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Abstract

This paper describes an application of the
Learnable Evolution Model (LEM) to a digital
signal filter parameter identification problem and
compares its performance to genetic algorithm
solutions.

1 METHODOLOGY

LEM augments a genetic algorithm by adding a symbolic
learning operator.  This operator learns what differentiates
the most fit individuals in a population from the least.
The symbolic learning operator then generates a new
population based on this knowledge.  LEM toggles
between using the symbolic learning operator and typical
genetic algorithm operators (i.e., selection, mutation, and
crossover).  LEM’s learning mode changes when the
current operator or operators makes no significant
improvement for the best fitness measure in a generation,
or after a certain number of generations are produced.

LEM had previously performed well when compared with
two other genetic algorithms on the De Jong test suite
(Michalski, 1998).  In this experiment, we wanted to
compare the LEM method to two genetic algorithm based
solutions when applied to solving for the coefficients of a
digital filter.

2 EXPERIMENTS

The symbolic learning program AQ18 was used to
implement the symbolic learning operator.  The genetic
algorithms GA1 and GA2 were used; the former
employed only mutation, while the latter used both
mutation and uniform crossover.  We used GA2 for
LEM’s genetic algorithm implementation.  The following
figure shows the experimental results.

3 CONCLUSIONS

A genetic algorithm augmented by the use of a symbolic
learning mechanism has significant speedup over more
traditional genetic algorithm for this continuous parameter
optimization problem.  See LEM GMU MLIL
Publications for a complete discussion.
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