
Genetic Algorithms, Trading Strategies and Stochastic Processes:
Some New Evidence from Monte Carlo Simulations

Shu-Heng Chen

AI-ECON Research Group

Department of Economics
National Chengchi University

Taipei, Taiwan 11623
chchen@nccu.edu.tw

Wei-Yuan Lin

AI-ECON Research Group

Department of Economics
Soochow University
Taipei, Taiwan 110

k8888@mbc1.scu.edu.tw

Chueh-Iong Tsao

AI-ECON Research Group

Department of Applied Mathematics
National Chengchi University

Taipei, Taiwan 11623
g5751002@grad.cc.nccu.edu.tw

Abstract

In this paper, the performance of canoni-
cal GA-based trading strategies are evaluated
under di�erent time series. Two classes of
time series model are considered, namely, lin-
ear ARMA model and bilinear model. Unlike
many existing applications of computational
intelligence in �nancial engineering, for each
performance criterion, we provide a rigorous
asymptotic statistical test based on Monte
Carlo simulation. As a result, this study
provides us with a thorough understanding
about the e�ectiveness of canonical GAs for
evolving trading strategies under these two
classes of time series.

1 Motivation

Over the past few years, genetic algorithms (GAs) have
gradually become a standard tool for enhancing invest-
ment decisions.1 Nevertheless, the statistical founda-

tion of these applications has not been well established.
This does not mean that we lack empirical studies to
support the e�ectiveness of GAs in investment deci-
sions, which, in e�ect, we have many. What concerns
us, however, is the robustness of those empirical re-
sults. For example, if GAs are e�ective for the invest-
ment in foreign exchange markets, would the same re-
sult apply to stock markets? We fail to see how this
kind of issue can be seriously addressed without build-
ing the empirical tests upon a solid statistical founda-
tion.

In this paper, a statistical approach to evaluating GAs
is proposed. Instead of testing Market A and/or Mar-

1Due to the size limit, we would not include the work
of other authors in this active area, the interested reader
is referred to a survey article by Chen (1998).

ket B, we are asking what make GAs successful in
Market A, but not in Market B. Statistically speak-
ing, the general question is: what are the statistical

properties that distinguish Market A from Market B?
For example, the exchange rate data in Market A may
be a linear time series, while the stock return data in
Market B may be a bilinear time series, and that dis-
tinguishes these two markets. If GAs can work well
with only linear time series, but not with bilinear time
series, then the e�ectiveness of GAs observed in Mar-
ket A would not apply to Market B. Therefore, our
statistical approach is to evaluate GAs with di�erent
statistical properties, say, di�erent time series, and see
how well they behave in each class of time series.

In this study, two classes of time series are chosen
to illustrate this statistics-based evaluation. The �rst
class is the linear stationary time series, known as the
AutoRegressive-MovingAverage (ARMA) model and
the second one is the bilinear model. Both classes has
been frequently employed to model �nancial time se-
ries. For example, linear ARMA models are found
to be quite useful in high-frequency �nancial data,
and bilinear models are often used to model the non-
linear dependence in both low- and high-frequency
data. Of course, these two classes are not the only
time series models studied in �nance. Models such
as the volatility-clustering process, long-memory pro-
cess, and chaotic process are also among the issues
frequently tackled by �nance people. However, since
the purpose of this paper is to evaluate GAs with our
proposed statistical framework, we therefore restrict
ourselves to the most basic classes of models.

The rest of the paper is organized as follows. In Section
2, we �rst formalize the trading strategy as a math-
ematical problem. We then show how, this problem
can be diÆcult to solve analytically, and point out the
use of GAs as both a numerical and machine learning

tool to attack this problem. Section 3 provides a brief
description of the version of canonical GAs used in this

paper. Experimental designs are detailed in Section 4,
followed by the experimental results in Section 5 and
some concluding remarks in Section 6.

2 The Mathematics of Trading

Strategies

2.1 Trading Strategy as a Binary String

A trading strategy d is formally de�ned as a mapping:

d :
! f0; 1g: (1)

In this paper,
 is assumed to be a collection of �nite-
length binary strings. This simpli�cation can be justi-
�ed by a data-preprocessing procedure, to be exempli-
�ed below, which transforms the raw data into binary
strings. The range of the mapping d is simpli�ed as
a 0-1 action space. In terms of simple market-timing

strategy, \1" means to \buy " and \0" means to \wait".
Here, for simplicity, we are only interested in day trad-

ing. So, \buy" means to buy it at the opening time and
sell it at the closing time.

More speci�cally, each trading strategy considered in
this paper has the following form:

(IF (CONDS)
THEN (BUY AND SELL [DAY TRADING])

ELSE (WAIT))

The CONDS appearing in the trading strategy is a
predicate. CONDS itself is a logical composition of
several primitive predicates. In this paper, all COND-
Ses are composed of three primitive predicates. Each
primitive predicate can be represented as:

Cond(Z) =

�
1(True); if Z � a;

0(False); if Z 	 a:
(2)

where Z, in our application, can be considered as a
time series variable indexed by t, e.g., rt�1, rt�2, etc,
and a can be regarded as a threshold or critical value
(a 2 @, a set of integers). � 2 f�; <g and 	 = f�
; <g��. An example of CONDS with three primitive
predicates is

CONDS(rt�1; rt�2; rt�3) = Cond(rt�1)

_((Cond(rt�2) ^ (Cond(rt�3)); (3)

where _" refers to the logic operator \OR", and ^
refers to \AND".

Based on the formulation above, to encode a trading
strategy, we only need to encode the CONDS. And for
a CONDS with three primitive predicates, that means
the following three things:

Table 1: Binary Codes for Inequality Relation
Code �1 �2 �3 Code �1 �2 �3

0(000) � � � 4(100) < < �

1(001) < � � 5(101) < � <
2(010) � < � 6(110) � < <
3(011) � � < 7(111) < < <

� ~a = (a1; a2; a3),

� ~� = (�1;�2;�3),

� the logical combination of the three predicates
Cond(rt�i)(i = 1; 2; 3).

To encode ~a, we �rst transform the range of the vari-
able Z, [Zmin; Zmax], into a �xed interval, say [0; 31].

Z� =
Z � Zmin

Zmax � Zmin

� 32 (4)

Then Z� will be transformed by assigning the largest
integer that is not greater than Z� except for Z�max,
which shall be assigned 31.

Z�� =

�
n; if n � Z� < n+ 1;
31; ifZ� = 32:

(5)

Since there are only 32 cuto� values, each ai can be
encoded by a 5-bit binary string and hence the vector
~a can be encoded by a 15-bit binary string. To en-
code ~�, notice that each � has only two possibilities:
� or <. Therefore, a ~� can be encoded by a 3-bit
binary string (Table 1). Finally, there are totally 8
logical combinations for three predicates and they can
be encoded by 3-bit strings (Table 2).

In sum, a CONDS can be encoded by a 21-bit string (3
for logical combinations, 3 for inequalities, 15 for the
three thresholds). So, each trading strategy can be
represented by a 21-bit string. Let D be the collection
of all trading strategies encoded as above. Then the
cardinality of D is 221 (#(D) = 221), which is more
than 2 million.

2.2 Primitive Predicate

Let rt denote the rate of return of an �nancial asset
at the time interval [t � 1; t]. Suppose the stochastic
process of rt is strictly stationary and denote the joint
density of rt�1 and rt by f(rt�1; rt). The mathematics
of the trading strategy can then be best understood
from the simplest trading strategy whose CODS has
only one primitive predicate,

Cond(rt�1) =

�
1(True); if rt�1 � a;

0(False); if rt�1 < a:
(6)

Table 2: Binary Codes for Logical Combination
Logic Code Logical Combination of Predicates
0(000) Cond 1 OR (Cond 2 AND Cond 3)
1(001) Cond 1 AND (Cond 2 OR Cond 3)
2(010) (Cond 1 OR Cond 2) AND Cond 3
3(011) (Cond 1 AND Cond 2) OR Cond 3
4(100) (Cond 1 OR Cond 3) AND Cond 2
5(101) (Cond 1 AND Cond 3) OR Cond 2
6(110) Cond 1 OR Cond 2 OR Cond 3
7(111) Cond 1 AND Cond 2 AND Cond 3

Denote this strategy by da. Motivated by da, we shall
decompose the range of (rt�1; rt) into four subspaces,
namely,

Aa � f(rt�1; rt) j rt�1 � a; rt � 0g; (7)

Ba � f(rt�1; rt) j rt�1 < a; rt � 0g; (8)

Ca � f(rt�1; rt) j rt�1 < a; rt < 0g; (9)

Da � f(rt�1; rt) j rt�1 � a; rt < 0g: (10)

Given the trading strategy da, these four areas have
di�erent meanings for the investors. For area Aa, the
investor will invest (rt�1 � a) and will earn a positive
return from that investment (rt � 0). For area Ba, the
investor will not invest (rt�1 < a) and will hence miss
the chance to make a pro�t (rt � 0). For area Ca, the
investor will not make an investment (rt�1 < a) and
will avoid the chance of su�ering a loss (rt < 0). For
area Da, the investor will invest, but will su�er a loss.
The accumulated returns of da over n periods can be
represented as follows.

�n =

nY
t=1

(1 + rt)

=
Y
Aa

(1 + rt)
Y
Ba

(1 + rt)
Y
Ca

(1 + rt)
Y
Da

(1 + rt)

=
Y
Aa

(1 + rt)
Y
Ba

(1 + 0)
Y
Ca

(1 + 0)
Y
Da

(1 + rt)

=
Y

(rt�1;rt)2Aa

(1 + rt)
Y

(rt�1;rt)2Da

(1� j rt j) (11)

By taking logarithm on both sides of Equation (5), we
have

ln(�n) =
X

(rt�1;rt)2Aa

ln(1 + rt) +
X

(rt;rt�1)2Da

ln(1� j rt j) (12)

Since �n is a random variable, the objective function
for the investor can be the expected pro�t rate, i.e.,

E(ln(�n)), where

E(ln(�n)) = n

Z 1

a

Z 1

0

f(rt�1; rt)drtdrt�1

�
Z 1

a

Z 1

0

ln(1 + rt)fAa
(rt�1; rt)drtdrt�1

+ n

Z 1

a

Z 0

�1

f(rt�1; rt)drtdrt�1

�
Z 1

a

Z 0

�1

ln(1 + rt)fDa
(rt�1; rt)drtdrt�1

Given this objective function, the market timing prob-
lem can be de�ned as the following optimization prob-
lem.

max
a

E(ln(�n)) (13)

The �rst order necessary condition is

@E(ln(�n))

@a

= n

Z 1

0

@
R1
a

ln(1 + rt)f(rt�1; rt)drt�1

@a
drt

+n

Z 0

�1

@
R1
a

ln(1 + rt)f(rt�1; rt)drt�1

@a
drt

= �n
Z 1

0

ln(1 + rt)f(a; rt)drt

�n
Z 0

�1

ln(1 + rt)f(a; rt)drt

= �n
Z 1

�1

ln(1 + rt)f(a; rt)drt

= �nF (a) = 0 (14)

where

F (a) =

Z 1

�1

ln(1 + rt)f(a; rt)drt (15)

Solving the �rst-order condition will result in the op-
timal value of a, i.e.,

a� = F�1(0); if F�1(0)exists: (16)

From Equation (16), to get a�, we have to know the the
inverse function of F (a), which in general can only be
solved numerically. In this case, GAs can be used as a
numerical technique to solve this problem. In addition,
to get a�, we also have to know the density function
of f(rt�1; rt), which can only be inferred from the his-
torical data. In this case, GAs are used as a machine

learning tool to get an estimate of this joint density.
Therefore, in the trading-strategy problem, GAs are
used simultaneously as a numerical technique and a
machine learning tool to get the critical parameter a�.

2.3 Composite Predicate

When the trading strategy is a logical combination
of many predicates, such as the application case in
Chen and Lin (1998), the mathematics can be quite
complicated. In general, let us consider a decision
composed of a logical combination of k primitive
predicates, of which each predicate assigns a thresh-
old value ak to the historical return rt�k . Let �
be the vector (a1; a2; :::; ak), and rkt be the vector
(rt�1; rt�2; :::; rt�k). Moreover, let D be the region
where the composite predicate is satis�ed, and D0 be
the region where the composite predicate is not satis-
�ed. Then the four regions as de�ned in Equations (7)
to (10) can be generalized as follows:

A� � f(rt; rkt) j rkt 2 D; rt � 0g (17)

B� � f(rt; rkt) j rkt 2 D0; rt � 0g (18)

C� � f(rt; rkt) j rkt 2 D0; rt < 0g (19)

D� � f(rt; rkt) j rkt 2 D; rt < 0g (20)

The optimization problem of market timing can then
be generalized as

max
�

E(ln(�n)); (21)

where

E(ln(�n))

= n

Z
A�

:::

Z Z 1

0

f(rkt ; rt)drtdrt�1:::drt�k

�
Z
A�

:::

Z Z 1

0

ln(1 + rt)fA�
(rkt ; rt)drtdrt�1:::drt�k

+ n

Z
D�

:::

Z Z 0

�1

f(rkt ; rt)drtdrt�1:::drt�k

�
Z
D�

:::

Z Z 0

�1

ln(1 + rt)fD�
(rkt ; rt)drtdrt�1:::drt�k

As in the case of the primitive predicate, GAs are used
as a numerical technique as well as a machine learn-
ing algorithm to solve this more complicated objective
function.

3 Evolving Trading Strategies

The main idea of using GAs to evolve trading strate-
gies is to encode the variable one wants to optimize,
e.g., the trading strategy, as a binary string and work
with it. In the previous section, we have already shown
how a trading strategy can be parameterized, and how
this parameterized trading strategy can be encoded by

a binary string. In the illustration above, each trad-
ing strategy is a 21-bit string. The size of their search
space D is hence 221. Given this structure, genetic
algorithms can be brie
y described as follows.

� The genetic algorithm maintains a population of

individuals

Pi = fdi1; :::; ding (22)

for iteration i, where n is the population size. Usu-
ally, n is treated as �xed during the whole evolu-
tion. Clearly, Pi � D.

� Each individual dij represents a trading strategy
at hand, and is implemented with the historical

data rt�1; rt�2, and rt�3 (Equation 3).

� Each trading strategy dij is evaluated by the �t-

ness given by Equation (11).

� (Selection Step):
Then, a new generation of population (iteration
i+1) is formed by randomly selecting individuals
from Pi in accordance with a selection scheme.

Ps(Pi) = (s1(Pi); s2(Pi); :::; sn(Pi)) (23)

where

sk : f
�D
n

�
! Dg; (24)

k = 1; 2; :::; n, and
�
D

n

�
is the set of all populations

whose population size is n.

� (Alteration Step):
Some members of the new population undergo
transformations by means of genetic operators to
form new solutions.

{ (Crossover:) We use one-point crossover ck,
which creates new individuals by combining
parts from two individuals.

Pc(Pi) = (c1(Pi); c2(Pi); :::; cn
2
(Pi)) (25)

where
ck : D �D ! D�D; (26)

k = 1; 2; :::; n2 .

{ (Mutation:) We use bit-by-bit mutationmk,
which creates new individuals by a small
change in a single individual.

Pm(Pi) = (m1(Pi);m2(Pi); :::;mn(Pi)) (27)

where
mk : D ! D; (28)

k = 1; 2; :::; n.

The GA described above is a very simple version of
GAs, which we shall call it the ordinary genetic al-
gorithm (OGA). The control parameters employed to
run the OGA is given in Table 3.

Table 3: Table of OGA
Number of Generation 1000
Population Size (n) 50
Total Trails 5000
String Length 21
Selection Scheme Rank-Based Selection
Rank Min 0.75
Crossover Style One-Point
Crossover Rate 0.6
Mutation Rate 0.001
Generation Gap 1.0

Table 4: Data Generating Processes: ARMA

Code Model Parameters
L-1 ARMA(1,0) �1 = 0.3
L-2 ARMA(1,0) �1 = 0.6
L-3 ARMA(2,0) �1 = 0.3, �2 = -0.6
L-4 ARMA(2,0) �1 = 0.6, �2 = -0.3
L-5 ARMA(0,1) �1 = 0.3
L-6 ARMA(0,1) �1 = 0.6
L-7 ARMA(0,2) �1 = 0.3, �2 = -0.6
L-8 ARMA(0,2) �2 = 0.6, �2 = -0.3
L-9 ARMA(1,1) �1 = 0.3, �1 = -0.6
L-10 ARMA(1,1) �1 = 0.6, �1 = -0.3
L-11 ARMA(2,2) �1 = 0.4, �2 = -0.4

�1 = 0.4, �2 = 0.4
L-12 ARMA(2,2) �1 = 0.6, �2 = -0.3

�1 =-0.3, �2 = -0.6
L-13 White Noise Gaussian(0; 0:1)

4 Experimental Design

4.1 Linear Time Series Models

The �rst class of models we consider is the lin-

ear time series model, known as the AutoRegressive-

MovingAverage (ARMA) model. The general form of
the ARMA(p; q) model is:

rt =

pX
i=1

�irt�i +

qX
j=1

�j�t�j + �t; (29)

where �t
iid� N(�; �2). In all the simulations conducted,

� was set at 0 and �2 was set to be 0:01. Thirteen
ARMA(p; q) models were tested. The parameters of
these thirteen ARMA(p; q) are detailed in Table 4.

4.2 Bilinear Models

The second class of models considered is the bilin-

ear model. The general form of the bilinear model,

Table 5: Data Generating Processes: Bilinear
Code Model Parameters

�1 �1 11 12 21 22
BL-1 BL(0,0,1,1) 0 0 0.6 0 0 0
BL-2 BL(0,0,1,1) 0 0 0.3 0 0 0
BL-3 BL(0,1,1,2) 0 0.3 0 0.6 0 0
BL-4 BL(0,1,1,2) 0 0.6 0 0.3 0 0
BL-5 BL(1,0,2,1) 0.3 0 0 0 0.6 0
BL-6 BL(1,0,2,1) 0.6 0 0 0 0.3 0
BL-7 BL(1,1,2,2) 0.3 0.3 0 0 0 0.3
BL-8 BL(1,1,2,2) 0.3 0.3 0 0 0 0.6

BL(p; q; u; v) is:

rt =

pX
i=1

�irt�i+

qX
j=1

�j�t�j+

uX
l=1

vX
m=1

 lmrt�l�t�m+�t;

(30)

where �t
iid� N(�; �2), and � = 0 and �2 = 0:01. Eight

bilinear models were tested, and their parameters are
given in Table 5.

4.3 Monte Carlo Simulation

Each ARMA and bilinear model was used to generate
1000 time series, each with 105 observations (frtg105t=1).
For each series, the �rst 70 observations (frtg70t=1g)
were taken as the training sample, and the last 35 ob-
servations (frtg105t=76) were used as the testing sample.
The OGA was then employed to extract trading strate-
gies from these training samples. These strategies were
further tested by the testing samples, and the result-
ing accumulated returns were calculated. In the mean
time, accumulated returns of the buy-and-hold strat-
egy were also calculated as a benchmark. Let �1i;j be
the accumulated returns of the buy-and-hold (B&H)
strategy for the series i (i = 1; 2; :::; 1000) under Model
L-j (j = 1; 2; :::; 13) or BL-j (j = 1; 2; :::6), and �2i;j be
the accumulated returns of using the OGA in series i
under Model L-j or BL-j.

The issue which we shall address is, given the set
of observations Sj(� f�1i;j ; �2i;jg1000i=1 g), j=1,2,...,13(6)
, to decide whether the ordinary genetic algorithm can

statistically signi�cantly outperform the buy-and-hold

strategy under a �xed Model L-j or BL-j.

4.4 Performance Criteria and Test Statistics

Our evaluation is based on the following statistics:

� the sample winning probability, i.e.,

p̂w =
#f(�1i;j ; �2i;j) j �2i;j > �1i;jg

1000
(31)

where # refers to the cardinality (size) of the set.

� the sample mean, i.e.,

��1j =

P1000
i=1 �1i;j

1000
(32)

��2j =

P1000
i=1 �2i;j

1000
(33)

� zs, the test statistic of the null hypothesis

H0 : p̂w = 0:5;

� z�, the test statistic of the null hypothesis

H0 : �
2
j = �1j :

� the ideal sample mean,

���j =

P1000
i=1 ��i;j

1000
(34)

� the Sharpe-ratio,

s1j =
��1j
�̂1j
; s2j =

��2j
�̂2j
; (35)

where

�̂kj =

sP1000
i=1 (�

k
i;j � ��kj)

2

1000
; k = 1; 2 (36)

� zr, the test statistic of the null hypothesis

H0 : s
2
j � s1j = 0

The sample winning probability, p̂w, estimates the
probability that the OGA can outperform B&H. In
other words, it tells us, by randomly picking up an
ensemble from the environment L � j (BL � j), the
probability that the OGA can beat B&H. The sample
mean ��1j and ��2j estimates, on the average, the numer-
ical di�erence between the OGA and B&H in terms
of accumulated returns. Of course, a rigorous analy-
sis requires a statistical test for both sample statistics.
Since our random sample size is 1,000, based on the
central limit theorem, we can have a standard normal
(Z) test for both statistics. zw tells us whether the
OGA is superior to B&H signi�cantly, while z� tells
us whether this superiority deserves our investment in
the OGA.
Although these four statistics can give a rigorous eval-
uation of the relative performance of the OGA to
B&H, they are not suÆcient to answer how well the
OGA can solve the optimization problem de�ned in
Equation (14). In fact, to answer this question, we
have to know the highest post-accumulated returns one

Table 6: Performance Statistics of the OGA and B&H
in ARMA Models:

Code ��1 ��2 _� ��� ~� p̂w zw z�
L-1 1.198 1.355 13% 4.388 30% 0.732 16.56 6.33
L-2 1.992 2.868 43% 6.658 43% 0.859 32.62 13.67
L-3 0.845 2.265 167% 5.480 41% 0.976 98.35 42.98
L-4 1.123 1.185 65% 5.170 35% 0.896 41.02 27.08
L-5 1.103 1.269 15% 4.241 29% 0.713 14.89 7.63
L-6 1.199 1.775 48% 5.166 34% 0.861 32.99 20.61
L-7 0.853 1.633 91% 5.104 32% 0.926 51.46 39.97
L-8 1.065 1.522 42% 5.285 28% 0.848 30.65 21.58
L-9 0.898 1.229 36% 4.128 29% 0.812 25.25 24.55
L-10 1.452 1.538 5% 4.783 32% 0.721 15.58 2.12
L-11 1.306 2.588 98% 6.957 37% 0.927 51.90 30.43
L-12 0.721 2.167 200% 6.189 35% 0.991 164.40 47.39
L-13 1.005 0.985 -2% 4.257 23% 0.579 5.05 -1.26
L-13 0.983 0.993 1% 3.881 25% 0.606 6.85 0.67

may possibly have, i.e., the accumulated returns which
can be earned by an omniscient trader. Denoting the
accumulated returns earned by this omniscient trader,
��i;j , we therefore calculate the sample mean of these
ideal accumulated returns, ��j .

One criterion which has been frequently ignored by
machine learning people in �nance is the risk associ-
ated with a trading rules. Normally, a higher pro�t
known as the risk premium is expected when the asso-
ciated risk is higher. Without taking the risk into ac-
count, we might exaggerate the pro�t performance of
a highly risky trading rule. Therefore, to evaluate the
performance of our GA-based trading rule on a risk-
adjusted basis, we employed the well-known Sharpe

ratio as another performance criterion (Sharpe, 1966).
Sharpe ratio s is de�ned as the excess return divided
by a risk measure. The higher the Sharpe ratio, the
higher the return or the lower the risk. Here, we used
the sample return as the excess return and the sample
standard deviation as the risk measure, and Equation
(35) gives the Sharpe ratio of the B&H and OGA.

To see whether these two Sharpe ratios are statistically
di�erent, we need a formal test for the Sharpe-ratio

di�erential, d(= s2j � s1j). However, to our best knowl-
edge, this test does not exist in the literature. We,
therefore, propose such a test by using the Slutzky's

theorem, and this test is given in Theorem 1.

Theroem 1: Let (Xi; Yi)
iid� h(x; y), i = 1; 2; :::; n

with2
6664

E(Xi)
V ar(Xi)
E(Xi��)

3

�3

E(Xi��)
4

�4

3
7775 =

2
664

�

�2

Æ

3
775 ;
2
6664

E(Y i)
V ar(Yi)
E(Yi��)

3

�3

E(Yi��)
4

�4

3
7775 =

2
664

�

�2

�

�

3
775

2
6664

E(Xi��)(Yi��)
��

E(Xi��)
2(Yi��)

�2�
E(Xi��)(Yi��)

2

��2

E(Xi��)
2(Yi��)

2

�2�2

3
7775 =

2
664

�

�

�

3
775

Furthermore, let �Xn and �Yn be the sample means of
X and Y and let S2

n and T 2
n be the sample variances

of X and Y with the sample size n. Then

1.

dn =
�Xn

Sn
�

�Yn
Tn

(37)

is a consistent estimator of d(= �
�
� �

�
).

2.

Zr =

p
n(dn � d)

!

d�! Z � N(0; 1) (38)

where

!2 = 2(1� �) +
�

�
(� � Æ) +

�

�
(� �)

� ��

��
(
�� 1

2
) +

�2

�2
(

 � 1

4
) +

�2

�2
(
� � 1

4
) (39)

3.

Zr;n =

p
n(dn � d)

!n

d�! Z � N(0; 1) (40)

where

!2n = 2(1� �n) +
�n

�n
(�n � Æn) +

�n

�n
(n � �n)

� �n�n

�n�n
(
�n � 1

2
) +

�2n
�2n

(

n � 1

4
) +

�2n
�2n

(
�n � 1

4
)(41)

and 2
664
�n �n �n
�2n �2n �n
Æn �n n

n �n �n

3
775 p�!

2
664

� � �

�2 �2 �

Æ �

 � �

3
775

The test zr;n is then computed in accordance with
Equations (40) and (41).

5 Experimental Results

Table 6 summarizes the �ve statistics de�ned in the
previous section. There are several interesting fea-
tures. First, from the statistics p̂w and zw, it can be
inferred that, in accumulated returns, the probability
that the OGA can beat B&H is signi�cantly greater

than 0.5. For models with linear signals (L-1 - L-12),
the winning probability p̂w ranges from 0.713 (L-5) to
0.991 (L-12). What seems a little puzzling is that, even
in the case of white noises, the OGA outperformed
B&H, though with much lower winning probabilities

Table 7: Performance Statistics of GAs and B&H in
Bilinear Models:

Code ��1 ��2 _� ��� ~� p̂w zw z�
BL-1 1.253 1.126 -10% 4.398 25% 0.491 -0.57 -6.78
BL-2 1.151 1.064 -7% 4.228 25% 0.517 1.08 -4.66
BL-3 1.302 1.830 41% 5.341 34% 0.861 17.78 11.50
BL-4 1.186 1.356 14% 4.449 31% 0.745 17.78 6.95
BL-5 1.260 1.419 13% 4.539 31% 0.747 17.97 5.07
BL-6 2.292 3.143 37% 7.226 44% 0.877 36.30 9.89
BL-7 1.841 2.471 34% 6.448 38% 0.848 30.65 8.83
BL-8 1.602 2.287 43% 5.894 39% 0.870 34.79 19.57

ps (0.579 and 0.606). This may be due to the fact
that a pseudo random generator can actually generate
a series with signals when sample size is small. For
example, Chen and Tan (1998) showed that, when the
sample size is 50, the probability of having signals in
a series generated from a pseudo random generator is
about 5%, while that probability can go to zero when
the sample size is 1000. Therefore, suppose that the
OGA can win in all these exceptional ensembles and
tie with B&H in other normal ensembles, then p̂w can
still be signi�cantly greater than 0.5.

Second, by directly comparing ��1 with ��2, we can see
that the OGA outperformed B&H numerically in all
linear ARMA(p; q) models except in one case of white
noises. To have a more practical comparison, we also
calculate the excess return of the OGA over B&H, _�,
as follows:

_� � ��2 � ��1

��1
; (42)

and the results are exhibited in the �fth column of
Table 6. From this table, we can see that GAs beat
B&H anywhere from 5% (L� 10) to more than 200%
(L� 12). From z�, numerical di�erences are also sta-
tistically signi�cant. The statistics z� range from 2.12
to 47.39, which implies substantially di�erent pro�ts.
However, for the two cases of white noises, the OGA
are not statistically di�erent from B&H.

Third, to see how e�ectively the OGA can solve the
optimization problem de�ned in Equation (14), we di-
vide realized accumulated returns by potential accu-
mulated returns,

~� � ��2

���
: (43)

By de�nition, ~� is between 0 and 1. A higher ~� im-
plies a more e�ective solution obtained from the OGA.
From Table 6, we can see that even our simplest ver-
sion of GAs can realize 30% to 40% of potential re-
turns.

The bilinear model is a little more complicated than

the ARMA model. It is used to capture more complex
phenomena, such as bursts and asymmetry. As Table
7 reveals, this class of nonlinear time series is indeed
more diÆcult for our OGA. In fact, out of the eight
testing beds, the OGA lost twice (BL-1 and BL-2) to
B&H. While in these two cases the losing probability
p̂w is not signi�cantly di�erent from 0.5, their accu-
mulated returns are signi�cantly lower. For the other
six testing beds, the OGA continuously took the lead.
Nevertheless, the excess return, _�, has a narrower and
lower range as opposed to ARMA models. Finally, in
terms of the e�ectiveness index, ~�, the OGA did not
perform much di�erently from the ARMA models. In
both cases, ~� ranges roughly from 25% to 40%.

However, as mentioned earlier, we should not judge
the performance of the OGA solely by the pro�tabil-
ity criterion. The risk is a main concern in business
practice. We, therefore, also calculated the Sharpe ra-
tio, a risk-adjusted pro�tability criterion, and put the
results on Table 8. It is interesting to notice that in
almost all cases the Sharpe-ratio di�erential (d) is pos-
itive. In other words, the OGA can easily outperform
B&H when the risk is taken into account. Further-
more, the test of this di�erential also showed that this
advantage of the OGA is signi�cant.

6 Conclusions

By using the Monte Carlo simulation, this study tested
the e�ectiveness of the OGA in evolving trading strate-
gies under di�erent stochastic processes. The perfor-
mance criteria employed are the winning probability,
accumulated returns and Sharpe ratio. It is found that
the OGA uniformly outperformed B&H in all the se-
ries when only linear signals were present. When there
was no signal (white noise), the OGA did not make
much di�erence. When there were only nonlinear sig-
nals (BL-1 and BL-2), the OGA even performed worse
than B&H. For other mixed processes which contained
both linear and nonlinear signals, the OGA still beat
B&H because it could e�ectively extract at least some
linear signals. We then compared GAs with an omni-
scient trader, and we founded that GAs could realize
25% to 40% of potential returns. Finally, it is found
that the OGA outperformed B&H in almost all cases
when the evaluation is based on the Sharpe ratio, i.e.,
the risk-adjusted return. This study only tested the
simplest version of GAs. The results obtained here
may be best regarded as a lower bound of GAs' capa-
bility in evolving trading strategies. It is expected that
a more sophisticated design can eÆciently extract non-
linear signals and thus improve the e�ectiveness index
~�.

Table 8: The Sharpe Ratio of GAs and B&H in ARMA
and Bilinear Models:

Code Model s1 s2 dn zr;n
L-1 ARMA(1,0) 1.002 1.668 0.666 9.37
L-2 ARMA(1,0) 0.473 0.807 0.334 8.86
L-3 ARMA(2,0) 1.877 2.113 0.236 3.19
L-4 ARMA(2,0) 1.006 1.899 0.893 14.11
L-5 ARMA(0,1) 1.169 1.975 0.806 10.71
L-6 ARMA(0,1) 0.815 1.379 0.564 4.36
L-7 ARMA(0,2) 2.057 2.445 0.388 4.79
L-8 ARMA(0,2) 1.054 1.818 0.764 12.82
L-9 ARMA(1,1) 2.727 2.806 0.080 0.75
L-10 ARMA(1,1) 0.689 1.120 0.431 4.33
L-11 ARMA(2,2) 0.723 1.392 0.668 10.67
L-12 ARMA(2,2) 3.530 2.273 -1.257 -11.83
L-13 ARMA(0,0) 1.562 2.682 1.120 14.39
L-13 ARMA(0,0) 1.505 2.529 1.024 11.57

BL-1 BL(0,0,1,1) 1.568 2.248 0.679 8.02
BL-2 BL(0,0,1,1) 1.450 2.405 0.955 10.83
BL-3 BL(0,1,1,2) 1.062 1.620 0.559 4.78
BL-4 BL(0,1,1,2) 0.699 1.596 0.897 9.03
BL-5 BL(1,0,2,1) 0.863 1.575 0.713 10.82
BL-6 BL(1,0,2,1) 0.445 0.791 0.346 8.06
BL-7 BL(1,1,2,2) 0.625 1.194 0.570 5.61
BL-8 BL(1,1,2,2) 0.477 0.686 0.209 2.21

Acknowledgement

Research support from NSC grant No.85-2415-H-004-
001 is gratefully acknowledged. The authors are also
grateful for the helpful comments from two anonymous
referees.

References

Chen, S.-H. (1998), \Evolutionary Computation in Fi-
nancial Engineering: A Road Map of GAs and GP,"
Financial Engineering News, Vol. 2, No. 4. Also avail-
able from the website:
http://www.fenews.com/1998/v2n4/chen.pdf

Chen, S.-H. and W.-Y. Lin (1998), \Two Ways to
Improve Genetic Algorithms in Financial Data Min-
ing: Sell Short with Recursive GAs," in Proceedings

of the Seventh International Conference on Informa-

tion Processing and Management of Uncertainty in

Knowledge-Based Systems, Vol. II, pp. 1090-1097.

Chen, S.-H. and C.-W. Tan (1998), \Some Evidences
of the Brief Signals in Financial Times Series: An
Examination based on Predictive Stochastic Complex-
ity," AI-ECON Research Group Working Paper, Na-
tional Chengchi University.

Sharpe, W. F. (1966), \Mutual Fund Performance,"
Journal of Business, Vol. 39, No. 1, pp.119-138.

