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Abstract

The 'Aliasing Problem' within XCS (Wilson,
1995, 1998), first identified by Lanzi (1997),
does not only appear whenever the aliased states
occur in separate environmental locations but
also when they occur consecutively (Barry,
1999). Lanzi (1997, 1998) introduced a
mechanism that could solve the Aliasing
Problem through the use of memory mechanisms
within XCS (Wilson, 1995; CIiff and Ross,
1994). Whilst this mechanism is a solution to the
general problem of aliasing, it is a heavyweight
solution. By limiting the scope of a solution to
the Consecutive State Problem, which is shown
to be a sub-problem of the Aliasing Problem, a
simpler solution is proposed, and is shown to
adequately address this problem. The application
of a potential solution utilising explicit action
duration identification is discussed and shown to
be inadequate both as a solution to the
Consecutive State Problem and for more general
use within XCS.

INTRODUCTION

Lanzi (1997, 1998) has investigated the application of
XCS to multi-step environments. In applying XCS to
progressively more complex Woods environments he
identified that XCS had difficulty in finding solutions
within the "Woods102" environment. This environment is
non-Markovian due to the duplication of an input vector
in two separate positions within the environment which
require the same action but present different payoffs. This
finding is no surprise given the roots of XCS in the
mechanisms of Temporal Difference methods of
reinforcement learning (Sutton, 1988; Watkins, 1989).
Nevertheless, it does impose limitations on the application
of XCS, since the consequent requirement for complete
and unambiguous sensory perception is often undesirable.

Lanzi (1997) termed this problem the 'Aliasing Problem'
and sought a solution to it using a memory mechanism
first proposed by Wilson (1994, 1995) and applied within
ZCS by CIiff & Ross (1994). This mechanism used an
additional memory bit vector which classifiers could
match as part of their condition and set as part of their
action. Using the generalization abilities of XCS it was
hypothesized that optimal memory settings would emerge
to solve the Aliasing Problem. The XCS would learn to
set a memory bit before one of the two aliased states and
thereby disambiguate the inputs of the two states. This

When Wilson (1995) presented the XCS classifier systerWOUld in turn cause separate classifiers to be created for

he provided results from two sets of investigations. Onefach aliasing state. Unfortunately the extent of the
isruptive nature of the aliasing states was not

using the Multiplexor problems, demonstrated that XC . ; .
was capable of accurately learning the payoff mapping fofvestigated, and whilst some success was reported it was

previously unseen complex boolean relationships. POt until the setting of memory bits was directly related to
demonstrated the ability of XCS to form complete State €nvironmental rewards and limited to exploitation cycles
Action x Payoff mappings within single-step (immediate (théreby sacrificing the ~complete input mapping
reward) environments. The second used a Woodgrope_mes of XCS) that a satisfactory solution was found
environment (Woods-2) to illustrate the abilities of xcs(Lanzi, 1998).

within multi-step environments (environments whereRecently Barry (1999) has carried out further
reward is obtained after a number of movements withinnvestigations into the Aliasing Problem as part of wider
the environment), and showed that XCS was able to formesearch into the emergence of hierarchical invocation of
a compact classifier population maintaining the State classifier sequences. This work identified a form of the
Action x Payoff mapping of the environment - an ability Aliasing Problem where the aliasing states occur in
further enhanced by later modifications to XCS (Wilson,consecutive states. Using this problem it was shown that
1998). Whilst Kovacs (1996, 1997) has produced furthewithin a simple environment consisting of a single chain
results within single-step environments, particularlyof states the aliased states not only cause payoff
concentrating upon the formation and maintenance of thgrediction inaccuracy in the classifiers covering the
optimal classifier representation for a given environmentaliasing states but may also generate inaccuracy in the



classifiers covering the immediately preceding ifcoded condition and an encoded action, in order to
exploration of the states is not uniform. It was alsoidentify those classifiers which are relevant to the current
discovered that it was possible for the classifiers coveringhput condition. Those classifiers whicmatch the
the aliased states to proliferate in an over-generaliseshessage are used to create Match Set[M] of the
form by trading off a small decrease in accuracy for theclassifier system - the set dfction Setswhich each
additional GA opportunities afforded by involvement inidentify: an action, the classifiers which have been
the action sets of non-aliased states. In situations whereatched that propose the action, and the predicted payoff
this proliferation was controlled and exploration wasthat will be received upon performing the action
performed uniformly it was demonstrated that XCS wascalculated from a weighted sum of the payoff prediction
unable to sustain suitable covering classifiers for thef each classifier in the action set. An action set [A] is
aliased states where competition for population space wahosen from [M] to perform an action; chosen arbitrarily
high, but was involved in a constant but fruitlessif exploring to enhance the classifier representation or
exploration for adequate classifiers. Thus, within a singlehosen by selecting the highest predicted payoff Action
state chain environment it was demonstrated that in th8et if seeking to exploit the learnt classifier
presence of consecutive aliased states the ability of XC&presentation. The action advocated by [A] is performed
to create a complete and accurate Stafetion x Payoff  in the environment by decoding the action representation
mapping will be severely compromised. through an effector interface. If a rewaRlis received
efrom the environment the goal is considered to have been
reached andR is used to update the predictions of all
glassifiers in [A] using the modified Widrow-Hoff update
mechanism known as MAM (Venturini, 1994). If no
reward is received, and the environment is potentially a
gwlti—step environment, the action is considered to be one
action en route to the goal and payment is taken from the
aximum prediction of [M] in the next iteration
iscounted by a discount factgpr(0 <y < 1). Thus, any
gccurate classifiers in an [A] which leads directly to a
wardR can be expected to converge to a prediction of

Within certain environments the consecutive stat
problem will be likely to occur regularly. Consider, for
example, the control of a robot moving about a room. Th
primitive wall following behavior required for this task
will, in any robot without sensors which provide a unique
'global' reference point, present the same input to th
robot whilst in wall following and therefore produce a set
of consecutive aliased states along each wall. Lin (1993
for example, overcomes this problem by presenting a X,
coordinate as an input to a robot navigation task which i

used primarily to disambiguate environmental states. | N X o
general this form of global reference point is difficult toréa' those one step back will converge to a predictioyRof
and thosd steps before the reward will convergeyt®.

provide economically, and therefore an alternativel_he speed of convergence is controlled by the learning
solution to the consecutive state problem is desirable. rate parametef (0 < B < 1) within the Widrow-Hoff

In this work the hypothesis that the Consecutive Statg@pdate equations.
Problem is a sub-problem of the Aliasing Problem is
presented. Although the Consecutive State Problem cou
be solved using the memory technique proposed by Lan

Ithough these processes are clearly related to traditional
| CS, in particular Animat and ZCS (Wilson, 1983, 1994),

this mechanism requires modification to XCS to introduc he_ update Imethod ,'S novel W'th.'n an LCS. In fact, _t_he
tire XCS 'strength' formulation is novel. Each classifier

the additional memory techniques discussed above, Arries with it not only thePrediction measure, the
has been problematic to implement (Lanzi, 1998). y !

Furthermore, it's adequate implementation requires rediction of the average payoff it receives when invoked,
change in the explore/exploit regime, thus removing on ut aiso o other related measures - Ereor and

of the key features of XCS learning, namely the formatio ccuraqywhich iden_tify the accuracy of .this pregjic;tion.
of a complete, accurate, and optimally general state A classifier can be inaccurate because it's prediction has

action x payoff mapping (Kovacs, 1996). If the not yet been updated sufficiently to make it accurate or
Consecutiv% yState Prr)gblgm is a s'ub- roblém of th@ecause it has an over-general condition which involves
Aliasing Problem, it should be possil%le to devisel'® classifier in too many [M]. Inaccurate classifiers could

alternative solutions to this sub-problem which may bd'°n€theless have a high prediction and therefore it is
simpler to implement with less impact upon the operatiorimport"’}r.'t to remove them in favor of accurate classifiers.
of XCS. This paper seeks to investigate this hypothesi o facilitate this, the GA mductlon e'e“?e”t of XCS
and provide results from two potential solutions to theoeparates the measure use_d in the selection _of_ classifiers
Consecutive State Problem. for crossover Qnd/or mutation from the predlgnon. The
new measure introduced is termed the classHigress
and is the accuracy of the classifier relative to other
2 XCS STRUCTURE AND OPERATION classifiers in the [A] the classifier occurs within. Thus, the
) - ) GA will favor accurate classifiers over inaccurate and
The XCS Learning Classifier System (Wilson, 1995,will, over time, replace inaccurate classifiers with
1998) is, on an initial inspection, similar to traditional gccurate versions. Furthermore, the fitness is used to
Learning Classifier Systems. Detectors interact with aRyeight the contribution of the classifier's prediction
‘environment' to produce a binary encoded message whigfithin [A] so that accurate classifiers contribute more and

becomes the input to the XCS. Thisnisitchedagainst a  drive the System Prediction towards higher accuracy
population of classifiers, each consisting of a ternary



whilst increasing the calculated error within thenew trial and the environment will reset to a [selected]
inaccurate classifiers. Interestingly, because an accurastart state.
general classifier occurs in more [A] than an accurate but

more specific classifier, and because the invocation of the a) 1 2 3 4

GA is tied to occurrences within [A], the more specific 4
classifiers are also driven out of the population. The
classifier deletion mechanism, used when the population b) 1 2 2 3
becomes full, deletes classifiers based on the average o e e e 3
number of classifiers which exist in the Action Sets each

classifier appears within, thereby dynamically adjusting
the population composition to provide sufficient
population niches (Booker, 1989) for all the accurate
optimally general classifiers (given sufficient populationConsider a finite state world consisting of the five states
space). The Optimality Hypothesis (Kovacs, 1996)s, to s,, depicted in Figure la. The staggis the start
suggests that XCS is thus capable of identifying andtate,s, is the terminal state generating rewaRd To
maintaining the accurate optimally general populatiorcreate a non-Markovian FSW the statgsand s, are
(termed [Q]), and this has been demonstrated for fabeled with a detector messadyel, and the edges - S
number of small problems (Kovacs, 1996, 1997; Saxomands,— s; are labeled with actior=2. This finite state
and Barry, 1999). world will be termed=SW-5A-2t0 identify the 5 states, an

Within the limits imposed the explanation of the xcsaliased world, aliased over two states.

structure and operation is necessarily truncated, and oth®hree classifiers are required to traverse this FSW 1,0

novel features (such as tiacroClassifierformulation 1.2, 3-4. Call these classifiers;, ¢,, and c;. Upon

and Subsumption Deletigrhave not been addressed. Thereachings, classifier c; receives a rewardR. c; will

interested reader is directed to Wilson (1995, 1998) andventually converge so that= R. From this point, for

Kovacs (1996) for more detailed explanations. moving froms, to s;, C, will be consistently given a
payoff yR. However, for moving froms, to s, the

classifierc, will also be given a payoff which i#,. If the
3 CONSECUTIVE STATE PROBLEM learning rgteﬁ within the Widrow-Hoff mechar?ism was

A Finite State World (Grefenstette, 1987; Riolo, 1987) isl. then the prediction would oscillate well within the
an environment consisting sfodesand directededges  limits 'R andyR. For simplicity, let us assume they
joining the nodes. Each node represents a distin¢faries around the average payoffs that would have been
environmentalstate and is labelled with a unique state féceived at the states had they not been alia§g® +
identifier. Each node also maintains a message that theR) / 2), and that 0 8 < 1. In this case the variance will
environment passes to the XCS when at that state. Eaégduce tot B((yR - y’R) / 2). Unless the value @is very
edge represents a possiliiansition path from one node small, or the aliased states are s_uff|C|entI_y fa_lr from the
to another and is labelled with the XCS generatedeward source for the successive application of the
action(s) that will cause movement across the edge in trfiscount factory to reduce the payoff to a very small
stated direction to a destination node. An edge can les@mount, the variance will remain sufficient to produce an
back to the same node. Each node has exactly one lagicillation in P, which is greater thams,, the minimum

and message, and each message is unique within €&Or for a classifier to be considered accurate.

Markovian FSW and normally equivalent to the node's

label. Non-Markovian environments can be created b)a HYPOTHESIS

allowing a message generated by one node to be re-used

by other nodes. Each edge may have one or more labessairry (1999) demonstrated that the Consecutive State
and these will be re-used on edges emanating from arBroblem is a form of the Aliasing Problem and identified
node which allows that action to be executed when in tha number of important consequences of the Consecutive
state represented by the node. At least one node must 8eate Problem for the formation of an accurate optimally
identified as estart state, signifying that the XCS will be general Statex Action x Payoff mapping of the
operating in that state when each new learning triaénvironment. From this work it seemed that the
begins. If more than one start state is provided the actual

state from which a trial is started is chosen randomly from
the ava”a,ble S,t‘?rt states. ,Add't'ona”y’ one _O.r more r]c)deSAt present XCS presents the allowable prediction eggoas an
must be identified aserminal states. Transition to any apsolute parameter. However, given that the discount factor for an
one of these states represents the end of a learning tribitrary classifieri steps from the reward sourceis YR, classifiers

and each will have an associated reward valu&'ore than about 12 steps away from even a moderately generous reward
represening an environmental reviard which is passed gFATe SUE" = o i he Woods nvionmerts used winin (tison
XCS upon transition into such a state. Terminal states d@jative to it's stable prediction without exceediagThe investigation

not have any transitions emanating from them - upomf relative error measures for the accuracy calculations, similar to those

arrival the trial is ended, the next iteration will represent aised by Barry (1999) for collecting error readings across all classifiers
within a trial, may therefore be productive.

Figure 1: Markovian and Non-Markovian FSW




Consecutive State Problem could be solved usingf Lemma 2.1 and 2.2 are correct, then it is possible to

techniques which are simpler but not appropriate for alsuggest that the Consecutive State Problem and the
forms of the Aliasing Problem. This gave rise to theSeparate State Problem are two sub-problems which show
following hypothesis: the same properties and can admit to the same solution,

The Consecutive State Problem is a sub-problem of thut for which there can be devised independent solutions
P hich do not cover the whole, thereby giving the

Aliasing Problem. The Consecutive State Problem wil Sthesis
admit to specific solutions that cannot address th yp IS
Aliasing problem as a whole.

To see the rationale for the development of thi© EXPERIMENTAL INVESTIGATION

hypothesis we need to introduce two lemmas. In the previous section it was claimed that if the

Lemma 1 -The memory solution (Lanzi, 1997, 1998) is aapplication of the reward could be delayed until the point
general solution which is applicable to all occurrences ofof leaving the aliasing states, the discounting of payoff
the Aliasing Problem. would not occur within the aliasing states and therefore
the classifier covering the aliasing states would be able to
represent a single payoff value accurately. In this section
we identify and examine one candidate mechanism.

Consider the following formulation of the Lanzi (1997)
memory solution to the Aliasing Problem applied-®W-
5A-2 One bit of memory which is appended to the inpu
message created by the XCS detectors can be used to

solve this FSW. Classifiers covering all non aliased stateés.1 =~ A PROPOSED SOLUTION

cr?n (;gnpre th% st)gtt|ng of th'\SN?]'t by adding a Wr']ldct?rd afn seeking a solution the main obstacle is the difficulty in
the designated bit position. When in stater s, the DIt e qvifving the difference between an action that leads to
can be used to differentiate between the aliased states QY.qnsecutive aliasing state and an action which leads

using it's O value to identify, and it's_l value to i_dentify back to the same state (a 'null' action). The same message
sz(gwe shall not discuss hO\IN th_'}f mlgﬂt bé:Ch_'eh\_’ed;('CI s received from the environment in consecutive iterations
order fo create accurate classiiers the within XC3p, hoth cases and oscillations in prediction will still occur
will then discover two separate classifiers distinguishedy, e |atter case for over-general classifiers matching in
byl this bltd\{alue, eagh of er‘f'Ch V‘l"" ac::furz—;nk;[elyFrgf\lﬁct theis state. However, if the environment does not allow
relevant discounted payoff value. It the WaSny|l actions, then it would be possible to repeatedly re-

changed so that_the_ aliasing states were ssaers,, or . choose the same action set while the message remains the
any other combination of two states, the same techniqug, o rewarding the action set only when payoff is
could be used. This argument can be trivially extended to, ;eiyeqd from the first action set chosen from a different
any reflect two aliased states on joined but distinct Stat?nessage Preventing payoff in this way will ensure that
chains at different payoff positions or at the same positiofy,y 5 “single payoff is received for each distinct input

in distinct state chains ending in different reward values. | ooy (unless the Separate State Problem exists within
Lemma 2 -The Consecutive State Problem is distinctthe environment) and therefore eliminates the causes of
from the Separate State Problem the Consecutive State Problem.

Consider again the five state aliasing problerR$W-5A- There exists a simple implementation to this proposed
2. The inaccuracy of the classifier coveriggands, was  mechanism which requires the storage of the message
due to the discount of the payoff between invocations ofeceived in the previous iteration (set to a dummy
the classifier. If the discounting mechanism was disablethessage in the first iteration of a trial). At the start of a
until a change of input then the classifier would receivenew iteration the message received is compared with the
one payoff for its full time of activity and the payoff stored message and if the same then the previous match
would be consistent, thereby making the classifieiset and action set are restored. The action selection stage
accurate. Now if the FSW was changed so that thés therefore not needed in this iteration, and the restored
aliasing states were states and s;, or any other action is applied to the environment. If an environmental
combination of two non consecutive states, the sameeward is received, this is given to the restored action set,
technique could not be used to achieve classifier accuradut if no reward is received the payoff to the previous
due to the correct discounting of the payoff for anyaction set is prevented. The induction algorithms operate
intervening classifiers. Clearly the same argument can b&s normal.

applied to any situation where two aliased states on joineghis mechanism would appear, on first inspection, to

but distinct stat_e_cha!ns at o_hfferent payoff positions or afeyent the Animat exploring alternative reward routes
the same position in distinct state chains ending

from within the aliasing states. However, unless the

different reward values are considered. Thus theemative route could be reached from all the aliasing

glgns_ecult;veblState Problem LS a pialrtlcaular |rr]13tance ththﬁates within a set of consecutive states, the action leading
lasing Problem, separate but related to the case Whetg e aiternative route will itself be aliasing. If the route

alr:aﬁebd statesd arp‘)gear at nSon consglcunve states (Whighy, pe reached from all the aliasing states, then it could be
shall be termed thBeparate State Problgm chosen at the first of the aliasing states and will still be
explored.



5.2 THE TEST ENVIRONMENT using the messages for each state as follows: 0- 00000, 1-

. . . 00001, 2- 00010, 3..6- 11000, 7-00011, 8-00100, chosen
Both Wilson and Lanzi have utilized the Woods. A - L - .

! : . . in order to minimize any likely aliasing state disruption to
environments in their work, but these environments are

not easily scaled with fine control in either length orother classifiers (Barry, 1999). Baseline results for

. . learning within the non aliased version of the environment
complexity. Therefore, the Woods environments are se nd within the aliased version were obtained by running

aside in favor of the Finite State World environments ; : - .
introduced in the preceding section. All WOOdSthe XCS ten times in each environment, capturing the

environments can be represented using FSW in any casS stem Relative Error measures (Barry, 1999) at the end

though not all FSW can be represented by Wood? each exploitation trial and averaging the results across

environments. For these tests a nine consecutive sta gch run. The results from the first 5000 exploitation trials

FSW was constructed. The first stateis also the start Yrvggfsréthr%g&?sa“aﬁe? n?crel;grsc;&mewhifr? sggr\:]vn;peglgtlgretﬁé
state, and the terminal state $g at which a reward 9 P

_ . . . equivalent non-aliased nine state environment used Barry
FV;()loe%%elsssprov;de%n'gt;e Sti;tﬁsl(;bﬁellej v?the zir':iohna"sv?) (1999). The greater oscillation in the maximum System
= S+l  — S-1

: . Relative Error suggests that the wider range of movement
and 1 respectively. The stai® has a single edge and lack of null actions in the environment used for these
emanating from it, 0» 1, labeled with actions 0 and 1.

This environment provides uniform exploration rates fort®Sts makes the task of learming more difficult.

all states but does not have any 'null action' edges leading XCS Output

.. . . 1 T T T T T T
back to the originating state as was the case in the terations —
environments used in Barry (1999). The stadg$o s Relative Error
were aliased by providing an appropriate message in each Min Rel Error —

ax Rel Errorl ——

experiment. Other parameters for XCS were set in all
experiments as follows$\=400,p;=10.0,€,=0.01,f,=0.01,
R=1000, y=0.71, $=0.2, £=0.01, a=0.1, 6=25, X=0.8,
pu=0.04, P(#)=0.33, s=20 (see Kovacs (1996) for a 0.6
parameter glossary), and the maximum trial length was
set to 50.

Proportion

0.4

5.3 APPLYING ACTION PERSISTENCE

In order to provide an empirical proof for the hypothesis, 0.2
the previously described persistence mechanism will be
applied within the test environment.

XCS Output 0 L L L L L L L L L
1 T T T T T T 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iterations — Exploration Trials
Relative Error
Min Rel Error —
0.8l Max Rel Error —

Figure 3 : The averaged System Relative Error results
from 10 runs of XCS withifrSW-9A(2)-4

0.6 When the environment was modified to it's aliased form
and the experiment was run it was therefore unsurprising
that the degree of oscillation of the maximum and
0.4t minimum System Relative Error readings was much
higher than in previous environments tested. As a result of
the greater movement allowed, the classifier covering the

Proportion

0.2 bl aliasing states was noticed to have an even more profound
J effect upon the classifiers covering the neighboring states
Il than reported in Barry (1999) when the populations
0 it i e el oo o resulting from these runs was examined. A number of
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 alternative message encoding schemes were tested but

Exploration Trials

non appeared to provide any advantage over that which
had already been chosen. The averaged results of this

Figure 2 : The fall in System Relative Error in the non experiment are shown in Figure 3.

aliased FSW-9(2) environment averaged over 10 runs. The XCS was modified in the manner outlined in section
. . 5.1 to introduce action persistence over aliased states to
A non aliased version, terméeBW-9(2)was created by the XCS. The modified XCS was initially tested by

using state messages which were equivalent to the stafeertin : . . ;
X . g the hypothesized [O] into the population, turning
numbers. The aliased versidRSW-9A(2)-4was created the induction algorithms off, and running the XCS with



all other parameterization set to the values state@able 1 : Classifiers in [O] learnt by the persistent form of
previously. These tests indicated that the modified XCS XCS acting within FSW-9A(2)-4
was able to find the optimal predictions for all classifierS  Class.  Pred. Error Fit. Acc. Num. MS Exp.

with no error and in the same time span that would b@s#11 .0 1000.0 0.0000 1.00 1.00 41 42.7 27517
expected for the equivalent non-aliasing five-state FSWixz11.1 503.35 0.0007 1.00 1.00 31 41.0 12371
environment. Knowing that the modified XCS could dealqs####.0 707.21 0.0013 0.92 1.00 38 44.6 40047
with the aliased states correctly, the ability of thequuss.1 357.91 0.0006 097 1.00 34 402 25079
modified XCS to learn within theFSW-9A(2)-4  4u410.0 503.18 0.0007 0.99 1.00 49 51.7 53263
environment was examined by running the XCS in thewsszg1.0 358.76 0.0009 0.98 1.00 51 54.3 66974
environment ten times with no initial population and all 4##01.,1 18050 0.0004 0.92 1.00 36 454 52773
induction algorithms on. The System Relative Error wags#00.,0 254.05 0.0003 1.00 1.00 38 44.0 41199

captured from each run and averaged, and the results frofa.#0,1 253.91 0.0003 0.95 1.00 48 58.0 81085
the first 5000 exploitation trials are shown in Figure 4.

e 6 DISCUSSION
Re|;tt§;at5i?fosr - The experiments demonstrate that within the simple FSW
Min Rel Error — developed for these tests it is possible to utilize action
0.8 Max Rel Error —

persistence to eliminate the Consecutive State Problem.
However, this solution is limited by it's inability to deal
with null actions. Unfortunately, even in environments
0.6 like the Woods environments which would appear not to
allow null actions these are often present - an action
which is not allowed, such as an attempt to move onto a
0.4 'Rock’ square within the Woods environments, will
prevent movement to a new state and would therefore be
modeled within a FSW as a null action. This is therefore a
0.2 fairly severe limitation.

Proportion

0 \ N 6.1 DEALING WITH NULL ACTIONS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Exploration Trials

Fortunately it is possible to conceive of a number of
potential solutions to the problem. In environments such
as the Woods environment the attempt to move to an

Figure 4 : The minimal System Relative Error illustrates 11€gal position can be easily detected by providing the
that the environmerESW-9A(2)-4s mapped optimally XCS with feedback from the environment that the

when using persistence of actions over aliased states. attempted move was illegal. This information can be used
to prevent action persistence from starting, which together

The rapid reduction in the System Relative Erroryith the standard discounting payoff mechanism should
measures indicates rapid and accurate learning. Allow XCS to learn to select more appropriate actions
comparison with Figure 1 illustrates that learning isduring exploitation trials. A similar effect can be gained
actually more rapid within FSW-9A(2)-4 with persistencepy introducing an additional parameterto XCS which

of actions than in the non aliased FSW-9(2) environmengives a limit on the number of iterations over which
This is due to the effective reduction in states to a ﬁv%ction persistence may operate_ On each iteration in
state environment, making the learning task muchyhich an action is reinstated because the same message is
simpler. An examination of the final populations from thepresented from the environment a counter is incremented.
10 runs showed that they had all converged on [O], witlupon reaching the limitt action persistence is stopped, a
the total population size between 27 and 40 macr@eward' equal to the minimum environmental reward is
classifiers with all classifiers which were not members ofgiven, and the trial is concluded. Over a short number of
[O] having low experience and very low numerosity explorations the classifier leading to a persistent action
indicating they were the unfruitful product of continued gver a null action will converge to a low prediction and
exploration. Table 1 gives [O] taken from a typical run.  therefore not be selected during exploitation trials. It is

This experiment has demonstrated that the consecutiV¥orth noting that a parameter already exists within XCS
aliasing state problem can be overcome by a mechanisiiat gives a maximum trial length before a trial is
the use of persistent actions, which does not solve thigrminated and a new trial begins. This parameter
more general Aliasing Problem. Therefore, it is concludedrevents XCS from eternally iterating between two or
that the Consecutive State Problem is a sub-problem @fore cyclically connected states, and has the same effect
the more general Aliasing Problem and that a solutio@®S the proposed new parameter. The new parameter
exists for the Consecutive State Problem which does ndftroduced because the existing trial length parameter has

address the whole aliasing problem. a relatively high value which is inappropriate for the
detection of null actions.



6.2 SPECIFYING ACTION DURATION directly to the terminal state were found to have over 10
Hmes more experience than the next most experienced
classifiers in the population (average 2190 fsy
compared with 219 fos; in one typical run), with the
classifier that led directly to the terminal state having over
raGO times more experience.

Cobb and Grefenstette (1991) employed classifiers whic
included actions which identified a duration over which
the action of the classifier was to occur within the
SAMUEL LCS. They were able to demonstrate that
LCS which included this facility was able to discove
classifiers with suitable action duration under the actionSecondly, the persistence of an action will cause the
of the GA for a missile pursuit problem. On first classifiers concerned to be given the payoff received from
inspection it would appear that this technique could bé¢he destination state and so converge on a prediction
readily applied to XCS to solve the consecutive statavhich would normally occur much later in the state chain.
aliasing problem. A classifier which identifies both the Since the maximum system prediction is used as the
action and the correct duration for the action wouldpayoff value within multi-step problems the prediction of
receive a constant payoff and therefore be identified akhese classifiers will be passed on to other preceding
accurate and of high fitness. A classifier identifying theclassifiers. In the investigation usingSW-9 all
incorrect duration would receive no payoff (if it persistsclassifiers leading to the terminal state convergedRon
too long), a fluctuating payoff (if it persists for too short awhilst all classifiers which lead to other states within the
time and so is re-invoked), or a lesser payoff (if it persistenvironment converged tgR. Whilst still allowing XCS

for too short a time but is not re-invoked it will be furtherto choose the optimal classifier, the destruction of the
down the feedback chain), and therefore in each case witmporal difference properties of the mapping generated
not be selected in exploitation. Therefore, without changey XCS cannot be justified.

to the credit. aIIocation_ or induction mechanisms of thel’his problem would seem to be able to be addressed, for
XCS, and with only minor changes to the performancqhe sole solution of the consecutive state aliasing problem,
component, XCS would appear to have all they initing the persistence of an action to the cases where
mec_hanlsms necessary to generate, identify _@Nfhe message remains the same in consecutive states. In
pro!lferate classifiers which act for the correct iMe his case a classifier which tries to persist with an action
period. for longer than a message is consecutively posted can be
However, this approach has potential limitations. Firstlyrewarded an arbitrary very low reward so that the

if classifiers can be discovered which successfully movenapping for actions of an incorrect duration are poorly
over all the aliased states, they will only be useful if allvalued and thus not selected during exploitation.

occurrences of consecutive aliasing state sets generating g;g possibility was investigated usiFGW-9A(2)-4and
given message are the same length since the length fltwo aliasing state version BEW-9A(2)-4ermedFSW-

invocation is hard coded within the classifier. SecondlygA(z)_2 The XCS was modified so that the environment
the addition of timing information to a classifier increase ecodes the persistence specification in the action and
the action length (and thereby the search spacsqja

unnecessarily for the many other classifiers which do n%peats _the action _the number of times specified, or ur_1ti|
require this facility. Thirdly, and finally, the XCS e environment gives a new message, before handing

. . i control back to the XCS with an indication of whether the
!mplementanon _pr(_)posed by Wilson (199.5’ 1998)fuII action persistence was completed. If the full duration
includes only primitive search over the action spacg . completed before the message changed then the
(mutation only) and thus any significant extension of th&, .o havoff mechanism is used at the end of the delay
action encoding will necessitate the full application of GAto give a constant feedback to the classifier. If, however,

search to the whole classifier in order to search over thg "¢ I duration was not completed the XCS now pays
duration fields adequately. back the minimum environmental reward in lieu of the
Unfortunately, the operation of the XCS itself providesnormal payoff. If the duration is too short, the classifier
some more fundamental problems. Firstly, in anwill be inaccurate. If it is too long, the classifier will have
environment where consecutive states have the sanselow prediction and not be used within exploitation trials.
action message all the way to a terminal state a classifidihus, the classifiers proposing an action which persists
with the move-to-goal action could develop a durationfor the correct duration should be selected.

which continues the action over all intermediate states t
the goal. Whilst this is potentially beneficial in the short
term, it limits exploration of later states and prevents th
timely production of a full Statex Action x Payoff
mapping within the classifier population. This problem

%he experiments consisted of 10 runs of 15,000
exploitation trials with all other parameterization kept at

%hat described in section 5.2. The results showed that
System Relative Error, although reduced, remained high

, tiaated b iESW-9with . for the four alias state test. The two alias state test was
was investigated by usingSW-9with one action (r_npve better, shown in Figure 5, but the System Relative Error
forward) and a maximum action persistence sufficient tQuas never eliminated

traverse from the start state to the terminal state. The

population was initialized to cover all conditions andAn examination of the populations revealed that the XCS
actions and the induction algorithms were disabled. Aftefound classifiers with high numerosity which identified
15000 exploration trials the population was examinedthat no length three or four delays were required in any
The classifiers covering the start state that did not leagtate, and no length two delays were required in the non-



aliased states. It was also able to learn the generalizéésting of the XCS implementation now available from
classifiers for most of the non aliased states, althoughttp://www.csm.uwe.ac.uk/~ambarry/LCSWEB

there was a degree of disruption present. The classifiers

covering the all_ased states were present in small r.'umbeﬁgeferences

with low experience. An examination of the location of

the disruption of other classifiers revealed that, undeBarry, A.M. (1999), Aliasing in XCS and the Consecutive
exploration, a classifier could be invoked that moved intcState Problem : 1 - Effects, submitted to the Intl Conf on
the second of the aliasing states freniThis would cause Genetic and Evolutionary Computing,, 14-17 July, 1999.

the invocation of the classifier providing a two step delayggoker L.B. (1989), Triggered Rule Discovery in
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Figure 5 : System Relative Error remains within FSW- | 571 p L. (1998b), An analysis of the Memory
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