
Improving Genetic Algorithms by Search Space Reductions
(with Applications to Flow Shop Scheduling)

Stephen Chen Stephen F. Smith
The Robotics Institute The Robotics Institute

Carnegie Mellon University Carnegie Mellon University
5000 Forbes Avenue 5000 Forbes Avenue
Pittsburgh, PA 15213 Pittsburgh, PA 15213

chens@ri.cmu.edu sfs@ri.cmu.edu
http://www.cs.cmu.edu/~chens http://www.cs.cmu.edu/~sfs

Abstract

Crossover operators that preserve common
components can also preserve representation
level constraints. Consequently, these constraints
can be used to beneficially reduce the search
space. For example, in flow shop scheduling
problems with order-based objectives (e.g.
tardiness costs and earliness costs), search space
reductions have been implemented with prece-
dence constraints. Experiments show that these
(heuristically added) constraints can significantly
improve the performance of Precedence
Preserving Crossover--an operator which
preserves common (order-based) schemata.
Conversely, the performance of Uniform Order-
Based Crossover (the best traditional sequencing
operator) improves less--it is based on combi-
nation. Overall, the results suggest that condi-
tions exist where Precedence Preserving
Crossover should be the best performing genetic
sequencing operator.

1 INTRODUCTION

Due to their lower development cost, it is appealing to use
domain independent search techniques (e.g. genetic algo-
rithms) rather than knowledge intensive approaches. For
certain factory scheduling domains, it has been shown that
genetic algorithms (GAs) can also deliver the best perfor-
mance [RHW96][WHR98]. In these studies, schedules
(sequences) were evaluated by simulation.

When evaluation is by simulation, only global payoff infor-
mation may be available (e.g. total cost). Despite not being

able to directly assign credit, it can still be inferred that a
good solution has good sub-components (schemata).
Fitness-based selection over a population of solutions
increases the proportion of fit schemata. Crossover is then
used to recombine these schemata into new solutions
[Hol75][Gol89].

For standard representations, the standard crossover
operators always preserve common schemata. However,
many early crossover operators designed for sequence
representations did not (e.g. Order Crossover [Dav85] and
Uniform Order-Based Crossover [Sys91]). The common-
ality hypothesis suggests that schemata common to above-
average solutions are above average [CS98][CS99], so they
should be preserved. Several design models which require
common schemata to be preserved during crossover have
been proposed [Rad91][EMS96][CS98].

For operators that preserve common schemata, not only are
the (hypothesized) above-average schemata of the parents
preserved, but a second beneficial effect can occur--
constraints may also be preserved. For example, if a prece-
dence constraint requires jobi to be processed before job
j , then two feasible parents will both process jobi before
job j . A crossover operator that preserves common (order-
based) schemata will also preserve this precedence
constraint.

The objectives of most scheduling problems are based on
two relationships: job adjacency (if jobi immediately
precedes jobj , then jobi and jobj are adjacent) and job
order. For example, to minimize makespan, it is necessary
to minimize (sequence-dependent) set-up times. Typically,
a job’s set-up time is only dependent on it’s immediate
predecessor. Thus, makespan is an adjacency-based

objective. Conversely, tardiness and earliness are order-
based objectives. The cost of a job depends more on its
relative order in the sequence, than on its immediate
neighbors.

It is important that the solution representation matches a
problem’s constraints and objectives. For example, the
Sequential Ordering Problem (SOP) is a Hamiltonian path
problem with additional precedence constraints [Esc88].
These (order-based) constraints are difficult to observe in
adjacency-based representations. Thus, adjacency-based
methods (e.g. branch and cut [Asc96]) can require complex
modifications.

Order-based methods have an advantage on the SOP.
These methods can transparently preserve precedence
constraints. In fact, these methods appear to perform better
with the addition of precedence constraints (which cause
order-based search spaces to be reduced [CS98]). Inspired
by this observation, we attempt to improve the performance
of genetic sequencing operators by developing beneficial
(precedence) constraints for unconstrained flow shop
problems with order-based objectives.

A reduced search space may not contain the optimal
solution. However, it is a standard textbook proposition
that sampling non-delay schedules will be more productive
than sampling active schedules, even though the optimal
schedule may be active, but not non-delay
[CMM67][Fre82]. Similarly, for the allotted time, it may
be possible to find a better solution in a reduced search
space, even if the optimal solution is outside the search
space.

To examine if heuristically generated precedence
constraints can create beneficial search space reductions, a
series of random flow shop problems has been generated.
These problems have sequence-dependent set-up times and
order-based cost objectives. Specifically, tardiness and
earliness penalties are imposed. For these objectives,
(adjacency-based) methods designed to minimize
makespan are not relevant. Overall, these general features
may better characterize typical manufacturing environ-
ments. They also describe a problem domain where order-
based genetic operators are likely to provide the best opti-
mization technique.

The remainder of this paper is presented as follows. First,
genetic sequencing operators are reviewed in section 2. In
section 3, the flow shop problems are presented. In section
4, the results for unconstrained search are presented. In
section 5, the precedence constraints used to reduce the
search space are developed, and the results with search
space reductions are presented in section 6. The results are

discussed in section 7, and final conclusions are summa-
rized in section 8.

2 SEQUENCING OPERATORS

Many genetic sequencing operators have been developed.
Some operators (e.g. Order Crossover [Dav85]) are for
Hamiltonian cycle problems like the Traveling Salesman
Problem (TSP). These operators “wrap-around”, so they
are not relevant to flow shop problems. Other operators
(e.g. Edge Recombination [SMM91]) are adjacency-based,
so they are ill-suited for order-based objectives. Overall, it
has been suggested that Uniform Order-Based Crossover
(UX) [Sys91] is the best operator for scheduling problems
[SWM92][RHW96][WHR98].

Uniform Order-Based Crossover combines random (order-
based) schemata taken from the parents, but it does not
guarantee that schemata common to both parents are
preserved. Thus, UX may undo precedence constraints
(and any benefits they may provide). Conversely, there
exists an order-based operator--Precedence Preservative
Crossover (PPX) [BMK96]--that maintains all common
precedence relationships. For unconstrained search, PPX
is less effective than UX. However, PPX will preserve all
precedence constraints, and thus (compared to UX) may
better explore a reduced search space. The UX and PPX
operators are hereby reviewed to highlight their effects on
(common) order/precedence schemata.

2.1 UNIFORM ORDER-BASED CROSSOVER

The processing order for jobs in a flow shop can be repre-
sented as a permutation (sequence) solution. On this
sequence, Uniform Order-Based Crossover uses a uniform
crossover mask to select jobs. It takes the jobs of Parent 1
at the sites where the mask has a1 and places them in the
offspring at the same sites. The remaining jobs are filled

Figure 1: Example of UX. Common order for jobse
andf is not transferred by a single parent. Thus, their
order may be reversed in the offspring.

Parent 1: b a c e f d h j k i g l
Parent 2: a b c d e f g h i j k l
mask: 0 1 1 0 1 0 1 0 1 0 0 1

taken: a c f h k l
remaining: b e d j i g
order: b d e g i j

Offspring: b a c d f e h g k i j l

Figure 2: Example of PPX. Jobe will always be
drawn before jobf .

into the empty sites in the order they appear in Parent 2.
(See Figure 1.) Overall, UX combines order (and position)
information from Parent 1 with order information from
Parent 2. However, if a (common) order relationship is not
taken from a single parent, it is possible for it to be reversed
during the combination process.

2.2 PRECEDENCE PRESERVATIVE CROSSOVER

On a sequence representation, Precedence Preservative
Crossover uses a uniform crossover mask to select the
parent from which the next job is drawn. The selected
parent is scanned for the first job that has not yet been
drawn. This job is appended to the offspring. (See Figure
2.) This process of “drawing” jobs from the parents guar-
antees that all common precedence relations are preserved,
and that all precedence relations in the offspring come from
one of the parents. Subsequently, PPX “transparently”
enforces precedence constraints.

3 FLOW SHOP PROBLEMS

A series of random two-machine flow shop problems has
been generated. For these problems, 500 independent jobs
must be processed in the same sequence on both machines.
The jobs have a processing requirement on each machine,
a sequence-dependent set-up time (based on their
immediate predecessor), a transfer time between machines,
a due date, a tardiness cost weight, and an earliness cost
weight.

The job parameters have been generated randomly from
uniform distributions. The ranges are 25-100 (time units)
for processing times, 5-70 for set-up times, and 5-50 for
transfer times. The tardiness weights have a range of 2-20,
and the earliness weights have a range of 1-5. The due
dates are uniformly distributed from time 0 to the expected

average makespan (50,000).

Five problem instances have been generated. Each instance
consists of five 500-element vectors and a 500x500 full
matrix for set-up times. To evaluate a sequence, the
processing of a non-delay schedule through the two-
machine factory is simulated. For this simulation, it is
assumed that there are no set-up times required for the first
job. Tardiness and earliness costs are calculated based on
each job’s completion time on machine 2.

4 INITIAL RESULTS

The UX and PPX operators have been implemented in
GENITOR [WS90]. The parameters were set to 1000 for
the population size, 200,000 for the number of trials, and
2.00 for the selection bias (2-tournament selection). Ten
runs were conducted for each of the five problems. The
results are normalized against the cost of the Earliest Due
Date (EDD) dispatch sequence1. (See Table 1.)

For the allotted time, neither operator provides an
advantage over EDD. Similar to results in [RHW96],
randomly initialized genetic search does not provide a
significant advantage over dispatch techniques. However,
the results with PPX are about 10 times worse than the
results with UX. The commonality hypothesis suggests
that schemata common to above-average solutions should
be above average [CS98]. However, the common compo-
nents of random solutions in the initial population are likely
to be equally random (i.e. not significantly above average).
It is likely that PPX over-exploits these early building
blocks and converges prematurely in a poor region of the
search space.

1EDD is used because it is a factory independent dispatch rule.
Most advanced rules use job processing times (which include
factory dependent set-up times).

Parent 1: b a c e f d
Parent 2: a b c d e f
mask: 0 1 1 0 1 0

From 1: b
From 2: a
From 2: a b c
From 1: b a c e
From 2: a b c d
From 1: b a c e f

Offspring: b a c e d f

Table 1: Average performance of sequencing operators
relative to EDD on randomly-generated 2-machine flow
shop problems.

Instance UX PPX

1 0.745 7.306

2 1.409 16.550

3 1.106 14.088

4 1.490 22.071

5 0.567 5.538

average 1.063 13.111

5 SEARCH SPACE REDUCTIONS

The goal of this paper is to demonstrate that constraints
which improve the performance of genetic algorithms can
be developed. These constraints will reduce the search
space and cause search to start/focus in a promising region.
For the TSP, a similar heuristic is to build tours using only
edges connected to each element’s ten nearest neighbors.
This is a reasonable reduction because most of the edges in
the optimal tour are present in this reduced search space
[Rei94].

For flow shop problems with order-based objectives, prece-
dence constraints can be used to reduce the search space.
For example, if jobi is duex time units after jobj is due,
set a precedence constraint that requires jobi to be
processed before jobj . If precedence constraints are set
for all pairs of jobs using the above condition, then the
allowed time differencex defines a neighborhood size.

For the previously presented flow shop problems, prece-
dence constraints have been set using 1, 100, 300, 500,
1000, 3000, and 5000 time units for the value ofx . The
constraints generated by this means define search neigh-
borhoods with an average of 0, 2, 6, 20, 60, and 100 non-
EDD neighbors for each job. Essentially, due dates are an
average of 100 time units apart, so one additional neighbor
(on each side) can be expected for each 100 time unit
increase inx .

6 RESULTS WITH SEARCH SPACE
REDUCTIONS

The search space reductions are only enforced for (the
randomly generated solutions of) the initial population.
After this initialization, any offspring solution is allowed in
the population. The experimental set-up is the same as that
used in section 4 (i.e. GENITOR, 200,000 solutions, etc).
Over ten runs on each of the five flow shop instances, the
average performance for each operator relative to EDD was
measured for all values ofx . (See Figure 3.)

Whenx is 300 time units or more, the results with PPX are
about 40% better than UX. Overall, the cost objective can
be reduced by over 80% relative to the EDD sequence and
the performance of unconstrained genetic search1. The
added precedence constraints define a reduced search space
that contains only the most promising solutions. PPX

1Without bottlenecks, these problems can have very low cost
solutions. For problems where the optimal solution still has a high
cost, percentage cost reductions should be measured with respect to
the surplus from (the unknown) optimum.

Figure 3: Average performance of UX and PPX for
different values ofx .

aggressively samples this space and finds better solutions
in the allotted time than UX. Conversely, UX wanders out
of the reduced search space and wastes time sampling less
promising regions of the (overall) search space. This
unconstrained wandering is only advantageous when the
added precedence constraints are too restrictive (e.g. when
x is 100).

This “wandering” nature of UX is also observed as a slower
convergence rate. Even though UX performs better than
PPX whenx is 100, UX tends to lag PPX. (See Figure 4.)
For larger values ofx , the lag is presumed to be greater, so
UX is likely unable to catch PPX during the time allowed.
However, it appears that given enough time, UX can find
better solutions than PPX for all problem instances.

7 DISCUSSION

Handling constraints and incorporating problem specific
knowledge (heuristics) are two recurring challenges faced

Figure 4: Sample run of UX and PPX on flow shop
instance 1 with windowing condition of 100.

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

C
os

t R
el

at
iv

e
to

 E
D

D

x

"UX"
"PPX"

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

C
os

t R
el

at
iv

e
to

 E
D

D

Generation

"UX"
"PPX"

when working on real-world problems. Genetic operators
that preserve common schemata may provide a means to do
both. For constraints that can be observed in the represen-
tation alone1, operators can be designed to “transparently”
preserve the (satisfied) constraints of two feasible parents.

Further, heuristics which can be expressed as (represen-
tation-level) constraints may now be used to improve the
performance of genetic algorithms. Traditionally,
heuristics have been incorporated by redesigning crossover
[GGR85][SG87][NK97]. By expressing heuristics as
constraints, the performance of genetic algorithms is
improved because the search space has been beneficially
reduced. These reductions have an advantage in that they
can be individually tailored to each problem instance and/
or dynamically updated at run-time.

In this paper, precedence constraints (based on due dates)
have been added to flow shop scheduling problems. With
the resulting search space reductions, Precedence Preser-
vative Crossover can perform better than Uniform Order-
Based Crossover--previously, the best genetic sequencing
operator. Further, PPX converges much faster than UX.
For problem domains with stricter time limits on computa-
tional effort, the advantage of PPX over UX should be
magnified.

Other methods to reduce the search space for scheduling
problems include rolling time horizons [MP93] and
problem decompositions [HNN94]. Unlike these other
methods, the search space reductions caused by precedence
constraints appear to be continuous and symmetric.
Regardless, one benefit they can provide is to help
determine the ideal rolling time horizon or ideal (neigh-
borhood) size for problem decompositions.

For example, it appears that for the problems considered in
this paper, the best value forx is 300. The resulting
reduced search space defines a neighborhood structure
where each job has about 8 possible neighbors. Thus, in
designing a local search operator, the ideal neighborhood
structure might include only the 8 nearest (due date)
neighbors for each job. However, when local search (in the
form of random swaps) was compared against genetic algo-
rithms in [RHW96], the “local” neighborhood included all
jobs. In this study, the effectiveness of local search may
have been diluted by an excessively large neighborhood.

1Certain constraints require the solution representation to be
processed. For example, a constraint that requires a job to be
completed within a given time window cannot be observed in the
representation alone.

8 CONCLUSIONS

Precedence constraints have been used to reduce the search
space for flow shop problems with order-based objectives.
A crossover operator that preserves these constraints
benefits more from the advantages that they provide.
Specifically, Precedence Preservative Crossover benefits
more than Uniform Order-Based Crossover from the search
space reductions studied in this paper. For search spaces
reduced by precedence constraints, PPX can perform better
than UX--previously, the best performing genetic
sequencing operator.

Acknowledgments

The work described in this paper was sponsored in part by
the Advanced Research Projects Agency and Rome Labo-
ratory, Air Force Material Command, USAF, under grant
numbers F30602-95-1-0018 and F30602-97-C-0227, and
the CMU Robotics Institute. The U.S. Government is
authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements,
either expressed or implied, of the Advanced Research
Projects Agency and Rome Laboratory or the U.S.
Government.

References

[Asc96] N. Ascheuer. (1996) Hamiltonian Path
Problems in the On-line Optimization of Flexible
Manufacturing Systems.ZIB Technical Report TR 96-
3.

[BMK96] C. Bierwirth, D.C. Mattfeld, and H. Kopfer.
(1996) “On Permutation Representations for Sched-
uling Problems.” InParallel Problem Solving In Nature
IV, H.-M. Voight et al, eds. Springer-Verlag.

[CMM67] R. Conway, W. Maxwell, and L. Miller. (1967)
Theory of Scheduling. Addison-Wesley.

[CS98] S. Chen and S.F. Smith. (1998) “Experiments
on Commonality in Sequencing Operators.” InGenetic
Programming 1998: Proceedings of the Third Annual
Conference.

[CS99] S. Chen and S.F. Smith. (1999) “Putting the
“Genetics” back into Genetic Algorithms (Reconsid-
ering the Role of Crossover in Hybrid Operators).” To
appear inFoundations of Genetic Algorithms 5, W.
Banzhaf and C. Reeves, eds. Morgan Kaufmann.

[Dav85] L. Davis. (1985) “Applying Adaptive
Algorithms to Epistatic Domains.” InProc. Ninth
International Joint Conference on Artificial Intelli-
gence.

[EMS96] L.J. Eshelman, K.E. Mathias, and J.D. Schaffer.
(1996) “Convergence Controlled Variation.” In
Foundations of Genetic Algorithms 4, R. Belew and M.
Vose, eds. Morgan Kaufmann.

[Esc88] L.F. Escudero. (1988) “An Inexact Algorithm
for the Sequential Ordering Problem.” InEuropean
Journal of Operations Research, 37:236-253, 1988.

[Fre82] S. French. (1982)Sequencing and Scheduling--
An Introduction to the Mathematics of Job Shops. Ellis
Horwood Limited.

[GGR85] J. Grefenstette, R. Gopal, B. Rosmaita, and D.
Van Gucht. (1985) “Genetic Algorithms for the
Traveling Salesman Problem.” InProc. of an Interna-
tional Conference on Genetic Algorithms and their
Applications.

[Gol89] D. Goldberg. (1989) Genetic Algorithms in
Search, Optimization, and Machine Learning.
Addison-Wesley.

[HNN94] N. Hirabayashi, H. Nagasawa, and N.
Nishiyama. (1993) “A Decomposition Scheduling
Method for Operating Flexible Manufacturing
Systems.” In International Journal of Production
Research, 32:161-178.

[Hol75] J. Holland. (1975)Adaptation in Natural and
Artificial Systems. The University of Michigan Press.

[MP93] T.E. Morton and D.W. Pentico. (1993)
Heuristic Scheduling Systems: With Applications to
Production Systems and Project Management. John
Wiley & Sons.

[NK97] Y. Nagata and S. Kobayashi. (1997) “Edge
Assembly Crossover: A High-power Genetic Algorithm
for the Traveling Salesman Problem.” InProc. Seventh
International Conference on Genetic Algorithms.

[Rad91] N.J. Radcliffe. (1991) “Forma Analysis and
Random respectful Recombination.” InProc. Fourth
International Conference on Genetic Algorithms.

[Rei94] G. Reinelt. (1994) The Traveling Salesman:
Computational Solutions for TSP Applications.
Springer-Verlag.

[RHW96] S. Rana, A.E. Howe, L.D. Whitley, and K.
Mathias. (1996) “Comparing Heuristic, Evolutionary
and Local Search Approaches to Scheduling.” InAIPS-
96.

[SG87] J.Y. Suh and D. Van Gucht. (1987) “Incorpo-
rating Heuristic Information into Genetic Search.” In
Proc. Second International Conference on Genetic
Algorithms and their Applications.

[SMM91] T. Starkweather, S. McDaniel, K. Mathias, C.
Whitley, and D. Whitley. (1991) “A Comparison of
Genetic Sequencing Operators.” InProc. Fourth Inter-
national Conference on Genetic Algorithms.

[SWM92] T. Starkweather, L.D. Whitley, K. Mathias, and
S. McDaniel. (1992) “Sequence Scheduling with
Genetic Algorithms.” InNew Directions in Operations
Research.

[Sys91] G. Syswerda. (1991) “Schedule Optimization
using Genetic Algorithms.” InHandbook of Genetic
Algorithms, L. Davis, ed. Van Nostrand Reinhold.

[WHR98] L.D. Whitley, A.E. Howe, S. Rana, J.-P.
Watson, and L. Barbulescu. (1998) “Comparing
Heuristic Search Methods and Genetic Algorithms for
Warehouse Scheduling.” InSystems, Man and Cyber-
netics, 1998.

[WS90] L.D. Whitley and T. Starkweather. (1990)
“GENITOR II: A distributed Genetic Algorithm.” In
Journal of Experimental and Theoretical Artificial
Intelligence, 2:189-214, 1990.

