is chosen, the reliability
and time conditions can be interrelated, but this re-
quires one auxiliary relationship that depends on the
rules of H.

In some hybrids, we might imagine that L is run �a
time units regardless of the convergence status of the
local searcher. In such cases, �� = �a and the calcula-
tions proceed quite conveniently. In those cases where
�a is treated as an upper limit on the run time of L, ��
needs to be calculated as follows:

�� =
X

i:�i 6=;;�i��a

Pi�i +
X

i:�i 6=;;�a<�i��max

Pi�a + PD�a

(5)
This latter calculation is somewhat cumbersome, and
the case of �� = �a is used in the remainder.

5 TWO WAYS TO OPTIMIZE

The primary decision to make in e�cient hybridiza-
tion is how much to spend in global search versus lo-
cal search. In the formulation herein, this requires us
to choose the allowable time spent in local search �a;
however, we have two ways to go about this business.
Given that we would like to achieve a solution of speci-
�ed accuracy, we may either maximize the probability

of achieving the solution|maximize the reliability|
under a �xed time or we may minimize the time to
achieve a solution of speci�ed reliability. In this sec-
tion, we formulate these two optimization problems
using the equation of the previous section.

5.1 MINIMUM TIME

Minimizing the time subject to a given reliability is
most easily done by recasting the problem in terms
of the probability of not reaching criterion. We will
call this the probabilistic error or simply the error and
use the symbol � to denote the quantity. Assuming
a speci�ed allowable error �a, the reliability condition
may be rewritten as �a = (1 � P�a)

n. Taking the
logarithm and rearranging for n yields

n =
ln�a

ln(1� P�a)
: (6)

We recognize that n is restricted to the positive inte-
gers, but for the minimum time formulation this con-
dition will not be of much consequence. We substi-
tute this relationship into the time accounting equa-
tion, minimize, and obtain the following:

min (�a + 1) ln�a
ln(1�P�a )

(7)

Under known basin and target probabilities as well as
local search time constants, this condition may be used
to determine the optimal allowable local time constant,
��a.

5.2 MAXIMUM RELIABILITY

Maximizing the reliability (minimizing the error) re-
sults in a similar condition with di�erent speci�ed co-
e�cients and constraints. Assuming an allowable total
time Ta and rearranging the time relation for n yields
n = Ta

��a+1
. Although n must again be a positive inte-

ger, our main concern is that we be able to perform
at least one global-local iteration. This condition sug-
gests that the maximum allowable time value be set
as

�max � Ta � 1: (8)

Substituting the expression for n into the reliability
condition and minimizing the error yields the condition
as follows:

min (1� P�a)
Ta
��a+1 (9)

Comparison of equations 7 and the logarithm of equa-
tion 9 shows that they are equivalent after allowing for
di�erent constants (ln�a versus Ta) and their di�ering
signs (ln� is negative, and Ta is positive). Although



the integer constraint on n exists for both, in practice
it places a greater restriction on the reliability formu-
lation, because we may often be called to impose the
single iteration constraint (equation 8)

6 SOLUTION IN TWO BASINS

The conditions of the last section are fairly general,
but to use them in practice, we consider the case of
two basins in some detail. Although a two-basin solu-
tion sounds restrictive to the point of impracticality,
the condition may be applied in the general discrete
case with proper interpretation. Moreover, some rear-
rangement of the two-basin optimality condition gives
us important physical insight into the tradeo� between
global and local search.

Consider two basins with basin probabilities and local
time constants (P1; �1) and (P2; �2) with �1 < �2.
With only two basins there are only two possibilities
to consider, either ��a = �1 or �

�
a = �2 and it is unclear

ahead of time which should be preferred because the
more expensive alternative (�2) may be fruitful if the
cumulative probability of success (P1 + P2) results in
higher reliability (lower error).

Minimizing the error (equation 9) with �xed Ta sug-
gests that we should prefer basin two if

(1� P 0
1)
Ta=�

0

1 � (1� P 0
2)
Ta=�

0

2 (10)

where �0i = �i + 1 and P 0
i =

Pi
j=1 Pj . Some algebra

yields
(1� P 0

1)
�0

2=�
0

1 � 1� P 0
2 (11)

For small P 0
1 this may be approximated by the condi-

tion

P 0
2 �

�02
�01

P 0
1 (12)

In words, it is worthwhile spending more on local
search if the cumulative probability of success increases
su�ciently. For small success probabilities that growth
must increase at least as quickly as the inverse ratio of
the global-local TTC constants.

Although the derivations of this section apply to two
basins, the condition may be used in the general dis-
crete case by �rst ordering all basins in �i order from
low to high. Local optimality can be checked by mov-
ing through the list and successively checking the ith
and (i + 1)th basins. Global optimality can be deter-
mined by choosing the local optimum with least error.

Another approach is to consider a continuous probabil-
ity distribution as a function of the total cost �0. The
solution to this formulation is identical to that pub-
lished by Nakano, Davidor and Yamada (1994) in the

context of genetic algorithm population size optimiza-
tion convenient, and those interested should consult
the original manuscript.

7 APPLICATION OF THE THEORY

Let us turn to applying the theory to a number of
representative cases:

1. Choosing �a with PG = 0, uniform �i

2. Choosing �a with PG > 0, uniform �i

3. Analyzing change of ��a under improvement in G

4. Analyzing change of ��a under relaxation of crite-
rion

In the remainder of this section, each of these is con-
sidered in turn.

7.1 CASE I: PG = 0, UNIFORM �i

With little or no probability of G hitting the global
zone, G cannot �nd a solution without L, and with
uniform �i = �0 there is essentially no tradeo�. Ei-
ther we can a�ord local search or not, and if we can,
the correct setting for the allowable time to criterion
parameter is ��a = �0. Once local search is enabled,
the only way to make a mistake is to hit the dead zone.
In this case PD = 1�

P
i Pi and the optimal error may

be written straight away:

�� = P
Ta=(�0+1)
D (13)

Figure 2 shows the optimal error as a function of the
allowable time Ta.

The assumption of uniform � is approximately met in
local solvers that have rapid convergence rates that
are approximately equal across many basins. The as-
sumption of no global zone should be approximately
met in di�cult problems or in relatively easy prob-
lems where the success criterion is beyond the reach of
global search.

7.2 CASE II: PG > 0, UNIFORM �i

The �rst case was particularly simple because there
was no tradeo�. We simply set the allowable time to
criterion to the uniform value and let the algorithm
(G+L) rip. With the introduction of a non-null global
zone, the decision becomes more interesting. There is
now a non-zero probability of hitting the target with
G alone (the probability PG). Thus, we must consider
two possibilities. Either we set �a = 0 or we set �a
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Figure 2: In case I with PG = 0, the calculation is
guaranteed to fail until there is su�cient allowable
time to permit at least one single global-local itera-
tion.

to the uniform value �0. Of course, this is a special
case of our two-basin calculation earlier. The cumu-
lative probability of hitting either the global zone or
the basins leading to success is the complement of the
dead zone probability. Thus, we should go with G
alone when (1 � PG)

Ta < [1 � (1 � PD)]
Ta=�

0

0 : Elimi-
nating the allowable time and rearranging yields

PD > (1� PG)
�0

0 (14)

Thus for large global zones, large dead zones, or large
uniform �0 values, we should choose G alone. When
the situation is the e�cient combination is to have G
and L working together.

Another way to examine this case is to calculate the
critical time to criterion value �0c where the error is the
same with or without L. Setting PD = (1�PG)

�0

c and
solving for the critical value yields

�0c =
lnPD

ln(1� PG)
(15)

If the uniform TTC value �00 is greater than the crit-
ical value, go with G alone; otherwise use G and L
together.

7.3 CASE III: IMPROVEMENT OF G

Suppose that we are using a global searcher G1 and we
have the opportunity to use an improved global search
algorithm G2. How should we expect the division be-
tween global and local search to change? Here we will
assume the same model as in Case II. Thinking about
this qualitatively is helpful. First, a better G should
improve the probability of hitting the target with G
alone. If the original global zone probability was PG,

imagine it being expanded by a factor � � 1. Sec-
ond, an improved global searcher should also reduce
the probability of hitting the dead zone, so we imag-
ine it being reduced by a reduction coe�cient �.

Using equation 15 permits the calculation of the ratio
of the critical � values in the improved G to that of
the original:

� =
�0c2
�0c1

=
lnPD2

= lnPD1

ln(1� PG2
)= ln(1� PG1

)
(16)

Since PD2
= �PD1

and PG2
= �PG1

, � may be rewrit-
ten as follows

� =



�
(17)

where 
 = 1+ln �= lnPD1
and � = ln(1��PG1

)= ln(1�
PG1

). For solvable problems PD1
6= 1 and dead zone

reduction (� < 1), 
 > 1.

Interpreting � is aided by recognizing that for small x,
ln(1 � x) � �x. Thus, � � � and � � 
=�. Thus,
the global zone enhancement and dead zone reduc-
tion tend to work against one another as should be
expected. Global zone enhancement should tend to
push the hybrid toward greater usage of G, whereas
dead zone reduction under conditions of �xed RG en-
large the probability of success under L + G.

7.4 CASE IV: RELAXED CRITERION

Suppose the user decides to relax the accuracy cri-
terion. Again using the case II model, we recognize
two e�ects. Reduction of the criterion makes it easier
for global search to hit the target, and it also reduces
the size of the dead zone. The former e�ect is fairly
straightforward to envision, because it is easy to think
of larger (relaxed) targets being easier for the global
searcher to hit. The e�ect of criterion relaxation on
the dead zone is less obvious, but we may reason as
follows. A relaxation in criterion means that for cer-
tain type I dead zones under the previous criterion,
the �xed points that previously were not su�ciently
accurate to meet criterion will now pass muster. Also,
certain type II (non-convergent) dead zones may also
wander through function values that meet criterion.
As a result the tendency under relaxation of criterion
will be for the dead zone to reduce in size.

Notice that case IV is essentially the same as case III,
and therefore the analysis of the ratio � may be used
without modi�cation.

8 2 EXPERIMENTS

This section presents the results of proof-of-principle
experiments that support the foregoing theory. We



Figure 3: The testbed function f(x; y) has �ve, quasi-
concave basins of attraction as shown in this top view

have chosen a simple two-dimensional function f(x; y)
to be minimized as our test bed. The two vari-
ables x and y are in the closed interval [0; 10], and
the function consists of 5 quasi-concave basins (center
ci = (cxi; cyi), radius ri, depth di) and a surrounding
area with function value

f (x; y) =

(
di
r2
i

�
�r2
� �

2� �r2

r2
i

�
� di for �r2 � r2i

0 otherwise
(18)

where �x = x� cxi, �y = y� cyi, �r
2 = �x2+ �y2, and ci =

f(2:0; 8:0), (3:0; 4:0), (5:0; 7:0), (7:0; 8:5), (7:0; 4:0)g,
ri = f1:5; 2:0; 0:5; 1:0; 2:5g, di = f2:0; 3:0; 2:0; 4:0; 2:0g.
Figure 3 displays the function. The global minimum
is at (7:0; 8:5) and has a value of �4.

The global search algorithm G has been chosen as
random search with a uniform probability distribution
over the space. The local search algorithm L has been
chosen as a standard quasi-Newton algorithm (Press,
Teukolsky, Saul, Vetterling, & Flannery, 1992), which
has for geometrically similar basins almost a uniform
�. L takes �� � �0 = 7:0539 time units on average.
The probability of hitting the dead zone PD = 0:5760.
Both experiments have been carried out using simula-
tion - termination criterion was a maximum error of
0:01%.

8.1 EXPERIMENT I: PG � 0, UNIFORM �i

By setting �� to �3:99 the chance of hitting a target
PG is nearly zero (0:0001).

In �gure 4 the experimental probabilistic error �sim
obtained from simulation is plotted as a function of Ta

Ta
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Figure 4: The probabilistic error �� is shown as func-
tion of the allowable time Ta for both theory and ex-
periment. The theory matches well as expected.

and is compared to the theoretical results (equation
13). The plot shows a good match between theory
and experiment.

8.2 EXPERIMENT II: LARGE PG

By lowering the threshold for an acceptable solution,
the global zone increases. In this case it is possible
to �nd an acceptable solution by using local search
only. For large global zones (assuming that �0 cannot
be changed) it is more e�cient to go just with global
search if PD > (1� PG)

�0

0 . We will show an example
where the right thing to do is to use G alone (in Ex-
periment I we go with G + L since PD < (1�PG)

�0

0 ).

Setting �� to �1 leads to: PG = 0:1490. Equation
(14) predicts that the probabilistic error � is smaller
for all Ta by using G alone. To verify this, we try both
ways: G and G+L and compare the results with our
analytical models.

Figure 5 shows that the chance of not �nding an ac-
ceptable optimum is signi�cantly lower if we use G
alone. The use of G+L combined, adds more com-
putational overhead than bene�t to the search in this
case. We also observe that for the given example, our
analytical models predict experimental � results ade-
quately. well. Note in the theoretical curves that the
integer stair step has not been plotted.
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Figure 5: The error � for G and G+L as a function
of the allowable time Ta shows good agreement be-
tween theory and experiment and also demonstrates
the correctness of the optimality condition. In this
case, G should be used alone, because it consistently
gives lower error for the same allowable time.

9 EXTENSIONS

The foregoing analyses have attempted to take some
useful steps toward a better theoretical understanding
of the optimization of global-local hybrids. The e�ort
is noted by its simplicity, its connection with common
GEA practice, its stark juxtaposition of L and G, its
ability to integrate the components of the hybrid, and
its ability to address and answer the local-global e�-
ciency decision.

On the other hand, the analysis raises a number of dif-
�cult questions. It assumes knowledge of parameters
(�i, Pi) that depend in complex ways on the problem
being solved and the searchers being used. Calculation
of the parameters is not trivial even when the problem
and searchers are well speci�ed. Moreover, the pa-
rameters have been assumed to be constant, but they
may not remain stationary, and even if they do, they
may vary probabilistically. Nonetheless, the bene�ts
of a simple analysis procedure that permit us to start
asking and answering the right questions, outweighs
further inaction in understanding e�cient hybridiza-
tion. With this in mind, a number of continuations
and extensions of this work suggest themselves as fol-
lows:

1. Perform additional empirical investigation of the
model proposed herein on both ideal and real
problems and solvers.

2. Perform theoretical-empirical investigation of the
calculation of Pi values for various Gs.

3. Perform theoretical-empirical investigation of �i
values for di�erent types of solvers and basins of
attraction.

4. Consider on-line estimation and other means of
optimizing hybrids in practice.

5. Consider various extensions to the model, in-
cluding non-deterministic parameters, multiple
solvers, and realistic nonstationarities.

These steps are not easy, but item 1 is already un-
derway, and others are likely to be undertaken as the
practitioner demands more rational, e�cient design of
optimization hybrids.

10 CONCLUSIONS

This paper has constructed a systems-level theory of
e�cient global-local hybrid search, applied that the-
ory to a number of base cases, and outlined a number
of continuations and extensions to the work. By ide-
alizing the hybrid as consisting of steps by a global
solver G, followed by steps by a local solver L, and by
idealizing a search space as consisting of basins of at-
traction that lead to acceptable targets, the framework
is able to decompose the problem of hybrid search. In
the framework, a single iteration results in either the
global searcher hitting a target, in which case the job
is done, or the global searcher hitting a potential basin
of attraction, in which case local search leads us to a
target (or on a wild goose chase). With this abstrac-
tion, the framework requires two sets of parameters,
characteristic probability values of hitting targets and
basins and time-to-criterion coe�cients that quantify
the length of time L expected before reaching accept-
able solutions. Together, these two parameters are
used with suitable equations accounting for time and
reliability, and the result is a theory that permits the
user to calculate an optimal balance of local and global
search.

Hybrids have long been used in genetic and evolution-
ary algorithm practice, but much of this usage has
been ad hoc and without bene�t from a macro-level
theory. The results of this paper should aid users in
better understanding and choosing the proper balance
between global and local solvers to help �nd solutions
quickly, reliably, and accurately.
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