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Abstract

In this paper, we discuss the adaptability of
Coevolutionary Genetic Algorithms on dy-
namic environments. Our CGA consists
of two populations: solution-level one and
schema-level one. The solution-level popu-
lation searches for the good solution in a
given problem. The schema-level population
searches for the good schemata in the former
population. Our CGA performs effectively
by exchanging genetic information between
these populations. Also, we define Dynamic
Constraint Satisfaction Problems as such dy-
namic environments. General CSPs are de-
fined by two stochastic parameters: density
and tightness, then, Dynamic CSPs are de-
fined as a sequence of static constraint net-
works of General CSPs. Computational re-
sults on DCSPs confirm us the effectiveness
of our approach.

1 Introduction

In this paper, we investigate the behavior of Genetic
Algorithms on dynamic environments. We expect that
GAs with rich diversity of genetic information in the
GA population perform well in such environment. To
keep the diversity effectively, we adopt Coevolutionary
Genetic Algorithm proposed in (Handa et al., 1997).
Our Coevolutionary Genetic Algorithm (CGA) con-
sists of two GA populations, i.e., H-GA and P-GA:
The H-GA searches for good solution by means of an
ordinal Genetic Algorithm, while the P-GA searches
for good schemata contained in genetic information
in the H-GA’s population. Two genetic operators

between these populations, called superposition and
transcription, serve as a way of the propagation of
genetic information. CGA outperforms standard Ge-
netic Algorithms resulting from their symbiotic co-
evolution (Handa et al., 1998, 1997, 1997b).

Also, we adopt the notions of Constraint Satisfaction
Problems (CSPs) (Tsang, 1992) to construct dynamic
environments. The notions of CSPs have been used
to solve many practical problems, and have been stud-
ied by many researchers. We employ General CSPs,
which is defined by two stochastic parameters, to make
up instances of CSPs. Moreover, we introduce Dy-
namic CSPs as a sequence of static instances of Gen-
eral CSPs. By using a framework of DCSPs, there
are several benefits for various fields, e.g., decision
making problems in politics, economics, game play-
ing and so on. If such problems are only formulated
in static CSPs, we have to formulate all about simula-
tion environment including internal states in the other
agents or players. By using the framework, however,
we only formulate a DCSP of own status and define
effects from the other agents’ policy or action. Also,
some huge-scale problems may be easily solved by us-
ing the framework of DCSPs. The huge-scale problems
are divided into several partial problems. Each of sev-
eral partial problems is formulated as sub-DCSPs, and
then defines constraints against adjacency but exter-
nal nodes. Like as the islands-model (Goldberg, 1989),
the best solutions in the previous interval are used as
candidates of the external nodes. That is, we only con-
centrate on solving the part of a huge-scale problem at
each of sub-DCSPs.

Related works are described as follows: Dynamic
Constraint Satisfaction Problems in believe mainte-
nance are discussed by Dechter and Dechter (Dechter,
1989). We adopt almost same formulation of the DC-
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Figure 1: Process of Coevolutionary Genetic Algo-
rithm

SPs as Dechter’s. Coevolutionary approaches have
been studied by many researchers (Hills, 1992; Pot-
ter, 1995; Barbosa 1997). Especially, coevolution-
ary approach for solving Constraint Satisfaction Prob-
lems is proposed by Paredis (Paredis 1993, 1996). He
used two populations where an inverse fitness inter-
action, more precisely, the predator-prey relationship,
between these populations is set. Also, schemata-
oriented search methods in evolutionary computation
have been adopted in several problem solving methods
such as Cultural Algorithms and Stochastic Schemata
Exploiter (Reynolds, 1996; Aizawa, 1994). In Cultural
Algorithm, usual GA model is associated with a belief
space that is similar to the schema space and is used
to promote directed evolution of individuals in the GA
model. Our method is similar to Cultural Algorithm
in the sense that both methods use additional mecha-
nisms to promote the evolution of usual GA. However,
the specificity of our approach is to use a coevolution-
ary mechanism.

In next section, we explain our Coevolutionary Genetic
Algorithms. Then, we introduce static and dynamic
Constraint Satisfaction Problems in Section 3. In Sec-
tion 4, several computer simulations are examined and
confirm us effectiveness of our approaches, and finally,
this paper is concluded.

2 Coevolutionary Genetic Algorithm

We adopt Coevolutionary Genetic Algorithm to solve
Dynamic CSPs. As depicted in Figure 1, we have two
GA populations: H-GA and P-GA. The H-GA is a
traditional GA, in other words, it searches for good
solutions in the given problem. In this paper, as the
traditional GA, we use SGA including tournament se-
lection, two point crossover and normal mutation. The
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Figure 2: Fitness Evaluation of P-GA in Genetic Space
of H-GA

P-GA searches for the good schemata in the H-GA.
Each individual in P-GA consists of alleles of H-indiv.
and “∗”, which are representing a schema in the H-GA.
As depicted in the figure, two genetic operators, i.e.,
superposition and transcription, play the role to
communicate (propagate) genetic information between
the H-GA and the P-GA. The superposition operator
copies the genetic information of a P-indiv., except for
“don’t care symbol” (denoted by “∗” in the figure),
onto one of H-Indiv.’s in order to calculate the fitness
of the P-Indiv, where H-Indiv. and P-Indiv. denote
an individual of H-GA population and an individual
of P-GA population, respectively. The transcription
operator serves as a mean of transmitting effective ge-
netic information searched by the P-GA to the H-GA.
For further details see also (Handa, 1997). Follow-
ing subsection describes some explanation of an im-
portant part of our algorithm, i.e., fitness evaluation
of P-Indiv.

2.1 Fitness Evaluation of P-GA

Generally speaking, the fitness value of a schema is cal-
culated as the average fitness value of all individuals
belonging to the schema. It is difficult, however, to cal-
culate the fitness values of all individuals when the or-
der of schema is small. So, the average value of schema
is set to the average value of “sampled” individuals
belonging to the schema. Also, P-GA searches for
useful schemata in H-GA. Here, the useful schemata
in H-GA may be defined as follows: (1) undiscovered
useful schemata or simply (2) useful schemata, i.e.,
those with high average fitness values. Thus, we intro-
duce two manner of fitness evaluation: Differentiating
method and Averaging method.



(a) Map representation (b) Graph representation of the CSP (a)

X

X

Y

Y

W

W

Z
Z

- Set of Units: U= {X, Y, Z, W}

- Set of Labels: L={r, g, b}

- Unit Constraint Relations: T = {t1, t2, t3, t4, t5}

	 t1 = (X, Y), t2 = (Y, Z), t3 = (Z, W), t4 = (X,W), t5 = (Y,W)

- Unit-Label Constraint Relations: R = {R1, R2, R3, R4, R5}

	 R1 = { (r,g), (r,b), (g,r), (g,b), (b,r), (b,g) }

	 R2 = { (r,g), (r,b), (g,r), (g,b), (b,r), (b,g) }

	 R3 = { (r,g), (r,b), (g,r), (g,b), (b,r), (b,g) }

	 R4 = { (r,g), (r,b), (g,r), (g,b), (b,r), (b,g) }

	 R5 = { (r,g), (r,b), (g,r), (g,b), (b,r), (b,g) }{r, g, b} {r, g, b}

{r, g, b} {r, g, b}

Figure 3: An example of CSP: graph coloring problem

Differentiating method
If a schema information discovered by P-GA is already
discovered by H-GA, the H-GA will receive no effec-
tive information from this “discovery” by P- GA in this
method. Hence, we let P-GA to search for “undiscov-
ered” useful schemata in H-GA, and the fitness evalua-
tion of a P-Indiv. is given as follows: First, the fitness
value Fj of a P-indiv., say, j is calculated in the follow-
ing way: The superposing (superposition) operation of
each P-indiv. onto H-indiv.’s is carried out n times.

(1) First, n H-indiv.’s to be superposed by P-indiv. j
are randomly selected.

(2) These selected H-indiv.’s are denoted as i1, . . .,
in, and the resultant superposed H-indiv.’s are
denoted as ĩ1, . . ., ĩn.

(3) Then, to calculate the fitness value of P-indiv. j,
the effect of each of the superposition operations
is evaluated the contribution of the superposition
operation to each H-indiv. defined as follows:

Fj =
n∑
k=1

max(0, fĩk − fik)

(k = 1, . . . , n) .

Thick lines in Figure 5 denote the difference between
the fitness values of the original H-indiv.’s and those of
the superposed H-indiv.’s, that is, “positive contribu-
tion” of this superposition operation. If the difference
is negative, then the contribution of this operation is
regard to be 0.

Averaging method
In our CGA, the P-GA evaluates a subspace in the
genetic space of H-GA. Step (1) and (2) of the differ-
entiating method also apply to the averaging method.
However, step (3) is altered as follows:

(3’) Similar to (3), to calculate the fitness of P-Indiv.,
the fitness function for the superposition opera-
tion is defined by the “result” of the operation,
i.e., we set

Fj =
n∑
k=1

fĩk (k = 1, . . . , n) .

In this method, the average evaluations of he H-
GA’s genetic subspace are carried out.

3 Constraint Satisfaction Problems

3.1 Formalization of Constraint Satisfaction
Problems

Constraint Satisfaction Problems (CSPs) are a class
of problems consisted of variables and constraints on
the variables (Tsang, 1993; Marchiorl, 1997). Espe-
cially, a class of the CSPs such that each constraint
in the problems is related only to two variables are
called binary CSPs. In this paper, we treat a class of
discrete binary CSPs, where discrete means that each
variables in given problems are associated to a finite
set of discrete labels. An example of the graph coloring
problem (Minton, 1994), one of binary CSPs, which is
one of the benchmark problems in CSP is delineated in
Figure 3. As depicted in the figure, CSPs are defined
by (U,L, T,R): U , L, T and R denote set of units,
set of labels, unit constraint relations and unit-label
constraint relations, respectively. In this 3-coloring
problem, i.e., coloring with three colors, r, g and b, for
instance, the set U of units consists of the nodes in the
graph of a given problem. The elements in the set L
of labels denote three colors that should be coloring.
The unit constraint relations T mean as the edge in the
graph of the given problem. The unit-label constraint
relations R are set of 2-compound labels that the con-
straints are existing. To solve CSPs is to search for



Constraint Networks

Figure 4: An instance of Dynamic Constraint Satis-
faction Problems: At every interval Ct, the nature of
instance is randomly changed.

solutions such that no constraints are violated, where
the graph representation of CSP in Figure 3(b) called
Constraint Network is often used.

We introduce two indices representing the characteris-
tics of problems: tightness and density. The tightness
Tij of an arc ij denotes the proportion of existing con-
straint between two variables i and j, that is,

Tij =
the number of all constraints on an arc ij

the number of all compound-labels on an arc ij
.

Further, the tightness of a problem is the average value
of Tij over all arcs. The density D of a problem indi-
cates the proportion of constraint that actually exists
between any pair of variables, i.e.,

D =
the number of all constraint-relations in a problem

the number of all pairs of variables in a problem
.

3.2 Dynamic Constraint Satisfaction
Problems

In this paper, Dynamic Constraint Satisfaction Prob-
lems are defined as a sequence of instances of static
Constraint Networks. That is, at intervals of constant
Ct, the nature of instances, such as the number of
variables, the topology of unit constraint relations or
unit-label constraint relation, and so on, is changed as
delineated in Figure 4. By using this definition, we can
improve the ability to represent instances associated to
practical problems.

Hence, there are several ways to change the property
of instances: As for changing the shape of constraint
networks, add a node, delete a node, increase the size
of a domain, and decrease the size of a domain is
enumerated. Also, as for changing the topology of
constraints in constraint networks, there are modi-
fying constraint relations and modifying compound-
constraints. In practice, all changes of constraint net-
works are represented by combining these ways. In the
case of applying GAs to solve CSPs, we have to change
the coding method in GAs according to the changes of

the shape of constraint networks. In this paper, thus,
we adopt only the modifying constraint relations as
way to change the property of the constraint network.

Furthermore, when we try to solve CSPs by using GAs,
there are two categories of changing property as fol-
lows:

KNOWN GAs can observe which constraint rela-
tions are changed. In this case, for changed vari-
ables, new alleles are inserted to corresponding
gene locus.

UNKNOWN GAs cannot observe which constraint
relations are changed. Note that we incorporate
the case, such that GAs can observe which vari-
ables are changed but cannot know which vari-
ables are affected by constraint propagation from
changed variable.

4 Experimental Results

In this section, several experimental results on Dy-
namic General Constraint Satisfaction Problems de-
scribed below are examined. As described in section
3, Dynamic General CSPs is represented by a sequence
of the constraint networks associated to General CSPs.
At every interval Ct, the nature of the constraint net-
works is changed. In this paper, the interval Ct is set
to be 200000 times of fitness evaluations. The general
CSPs are randomly generated as follows: First, spec-
ify the tightness and density in the sense in section
3. Next, for all combination of two variables, decide
whether unit constraint relation is set to be each of
the pairs of variables by taking account of the value
of density. Finally, for all unit constraint relation, the
number of the unit-label constraint relations is set to
be directly proportional to the tightness.

The Dynamic General CSPs are set such that both
of the number of variables and the size of domain
are set to be 10. The fitness function is defined as
1/(1 + the number of violated constraints). In all ex-
periments, the GA parameters for the SGA and the
H-GA are set to be of the same value, the probabil-
ity Pc of crossover, the probability Pm of mutation
and the numbers of the elitist are set to be 0.8, 0.01
and 5, respectively. Those for the P-GA are set to be
Pc = 0.8 and Pm = 0.05. Further, don’t care symbol in
the P-GA is generated with a high probability. Also,
the number of runs for each of the tuple (tightness,
density) is set to be 100.

Figure 5 shows the experimental results on Dy-
namic General CSP, (density, tightness, interval) =
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Figure 5: Experimental Results: Dynamic General Constraint Satisfaction Problems (density, tightness, interval)
= (70, 30, 200000); LEFT COLUMN:KNOWN, RIGHT COLUMN:UNKNOWN; 1st ROW:SGA–population size
is 500, 2nd ROW:SGA–population size is 1500, 3rd ROW:CGA (Differentiating)–H-GA’s population size is 400
and P-GA’s population size is 100, 4th ROW:CGA (Averaging).



(70, 30, 200000). We examined comparisons on DGC-
SPs for a variety of the couple of tightness and
density. For all couples of them, CGA using differen-
tiating method outperforms SGA or performs roughly
the same as SGA. This figure is one of typical results,
where the horizontal axis, the vertical axis, and each
lines in the all graphs denote the number of fitness
evaluations, the Max fitness value in the population,
the Max fitness value for a variety of the proportion
of changed nodes. The left column and the right col-
umn in this figure denote KNOWN and UNKNOWN
problems, respectively. The first and second rows in
the figure denote SGA such that the population size
is 500 and 1500, respectively. The third row denotes
CGA such that H-GA’s is 400, P-GA’s is 100, and
fitness evaluation of P-GA is differentiating method.
The fourth row is same as the third one, except for
that fitness evaluation of P-GA is averaging method.

As depicted in this figure, CGA using differentiating
method can search for new satisfiable solutions after
environmental changes quickly. Moreover, CGA using
averaging method converges into local optima prema-
turely, after environmental changes, the CGA with av-
eraging method discovers satisfiable solutions almost
every experiments. On the other hand, SGA cannot
search for new satisfiable solutions effectively, if GAs
don’t know when environmental changes are occurred.
It seems that such recovering ability of CGA results
from P-GA, that is, P-GA serve as a means of the
diversity preserving.

5 Conclusion

In this paper, we examined the behavior of GAs on dy-
namic environments. Also, we defined the framework
of the Dynamic Constraint Satisfaction Problems. The
experimental results carried out in the section 4 con-
firm us the effectiveness of our approach, i.e., Coevo-
lutionary Genetic Algorithms.
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