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Abstract

In engineering, it is often necessary to formulate
problems in which there are several criteria or
objectives. It is unlikely that a solution that
optimizes one of the objectives will be optimal for
any of the others. Compromise solutions are
therefore sought such that no other solutions are
better in any one objective while remaining no
worse in the others. These types of problems are
known as either multiobjective, multicriteria, or
vector optimization problems. The problem
addressed in this paper concerns the proposition of
different approaches based on Genetic Algorithmsto
solve multiobjective optimization problems. We
use notions about population manipulation and
Pareto theory to develop our approaches, and study
the Left Ventricle 3D Reconstruction problem from
two Angiographics Views to test them.

1. INTRODUCTION

MultiObjective (MO) optimization extends optimization
theory by permitting multiple objectives to be optimized
simultaneously. Multiobjective optimization has been
used in economics and management science for years and
has gradually crept in engineering (Azarm, 1998; Dozier
et a, 1998; Evans, 1984; Goldberg, 1989; Takayama,
1974). Genetic Algorithms (GAS) have been recognized to
be possibly well-suited to MO optimization since early in
their development. GAs possess many characteristics
desirable in a MO optimizer, most notably the concerted
handling of multiple candidate solutions. MOs search and
optimization is perhaps a problem area where
Evolutionary Computation really distinguishes itself
from its competitors. Several methods for adapting GAs
for this purpose have been proposed. They fall into two
categories (Azarm, 1998; Dozier et al, 1998; Evans,
1984; Fonseca et al., 1998; Fonseca et al., 1995;
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Goldberg, 1989; Rudolph, 1998; Takayama, 1974):
firstly, there are methods that try to combine all the
different objectives into one. Second, there are methods
based on Pareto-ranking.

The problem addressed in this paper concerns the
proposition of different approaches based on GAsto solve
MOP. We use notions about population manipulation
and Pareto theory to develop our approaches, and study
the Left Ventricle 3D Reconstruction problem from two
Angiographics Views to test them. Left ventricular
function is one of the required parameters to advise an
appropriate therapeutical technique for patients with
cardiac diseases, therefore the research of procedures for
quantifying this function is of special interest (Miranda et
al., 1996; Navarro et al., 1998; Pellot et al., 1994; Toro
et al., 1996). The left ventricular angiography provides
both anatomical and functional information required for
the evaluation of the cardiac diseases.

This work is organized as follows, in section 2 the
theoretical bases of the MO optimization, GAs and the
current evolutionary approaches to MO optimization are
reviewed. Then, we present our optimization approaches
based on population manipulation and Pareto theory.
Section 4 presents the application of our approaches for
the Left Ventricle 3D Reconstruction problem and results
analysis. We compare our results with a method based on
SA and a classical GA (using a weighted objective
function) (Navarro et al., 1998; Toro et al., 1996).
Conclusions are provided in section 5.

2. REVIEW OF THE PROBLEM

2.1 MULTIOBJETIVE OPTIMIZATION

Many real world problems involve multiple objectives,
which should be optimized simultaneously. However,



suitable solutions to the overall problem can seldom be
found. Optimal performance according to one objective,
often implies unacceptably low performance in one or
more of the other objectives, creating the need for a
compromise to be reached. That is, the simultaneous
optimization of multiple objective functions deviates
from single function optimization in that it seldom
admits a single, perfect solution. Instead, MOPs tend to
be characterized by a family of alternatives (multiple
solutions) which are considered equivalent by the absence
of information concerning the relevance of each objective
relative to the others. The MOP is, without loss of
generality, the problem of simultaneously minimizing (or
maximizing) the n components fx Ok=1, ..., n of a
possibly nonlinear vector function f of a general decision
variable x in auniverse U, where f(x)= (f1(X), ..., fn(X)).

Mathematically, the MOP can be stated as follows: given
a set of objective functions f={f1, ..., fn}, find a point x
such that f is minimized (or maximized). In all but the
simplest cases, it will not be possible to find a solution
to a MOP. In practice, we seek solutions such that no
one component function can be improved without
sacrificing another. In order to discriminate effectively
between two points xg and x1 it is important to impose
some type of preference structure on f, which defines the
relevance of each objective function in f. A candidate
solution to the MOP, xq, is said to dominate another
candidate solution x1, if xg preferred based on some
preference structure P. In (Dozier et al, 1998), they define
three preference structures for MO optimization: value
function preference, Pareto preference, and lexicographic
preference. In value function preference, a function g is
defined on f such that g(xg)<g(x1) if and only if xq is
preferred to x1. In the above case, xq is said to dominate
X1 and x1 is said to the dominated by xg. Another type of
preference structure is known as lexicographic preference.
In this type of preference an order is imposed on f and a
point xg is said to dominate another point x1 if

fr(xp)<fk(x1) and fj(xg)=fj(x1) Oi=1, ..., k-1.

Perhaps the most widely used preference structure used in
evolutionary MO optimizers is the Pareto preference
structure. Using Pareto preference, we say of two
solutions xp,x1 O U that xg dominates x1 if O O {1, ...,
n} such that fj(xp)<fj(x1) and that Uj U {1, ..., n}, fj(xQ)
< fj(x1). In others words, xg dominates x1 if xg is better
than x1 for at least one objective function, and is no
worse on any of the others. A solution is Pareto-optimal
if it is not dominated by any other solution. Ideally, we
would like to find the set of all Pareto-optimal solutions.
That is, the problem usually has no unique, perfect
solution, but a set of nondominated, alternative solutions,
known as the Pareto-set. A set of points is said to be
Pareto optimal if, in moving from a given point A to
another point B in the set, any improvement in one of the
objective functions from its current value would cause at
least one of the other objective functions to deteriorate

from its current value. The Pareto optimal set yields an
infinite set of solutions, from which the engineer can
choose the desired solution. Using Pareto theory, the
optimization process is best viewed as a pareto optimal
process seeking a consensus in which many objectives are
balanced so that the improvement of any single objective
will result in a negative impact on at least one other
objective. A pareto optimal solution is not unique, but is
a member of a set of such points which are considered
equally good in terms of the vector objective. This space
may be viewed as a space of compromise solutions in
which each objective could be improved, but if it was, it
would be improved at the expense of at least one other
objective (Azarm, 1998; Dozier et al, 1998; Evans, 1984,
Fonseca et al., 1998; Fonseca et al., 1995; Goldberg,
1989; Miranda et al., 1998; Rudolph, 1998; Takayama,
1974).

2.2 GENETIC ALGORITHMS
2.2.1 Introduction

GA, invented by J.H. Holland, emulates biological
evolution in the computer and tries to build programs that
can adapt by themselves to perform a given function
(Goldberg, 1989). A GA follows an "intelligent
evolution" process for individuals based on the utilization
of evolution operators such as mutation, inversion,
selection and crossover. Optimization is a major field of
GA's applicability. They belong to the class of
probabilistic algorithms, yet they are very different from
random algorithms as they combine elements of directed
and stochastic search. Because of this, GA's are also more
robust than existing directed search methods. Another
important property of such genetic based search methods
is that they maintain a population of potential solutions,
all other methods process a single point of the search
space. The population undergoes a simulated evolution: at
each generation the "good" solutions reproduce, while the
"bad" solutions die. To distinguish between different
solutions we use a cost function. The idea is to find the
best local optimum, starting from a set of initial
solutions (individuals), by applying the evolution
operators to successive solutions so as to generate a new
and better local minimum. The procedure evolves until it
remains trapped in alocal minimum or a given number of
generations.

2.2.2 Genetic Algorithms and MultiObjetive
Optimization

GAs are often used to try to find optimal or near optimal
solutions to problems. A number of adaptations to GAs
have been proposed to deal with MO functions (Dozier et
al, 1998; Fonseca et al., 1998; Fonseca et al., 1995;
Goldberg, 1989; Miranda et al., 1998; Rudolph, 1998;
Schaffer, 1985). Current MO evolutionary approaches
ranging from the conventional analytical aggregation of



the different objectives into a single objective function to
a number of population based approaches, and the more
recent ranking schemes based on the definition of Pareto-
optimality.

a) Plain aggregating approaches. In most problems where
no global criterion directly emerges from the problem
formulation, objectives are often artificially combined,
or aggregated, into a scalar function according to some
understanding of the problem. This approach has the
advantage of producing a single compromise solution.
The problem is to determine an appropriate setting of
the coefficients of the combining function. A lot of
applications of this approach have been reported in the
literature (Aguilar, 1995 1; Aguilar, 1995 2; Aguilar
et al. 1998; Goldberg, 1989; Hidrobo et al., 1998 1,
Hidrobo et al., 1998 2, Miranda et al., 1996;
Mulhenbein et al., 1988; Navarro et al., 1998). The
combination of various objective functions into a
single fitness function might be done using a weighted
sum method, by defining:

00 = W)
=1

b) Population based: This approach recognizes the
possibility of exploiting GA populations to treat
noncommensurable objectives separately and search for
multiple non-dominated solutions concurrently in a
single GA run. That is, this approach attempts to
promote the generation of multiple non-dominated
solutions. VEGA (Vector Evaluation GA) is one of
the main examples of this approach (Schaffer, 1985).
In VEGA appropriate fractions of the next generation
are selected from the whole of the old generation
according to each of the objectives, separately.
Crossover and mutation are applied as usual after
shuffling all the subpopulation together. Shuffling and
merging all subpopulation corresponds to averaging
the normalized fitness components associated with
each of the objectives. The resulting overall fithess
corresponded, therefore, to a linear function of the
objectives where the weights depended on the
distribution of the population at each generation. This
linear combination of the objectives explains why the
population tended to split into species particularly
strong in each of the objectives. Fourman proposes an
approach where the selection is performed by
comparing pairs of individuals, each pair according to
one of the objectives (Goldberg, 1989). Objectives are
assigned different priorities by the user and individuals
are compared according to the objective with the
highest priority. A second version, consists of
randomly selecting the objective to be used in each
comparison. A detailed discussion of other approaches
which exploit GA population in order to search
multiple nondominated solutions can be found in
(Fonseca et al., 1995).

¢) Pareto-rank-based approaches. Other methods have used

d)

3.
APPROACHES

the idea of pareto-ranking (Fonseca et al., 1995;
Fonseca et al., 1998; Goldberg, 1989; Rudolph,
1998). The pareto-rank of an individual is defined to be
the number of members of the population by which it
is dominated. The ideais to then seek individuals with
minimum pareto-rank. Pareto-based fitness assignment
was proposed by (Goldberg, 1989), as a mean of
assigning equal probability of reproduction to al non-
dominated individuals in the population. More
formally, the method consists of assigning the rank 1
to the non-dominated individuals and removing them
from contention, then finding a new set of non-
dominated individuals, ranked 2, and so forth. Fonseca
and Fleming have proposed an individual's rank
correspond to the number of individuals in the current
population by which it is dominated (Fonseca et al.,
1995). Non-dominated individuals are, therefore, all
assigned the same rank. The algorithm proceeds by
sorting the population according to the MO ranks
previously determined. Tournament selection based on
Pareto dominance has also been proposed (Dozier et
al., 1998).

Niche induction techniques: Pareto-based ranking
correctly assigns all non-dominated individuals the
same fitness, but that does not guarantee that the
Pareto set be uniformly sampled. When presented with
multiple equivalent optima, finite populations tend to
converge to only one of them. Goldberg et al.
proposed to use fitness sharing to prevent genetic drift
and to promote the sampling of the whole Pareto set
by the population (Evans, 1984). This makes it
unfavorable for a GA to generate individuals which are
too similar. Fonseca and Fleming implement fitness
sharing in the objective domain and provided theory for
estimating the necessary niche sizes based on the
properties of the Pareto set (Fonseca et al., 1995).
They use niche formation techniques to promote
diversity among preferable candidates, and progressive
articulation of preferences is shown to be possible as
long as the GA can recover from abrupt changesin the
cost landscape.

GENETIC ALGORITHM

In this section, we present our MultiObjective Problems
Resolution approaches based on GAs.

3.1 POPULATION BASED APPROACHES

3.1.1 Approaches based on subpopulations

a)

First Approach (1A): In this approach we divide the
population according to the number of objectives to
optimize. That is, for a population of size M and with
a problem with n objectives, we define n



subpopulations with M/n individuals. Each
subpopulation optimizes an objective function using a
classical GA. Then, we define priorities to each
objective, and we select each objective function
according to its priority to evaluate all subpopulations
a given number of generations. We use a partia
replacement to sure a diversity in our final
subpopulations. The general procedureis:

1. Divide the initial population in n subpopulations
2. Optimize each subpopulation using a different
objective function and aclassical GA
3. Rank objectives according to their priorities
4. Repeat until evaluate each objective
Optimize all subpopulations using the same
objective function according to their ranks

b) Second Approach (2A): In this approach we follow the
same first two steps as above, that is, we define n
subpopulations and we optimize them using a different
objective in each one. Then, we select the best individuals
of each subpopulation (individuals with the minimal
value) and we create a new global population with them.
Finally, we optimize this population choosing randomly
a different objective function for each iteration. The
general procedureis:

1. Divide the initial population in n subpopulations
2. Optimize each subpopulation using a different
objective function and aclassical GA
3. Create a new population with the best individuals of
each subpopulation
4. Repeat a given number of iterations
Choose randomly an objective function
Optimize the population with this objective
function and a classical GA

¢) Third Approach (3A): In this approach we follow the
same first two steps as above, that is, we define n
subpopulations and we optimize them using a different
objective in each one. Then, we select the best individuals
of each subpopulation and we define the weight value for
each objective as the number of optimal individualsin its
subpopulation (individuals with the minimal value).
Afterward, we define a global objective function as the
combination of these objective functions using a
weighted sum method. Next, we create a new global
population with the best individuals of each
subpopulation and we optimize it using the global
objective function. The general procedureis:

1. Divide the initial population in n subpopulations

2. Optimize each subpopulation using a different
objective function and aclassical GA

3. Create a new population with the best individuals of
each subpopulation

4. Define the global objective function

5. Optimize the new population using the global
objective function and a classical GA

3.1.2. Approaches based on the global
population

a) Fourth Approach (4A): In this approach we choose
randomly an objective function as fitness function for
each generation. To choose the objective function we can
use two schemes: according a probability for each
objective function that is minimized each time it is
chosen, or using a tournament selection mechanism. The
general procedureis:

1. Repeat a given number of iterations
choose an objective function
Optimize the population using this objective
function and a classical GA

b) Fifth approach (5A): In this approach, the GA isrunin
two stages: the first one obtains the weight value of each
objective function and defines a global objective function
using a weighted sum method. The second one searches
the optimal solution using the global objective function.
To obtain the weight values, the population is evaluated
with each objective function and the number of
individuals with minimal value is the weight value of
this objective function. The genera procedureis:

1. Repeat n times
Choose anew objective function
Optimize population with this objective function
Obtain the weight value for this objective
function
2. Define the global objective function
3. Optimize population with the global objective
function

3.2 PARETO BASED APPROACHES (PA)

This approach compromises the aggressive selection that
will result from the total domination scheme, and the
diversity that is maintained from the non-dominant
random selection, using a"partial domination" Pareto-like
optimality criteria. To implement this, the different
objective functions are examined. Using a subpopulation
for each objective function, the pareto-rank of an
individua is defined to be the number of members of the
subpopulation by which it is dominated. This approach is
composed for two stages: in the first one we rank the
individuals of each subpopulation, that is, the algorithm
starts by sorting the subpopulations according to the MO
ranks previously determined. Then, we use non-dominated
individuals as reference individuals to apply crossover
operator in each subpopulation.

Classification stage:
1. Divide the initial population in n subpopulations
2. Repeat for each subpopulation
Define rank for each individual
Select non-dominated individuals (reference
individuals)



Optimization stage:

1. Select the best individuals of each subpopulation

2. Cross these individuals with reference individuals
define in the previous phase

3. Migrate new individuals to each subpopulation

And, the general procedureis:

1. Repeat until system convergence
1.1 Classification phase
1.2 Optimization phase

4. RESULTS ANALYSIS
4.1 CASE OF STUDY

An interesting MOP is the Left Ventricle 3D
Reconstruction Problem (Miranda et a., 1996; Navarro et
al., 1998; Pellot et al., 1994; Toro et al., 1996). Left
ventricular function is one of the required parameters to
advise an appropriate therapeutical technique for patients
with cardiac diseases, therefore the research of objective
procedures for quantifying this function has special
interest. The angiography is an invasive technique for the
generation of medical images that allows visualization of
coronary arteries and heart cavities after the injection of a
contrast agent. In digital angiography the X-rays are first
converted into visible light and the resulting image is
acquired with a TV camera, this video signal can be
digitized and stored in a computer system. The left
ventricular angiography provides both anatomical and
functional information required for the evaluation of the
cardiac diseases. Computer analysis of those images aims
to perform the qualitative and quantitative evaluation of
the ventricular function. Currently, the development of
several digital image processing techniques with
application to digital angiography has become an
interesting issue. One of these techniques corresponds to
the 3D reconstruction from two angiographic views
(Pellot, 1994).

The proposed reconstruction algorithm starts with the
provided information from two preprocessed angiographic
views, acquired simultaneously according to two mutually
orthogonal directions. The algorithm works under the
assumption of a homogeneous mixture of blood and
contrast agent, in order to develop a binary reconstruction
model. The 3D ventricular object is considered as a
stacked bidimensional slice set and each slice is
reconstructed from the two one-dimensional profiles
corresponding to a pair of rows obtained from the
segmented projections. That is, the 3D reconstruction
becomes a set of multiple 2D reconstruction problems,
where each slice is reconstructed based on its 1D
densitometric profiles.

In general, the reconstruction problem from only the
provided information from two orthogonal projections, is

an ill defined inverse problem, because it is not possible
to assure the existence, uniqueness and stability of the
solution without including additional restrictions.
Consequently, the solution must be regularized based on a
priori information about the ventricular shape.

The proposed model works under the assumption that the
acquired angiograms contain only information about the
left ventricle. The intensity gray level of each pixel in the
input images is related to the depth information in the left
ventricle. This information is grouped into a matrix form
for each image and they are denoted as ly and Ix of size
N1xN3 and N2xN3 respectively. The 2D reconstruction
problem can be stated as follows: given two 1D
projections array aj and Bj with N1 and N2 elements,
respectively, we want to reconstruct a 2D binary array of
size N1xN2, denote { xjj} either with O or 1 values, such
that this array will satisfy the projections

N2

> Xij=0i gj=1, .., N1

N1
> Xi=B pj=1, .., N2
=1 i=1

N1 N2
and > ai=y B
=1 =1

The proposed algorithm includes two stages: In the first
stage an initial reconstruction is provided based on an
ellipsoidal model or any other approximate reconstruction
for each one of the 2D dlices. During the second stage,
the initial reconstruction is appropriately deformed in
order to obtain the most probable slice form. Such
deformation process is performed using our MO
approaches based on GA which allow minimize the
energy function that includes projections compatibility,
connection and spatial regularity constraints. That is, the
energy function is chosen for measures the degree of
match between the given projections and the current slice
reconstruction projections. The energy function is defined
as.

UZ(K) = Us%(k) + U2%(k) + Uz?(K)

where, z isthe reconstructed dice
k is the iteration number

The first energy component corresponds to the slice
fidelity with respect to the given projections. If the given
projections are a'iz, [3']2 and the current slice projections
are denoted as aj%(k), Bj%(k), the first energy component
U, for the dlice zis estimated as:

Uik = E{Giz(k) - G; Zr+ %[sz(k) - B; T
=1

i=1



The second component corresponds to the internal energy
of the reconstructed slice. That is, the second energy
component is a regularity term that restricts the number
of plausible solutions to the smooth slice contours.

2 NN i1+ 2 2
U4k :gzz 8- Z Z 8-E(xij(k) - xm(k))
i=1j=1|  mEaIE

where, &(*) is the Kronecker delta function, which is equal
to one if xjj%(k) = xmI#(k) and equal to zero if xjj*(k) #
xml4(k) , where xjj%(k) represents the pixel value a
position (i,j) for the reconstructed slice z, at the iteration
K.

The third component corresponds to the energy of
similarity between the current slice configuration and the
adjacent slice previously reconstructed. That is, the third
component considers the regularity constraint of spatial
smoothing between adjacent slices. This term is obtained
at the difference between the current contour and the
previoudly reconstructed slice contour

z NIN2| - 7 z1
U39 =3 S1xi - ;|

i=1j=1

In general, for each reconstruction slice the next procedure
is executed:

1. Theinitial configuration is obtained of the slice
2. The optimal configuration of the slice is searched
using our approaches.

4.2 EXPERIMENTAL RESULTS

In order to evaluate our different MO approaches based on
GA in the Left Ventricle 3D Reconstruction Problem,
several tests were performed, including the slice
reconstruction without considered the adjacent slice
information and the reconstruction of a known 3D binary
object, and by the performing the reconstruction from two
real angiographic views appropriately preprocessed. The
reconstruction was performed from the orthogonal
projection corresponding to the row and column addition
of several dlices of the binary database. We compare our
population-based approaches and pareto-based approach
with the results obtained in (Navarro et al., 1998; Toro et
al., 1996). The first work presents an approach based on a
GA using a weighted sum method, and the second one
presents an approach based on Simulated Annealing.

4.2.1 lIsolated slice reconstruction

In this test, we use 60 elements for describing contour.
The information of the adjacent slice was not considered
and the reconstruction method was started with an
elliptical initial approximation. In table 1, we see that
our approaches give better results than previous works
(Navarro et al., 1998; Toro et al., 1996). Particularly, our
approaches give better results than (Navarro et al., 1998),
because the classical GA used in that work not found
solutions with a good combination between the different
objectives. With respect to the results obtained in (Toro
et al., 1996), PA, 1A, 2A and 4A given better results
than it. The other approaches developed in thiswork (3A,
5A) do not give better results because we try to define a
global objective function using the weighting objectives
method, and this weights are obtained according to the
number of individuals with optimal solution when GA
converges (this is not a good criterion to define the
weights).

Table 1. Obtained Results for the Slice Reconstruction. In the upper row the Original Slices are shown,
the Reconstruction Error for each Method are shown below

Original Slices

Toro et al., 1996 f 4.3% 2.4%
Navarro et al., 1998 J| 4.9% 2.8%
1A 4.3% 2.3%
2A 4.4% 2.4%
3A 4. 7% 2.5%
4A 42% [ 2.3%
5A 4.6% 3%
PA 3.8% 2.3%

15% § 15% [ 1.9% [ 3%
19% | 27% | 32% | 1.9%
14% | 15% [ 1.8% | 3%
14% | 16% | 1.9% | 3%
16% | 18% | 22% | 3.2%
16% | 15% | 1.8% | 3%
21% § 18% | 26% [ 31%
120 § 11% | 16% | 2.6%



4.2.2 Tridimensional Reconstruction

In this test, 60 elements were used for representing each
slice contour. An elliptical approximation is used to start
the reconstruction method. We obtain the same quality of

results than in the previous test, that is, PA, 1A, 2A and
4A give better results (table 2). PA gives the best results
because it combines correctly the different objectives (it
obtains Pareto optimal solutions).

Table 2. Obtained Results for the 3D Reconstruction. In the upper row the Original Slices are shown,
the Reconstruction Error for each Method are shown below

Original objects . .
Toroetal., 1996 | 10.3% | 7.2%
Navarroetal., 1998 | 11.6% [ 83%
1A 9.8% | 7.3%
2A 11% 8.1%

3A 10.9% | 8%
4A 9.7% | 7.6%
5A 9.9% | 7.5%

PA 9.8% | 7%

5. CONCLUSIONS

We have investigated the use of different versions of GAs
in MOP. They have a number of advantages. First, they
have a natural niching behavior that allows multiple
pareto-optimal solutions to evolve. Second, there are
some approaches (population based) faster than other
(pareto-based approach). Third, they seem to produce a
better spread and higher quality of result (at least for the
Left Ventricle 3D Reconstruction Problem). Our
approaches allow to solve the ambiguity of the problem
by including a priori information in the form of
constraints, an initial approximate reconstruction, and a
MO optimization scheme. Previous approaches should
define arbitrary the parameter weights of the energy
function components, that controls the contribution of
each objective into the global energy function. Directions
for future research in MOP must include hybrid
approaches using search strategies including the
incorporation of fitness sharing, and adaptive
representations on the approaches presented in this work.
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