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Abstract

It is often the case in many problems in science
and engineering that the analysis codes used are
computationally very expensive. This can pose a
serious impediment to the successful application
of evolutionary optimization techniques.
Metamodeling techniques present an enabling
methodology for reducing the computational cost
of such optimization problems. We present here
a general framework for coupling metamodeling
techniques with evolutionary algorithms to
reduce the computational burden of solving this
class of optimization problems. This framework
aims to balance the concerns of optimization
with that of design of experiments. Experiments
on test problems and a practical engineering
design problem serve to illustrate our arguments.
The practical limitations of this approach are also
outlined.

1 INTRODUCTION

Evolutionary search on complex high dimensional, multi-
modal parameter optimization problems often requires a
very high number of function evaluations. In many
practical situations, this computational expense cannot be
afforded. A typical example is that of aerodynamic wing
design, where each function evaluation may require a
computational fluid dynamics (CFD) simulation costing
hours of supercomputer time. Hence, when the difficulties
of high computational cost are coupled with nonconvex
design spaces, standard evolutionary optimization
approaches may be impractical and more advanced
strategies are required.

Metamodels are statistical models that are built to
approximate detailed computer analysis codes (Simpson

et al., 1997).  Metamodels are orders of magnitude
cheaper to run, and can be used in lieu of detailed analysis
during evolutionary search. The underlying premise of
this approach is that, one can construct an approximation
of the analysis codes that is much more efficient to run,
and which yields insight into the functional relationship
between the input variables x and the output y. If the true
nature of a computer analysis code is represented as

y f= ( ),x (1)

then a metamodel or “model of the model” is of the form
)
y g= ( ),x  such that y y= +) ε (2)

where ε represents the error of the approximation. There
exists a variety of different approximation techniques one
could use to construct a metamodel (e.g., least square
regression, backpropagating artificial neural nets, etc.).

We are concerned here with deterministic analysis models
(i.e. a given x will always yield a singular y value, not a
distribution). A “statistically sound” method for
constructing a metamodel in this case would be through
the use of kriging models, also referred to as the Design
and Analysis of Computer Experiments (DACE) models
in the statistics literature (Simpson, 1998; Sacks, et al.,
1989), and Gaussian regression techniques in the neural
networks literature (Gibbs, 1997). Kriging techniques
originated in the geostatistics community in the 1960's; an
account of the history of these technique can be found in
Cressie (1991).  The problem of constructing metamodels
is closely coupled with the field of design of experiments
(Sacks, et al., 1989).

Approximation model management frameworks for
pattern search algorithms have been proposed in the
literature (Dennis and Torczon, 1997). This framework
uses DACE approximation models to accelerate the
optimization procedure, and theoretically guarantees that
the search converges to a local optima. Successful



applications of this approach to engineering design
problems with explicit algebraic constraints have recently
been presented in the literature (Booker, et al., 1998).

The integration of approximation models with
evolutionary algorithms is a research topic which has
attracted some attention of late. Ratle (1998) presented an
approach wherein kriging techniques were used for fitness
landscape approximations in GAs. Encouraging results
were presented for some multimodal test functions.
However, the details of how the data points are selected
for constructing and updating the kriging model are not
reported. It is important to note here that the problem of
designing experiments to generate numerical data for
constructing a statistical metamodel is of crucial
importance to the success of this approach.

Earlier efforts have focused on selecting between
computationally expensive models and cheap
approximation using variants of injection island genetic
algorithms (iiGA). (Vekeria & Parmee, 1996; Goodman
et al., 1997; Eby et al., 1998)

A case for the use of variable-fidelity analysis models in
evolutionary optimization was presented by Robinson and
Keane, (1998). El-Beltagy and Keane (1998) presented
fundamental studies focusing on the use of a family of
approximate fitness representations in GAs. A
computational framework for integrating a class of single-
point approximation models with GAs was proposed by
Nair, et al (1998). More recently, Nair, et al (1999),
extended this framework for coevolutionary GAs applied
to  the design of large flexible space structures.

In this paper, we present a general framework for
integrating simulation metamodels with evolutionary
optimization algorithms. The construction of a good
metamodel requires an experimental design which is
space-filling so as to capture the essential trends of the
function landscape. In contrast, the goal of optimization is
to generate points which lead to improvements in the
objective function. We present an algorithm for
adaptively selecting points for updating the metamodel,
while balancing the often conflicting concerns of good
experimental design with that of optimization. We also
present experimental results on some test problems to
outline the advantages and limitations of this approach.

This paper is organized as follows: in the next section we
give a brief overview of Gaussian Regression Models.
Section 3 describes the evolutionary-metamodeling
synthesis. Section 4 details experiments results. The paper
closes with a brief conclusion and discussion of future
work.

2 GAUSSIAN REGRESSION MODELS

We are concerned with approximating deterministic
computer models, and hence perfectly interpolating
models are most germane to our concerns. This section
presents a brief overview of the mathematical foundations
of gaussian regression models, which are interchangeably
referred to as Kriging and DACE models in this paper.
This class of statistical models can be written as the
combination of a polynomial model plus departures of the
form

)
y p Z( ) ( ) ( )x x x= + (3)

where 
)
y( )x  is the metamodel, p( )x is a known

polynomial function of x, and Z( )x is the realization of a
normally distributed Gaussian random process with mean

zero, variance σ 2 , and non-zero covariance. The
polynomial term p( )x  provides a global model while

Z( )x  accounts for “localized” deviations. Here we use a
constant term β  for the global model p( )x  (Sacks, et al,

1998).

The covariance matrix of Z( )x is given by

( ) ( )[ ] ( )Cov Z Z C jx x x xi j i, ,= σ 2   (4)

where ),( jR xxi is the spatial correlation function

between sample points xi and xj from the set of sample

points used to construct the model { }xi i
N
=1

. The only

constraint on the choice of a correlation function is that
the resulting covariance matrix should be positive
definite. A number of correlation functions suitable for
deterministic computer experiments can be found in
Sacks et al (1989).

A Gausian correlation function is employed in this work,
which can be written as

( ) ( ) ( )( )R l
l
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i
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j
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∑exp θ
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  (5)

where ( )xi
l  is the lth  component of xi, an L dimensional

vector, andθ is the vector of correlation parameters.

Predicted estimates 
)
y( )x , at untried values of x in the

case when p( )x  is taken to be a constant term, can be

written as

( ) ( ))
y( )x k x C y 1= + −−β βT 1 (6)

where C is the correlation matrix constructed from the N
sample points using (5), 1 is a column vector of ones of
length N, y is a column vector of length N containing the
output of  the analysis model at the sample points, and



k(x) is a correlation vector of length N between x and the

sampled data points { }xi i
N
=1

. It is given by

( ) ( ) ( )( )k x x , x x , x1= R R N, ,K (7)

The model parameters β and θ are estimated by assuming

that the function to be approximated is the realization of a
gaussian stochastic process. This enables us to use the
framework of Bayesian statistics to derive error bounds
on the model predictions. Maximum Likelihood
Estimation (MLE) is used to obtain the model parameters.

In (6) β  is estimated as

( ))
β = − −1 C 1 1 C fT T1 1 (8)

where f is the vector of function values at the sample
points.

The estimate of the variance of the sample point from the
global model β is given by

( ) ( )
$

$ $

σ
β β

2
1

=
− −−f 1 C f 1

T

N
. (9)

The correlation parameters are estimated by solving an
unconstrained minimization problem which can be written
as

max
ln( $ ) ln(det( ))

θ

σ
>

+
0

2

2

N C
 . (10)

It can be clearly seen that DACE models are perfectly
interpolating in nature. The reader is referred to the
dissertation of Gibbs (1997), for a detailed overview of
the computational implementation of DACE models and
extensions to accommodate noisy data via non-
interpolating models.

For the DACE model to work appropriately, the { }xi i
N
=1

sample points should be selected such that the trends of
the underlying function can be captured effectively. To
achieve this we need to select points which are space-
filling in nature. However, if the sample points are too
close together or identical, the correlation matrix may be
ill-conditioned. Our metamodel update mechanism
attempts to prevent this. In the present work, we also add
a small diagonal term (10-6) to the correlation matrix to
circumvent this problem.

It has been shown by Neal (1996) that the properties of a
neural network with one hidden layer converge to those of
a Gaussian process as the number of hidden neurons tends
to infinity if standard `weight decay‘ priors are assmued .
This has motivated the idea of replacing supervised neural
networks with Gaussian processes.

3 EVOLUTIONARY-METAMODELING
SYNTHESIS

Evolutionary algorithms being population-based search
techniques generate space-filling points as they explore
the search space. The key idea of our algorithm is to
select points for constructing the metamodel such that the
concerns of good experimental design can be balanced
with that of optimization. Once a baseline metamodel is
constructed, it can be used in lieu of the computationally
expensive analysis model for the fitness predictions. The
points generated by the evolutionary algorithm are used to
adaptively update the metamodel so as to improve the
approximation of the search landscape and prevent the
optimizer from getting trapped in a false optima within
the metamodel.

Begin

  Random population initialization

  Evaluation of Np individuals

  while(number of accurate evalution <  maxeval)

    Apply evolutionary operators

    Evaluate using metamodel

    if(generation delay reached)

      Update metamodel

    end if

  end while

End

The general structure of our algorithm is shown above.
The first step of the scheme involves building a baseline
metamodel. There exists a number of experimental design
techniques in the statistics literature (e.g., randomized
orthogonal arrays, Latin hypercubes, etc.) which could be
used to generate data for this purpose (Owen, 1992). In
this research, we chose a subset from the randomly
generated initial population such that they satisfy a
minimum distance criterion.

We denote the set of vectors used to construct the

metamodel by { }X xN i≡
=i
N

1
. The set of vectors of

individuals in a given population is denoted by

{ }P pN ip i

Np
≡

=1
.

As shown, the proposed algorithm is structured around
the maximum computational budget allowable for model
evaluations. The parameter maxeval denotes the
maximum number of model evaluations that can be used.
Metamodel construction and evaluations are considered to
be of negligible computational cost for the problems
under consideration. We use the term generation delay to
denote the frequency at which we update the metamodel.

Function Update metamodel

Begin

 Sort population in descending order
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j

= −










∈
=

min
N i

Np

1
 for i=1 to Np*fitfac

   if( Di >η)

    X X pN = ∪N i

    Di = 0

   end if

 end for

 Sort D in descending order

 for i=1 to Np*doefac

   if( Di >ε)

    X X pN = ∪N li

    Di = 0

   end if

 end for

 evaluate new inclusions of X N

 Reconstruct Metamodel using the expanded X N

End

In the above pseudo code D is a vector of length N that
contains the minimum of the distances between the
current population members and the metamodel
construction vectors, l is an index vector matching the
indices of D after it has been sorted to the population set
PNp .  doefac and fitfac, are the fractions of the

population considered for inclusion in the metamodel set
X N based on the minimum distance and fitness

respectively. η and ε are the minimum distance allowable
for inclusion of the points selected based on fitness and
distance, respectively.

The metamodel update first starts by sorting the
population in a descending order such that pi is fitter  than
pi+1. The next step involves computation of the minimum
distance vector D. A fraction of the population (fitfac)
based on fitness is considered for inclusion in the
metamodel. The member under consideration must satisfy
a minimum distance check based on η. Similarly, another
fraction of the population based on distance criteria is
selected. The new expanded metamodel set X N is finally

used for reconstructing the metamodel. Here equation (1)
to (8) are used.

This update mechanism does not allow redundant points
to be included in the metamodel. The first selection
criterion is mathematically equivalent to maximin
criterion used in design of experiments literature (Torczon
and Trosset, 1998). This criterion can lead to space filling
designs. In the initial stages of the search this criterion is
almost always satisfied by most of the population
members, later on in the exploitation phases only very
few members satisfy this criterion.

Note that η should always be set greater that ε to allow
for proper metamodel fine-tuning during the final
exploitative stages of the search.

The process of continuously updating the metamodel
creates a dynamic landscape. In such a landscape false
optima are likely to appear and disappear. Hence it is
likely that the best individual obtained may be lost during
the evolution of the metamodel. To prevent this we use
elitism. In the first generation the fittest individual is
stored. At each of the following generations the best
individual is evaluated using the computer model. Its
fitness is then compared with that of the stored elite. If the
best individual is fitter than the elite, the elite takes on its
values, otherwise the best individual is replaced by the
stored elite.

4 EXPERIMENTAL RESULTS

We conducted experimental studies on two test functions
and one real world problem to evaluate the performance
of our approach.

We used a GA for the experiments reported here. It is
typical of those described in Michalewicz (1996). The GA
makes use of arithmetic crossover, gaussian mutation, and
the tournament selection operator. The crossover and
mutation probabilities were kept constant at 0.9 and 0.15
for all the results reported here. The population size was
set to 50, and the tournament size was set to 2. For the
metamodel update parameters generation delay was set to
2, fitfac set to 0.1 and doefac to 0.5.

4.1 THE BUMP FUNCTION

The ‘bump’ problem, introduced by Keane (1994), is very
hard for most optimizers to deal with. It is quite smooth
but contains many peaks, all of similar heights. Moreover,
its optimal value is defined by the presence of a constraint
boundary.

The problem is defined as

maximize

abs( cos ( ) cos ( ))4 2
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Figure 1: Plot of the bump problem for n=2

An interesting feature of this function is that the surface is
nearly, but not quite, symmetrical about x1=x2, so the
peaks always occur in pairs, but with one always bigger
than its sibling. The global optimum is defined by the
product constraint. When the problem is generalized for n
greater than two, it becomes even more demanding with
families of similar peaks occurring within a highly
complex constraint surface. These properties of bump
have made it suitable for the study of GA performance
and optimizing GA control parameters (Keane, 1995a)  as
well as the control parameters of other evolutionary
optimization methods (Keane, 1995b).

For the 2D case  η was set to 0.001 and ε to 0.2, and for
5D to 0.0001 and 0.7. maxeval was set to 500. A standard
GA with identical parameters was setup to see how the
metamodeling based strategy compares. The results
depicted in Figures 2 and 3 show that a metamodeling
strategy is clearly advantageous for this problem. In this
problem only the feasible points were used to build the
metamodel.

Figure 2: . Best of generation versus number of accurate
evaluations averaged over 20 runs for 2D bump. The solid

line is for a metamodel based search. The dashed line is
for the baseline comparison.

Figure 3: Best of generation versus number of accurate
evaluations averaged over 20 runs for 5D bump. The solid
line is for a metamodel based search. The dashed line is
for the baseline comparison.

For the 2D case, the resulting metamodel after the
optimization has been carried out, is shown in Figure 4. It
is clear that the metamodel captures the essential feature
of bump, especially in the high fitness region.

Figure 4: Resultant metamodel after the optimization was
carried out. Note the resemblance with Figure 1 for the
constrained region.

4.2 GENERALIZED ACKLEY

The generalized Ackley function has one distinct optima
but its surface is quite bumpy. The problem is expressed
as (Bäck et a., 1993)
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 for

- 32.768<xi< 32.768 i=1,...,n (13)

This function has a know global optima of zero at xi=0 for
i=1,...,n.

Figure 5: Plot of the Ackley function for n=2.

Here we tried the metamodeling strategy for 2D and 5D
cases of Ackley.  For the 2D case  η was set to 0.0005 and
ε to 0.1, and for 5D to 0.00001 and 0.3. maxeval was set
to 500.

Figure 6: Best of generation versus number of accurate
evaluations averaged over 20 runs for 2D Ackley. The
solid line is for metamodel based search. The dashed line
is for the baseline comparison.

As the above figure clearly shows, the metamodel based
search gets near the optima pretty quickly and then stalls.
The global DACE metamodel cannot capture the details

around the optima while at the same time maintain a good
approximation of the other points.

4.3 EXPERIMENTS ON A BEAM STRUCTURE

Further experiments have been carried out on the design
problem of a 2D space structure (Keane, 1995c). The
baseline structure is shown below in Figure 7. It consists
of  40 individual Euler-Bernoulli beams connected at 20
joints. Each of the 40 beams has the same properties per
unit length. The beam is excited at one end as shown. The
goal of the optimization was set as minimizing the energy
level of the end beam at an excitation frequency of 150
Hz. The optimizer was allowed to generate new
geometries by varying the coordinates of the inner 18
joints of this structure.

Figure 7: The 2D beam baseline structure

The GA was set to minimize the energy levels in decibels
over the baseline structure. For this problem maxeval was
set to 200.

Figure 8: Best of generation versus number of accurate
evaluations averaged over 5 runs on the beam structure
problem. The solid line is for metamodel based search.
The dashed line if for the baseline comparison.

The above graph shows that the metamodeling approach
resulted in a superior design.

5 CONCLUSION AND FUTURE WORK

We have presented an algorithm for integrating
metamodels with evolutionary optimization procedures. It
is shown via experiments on some example problems, that
this approach can enable the application of evolutionary



algorithms to computationally expensive optimization
problems. The metamodeling approach seems to work
best with smooth objective functions. It stalls in situations
where the global optima has strong local features.

An added advantage of the method is that the resultant
metamodel can be used later on for parametric design
studies, visualization, etc.

Though metamodels are considered here to incur
insignificant computational burden, this will not be the
case when many points are added. Metamodeling is
essentially a cumulative process and the computational
complexity of its construction is of the order N3. Hence
for a large enough N  the cost of constructing a
metamodel will be quite significant. The use of many
local metamodels is expected to alleviate this burden.

Future work will explore the use of a combination of
several local metamodels that are tightly coupled to
evolutionary processes so as to overcome pathological
scenarios and enhance the current performance. Also, the
use of local metamodels should enable one to estimate
correlation parameters for each subspace independently.
This would improve the approximation accuracy for
complex multimodal functions. The use of diversity
maintenance mechanism in conjunction with the
metamodels needs to be further explored.
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