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Abstract
The 'Aliasing Problem' within XCS (Wilson,
1995, 1998), first identified by Lanzi (1997),
does not only appear whenever the aliased states
occur in separate environmental locations but
also when they occur consecutively (Barry,
1999). Lanzi (1997, 1998) introduced a
mechanism that could solve the Aliasing
Problem through the use of memory mechanisms
within XCS (Wilson, 1995; Cliff and Ross,
1994). Whilst this mechanism is a solution to the
general problem of aliasing, it is a heavyweight
solution. By limiting the scope of a solution to
the Consecutive State Problem, which is shown
to be a sub-problem of the Aliasing Problem, a
simpler solution is proposed, and is shown to
adequately address this problem. The application
of a potential solution utilising explicit action
duration identification is discussed and shown to
be inadequate both as a solution to the
Consecutive State Problem and for more general
use within XCS.

1 INTRODUCTION

When Wilson (1995) presented the XCS classifier system
he provided results from two sets of investigations. One,
using the Multiplexor problems, demonstrated that XCS
was capable of accurately learning the payoff mapping for
previously unseen complex boolean relationships. It
demonstrated the ability of XCS to form complete State ×
Action × Payoff mappings within single-step (immediate
reward) environments. The second used a Woods
environment (Woods-2) to illustrate the abilities of XCS
within multi-step environments (environments where
reward is obtained after a number of movements within
the environment), and showed that XCS was able to form
a compact classifier population maintaining the State ×
Action × Payoff mapping of the environment - an ability
further enhanced by later modifications to XCS (Wilson,
1998). Whilst Kovacs (1996, 1997) has produced further
results within single-step environments, particularly
concentrating upon the formation and maintenance of the
optimal classifier representation for a given environment,

Lanzi (1997, 1998) has investigated the application of
XCS to multi-step environments. In applying XCS to
progressively more complex Woods environments he
identified that XCS had difficulty in finding solutions
within the "Woods102" environment. This environment is
non-Markovian due to the duplication of an input vector
in two separate positions within the environment which
require the same action but present different payoffs. This
finding is no surprise given the roots of XCS in the
mechanisms of Temporal Difference methods of
reinforcement learning (Sutton, 1988; Watkins, 1989).
Nevertheless, it does impose limitations on the application
of XCS, since the consequent requirement for complete
and unambiguous sensory perception is often undesirable.

Lanzi (1997) termed this problem the 'Aliasing Problem'
and sought a solution to it using a memory mechanism
first proposed by Wilson (1994, 1995) and applied within
ZCS by Cliff & Ross (1994). This mechanism used an
additional memory bit vector which classifiers could
match as part of their condition and set as part of their
action. Using the generalization abilities of XCS it was
hypothesized that optimal memory settings would emerge
to solve the Aliasing Problem. The XCS would learn to
set a memory bit before one of the two aliased states and
thereby disambiguate the inputs of the two states. This
would in turn cause separate classifiers to be created for
each aliasing state. Unfortunately the extent of the
disruptive nature of the aliasing states was not
investigated, and whilst some success was reported it was
not until the setting of memory bits was directly related to
environmental rewards and limited to exploitation cycles
(thereby sacrificing the complete input mapping
properties of XCS) that a satisfactory solution was found
(Lanzi, 1998).

Recently Barry (1999) has carried out further
investigations into the Aliasing Problem as part of wider
research into the emergence of hierarchical invocation of
classifier sequences. This work identified a form of the
Aliasing Problem where the aliasing states occur in
consecutive states. Using this problem it was shown that
within a simple environment consisting of a single chain
of states the aliased states not only cause payoff
prediction inaccuracy in the classifiers covering the
aliasing states but may also generate inaccuracy in the



classifiers covering the immediately preceding if
exploration of the states is not uniform. It was also
discovered that it was possible for the classifiers covering
the aliased states to proliferate in an over-generalised
form by trading off a small decrease in accuracy for the
additional GA opportunities afforded by involvement in
the action sets of non-aliased states. In situations where
this proliferation was controlled and exploration was
performed uniformly it was demonstrated that XCS was
unable to sustain suitable covering classifiers for the
aliased states where competition for population space was
high, but was involved in a constant but fruitless
exploration for adequate classifiers. Thus, within a single
state chain environment it was demonstrated that in the
presence of consecutive aliased states the ability of XCS
to create a complete and accurate State × Action × Payoff
mapping will be severely compromised.

Within certain environments the consecutive state
problem will be likely to occur regularly. Consider, for
example, the control of a robot moving about a room. The
primitive wall following behavior required for this task
will, in any robot without sensors which provide a unique
'global' reference point, present the same input to the
robot whilst in wall following and therefore produce a set
of consecutive aliased states along each wall. Lin (1993),
for example, overcomes this problem by presenting a X,Y
coordinate as an input to a robot navigation task which is
used primarily to disambiguate environmental states. In
general this form of global reference point is difficult to
provide economically, and therefore an alternative
solution to the consecutive state problem is desirable.

In this work the hypothesis that the Consecutive State
Problem is a sub-problem of the Aliasing Problem is
presented. Although the Consecutive State Problem could
be solved using the memory technique proposed by Lanzi,
this mechanism requires modification to XCS to introduce
the additional memory techniques discussed above, and
has been problematic to implement (Lanzi, 1998).
Furthermore, it's adequate implementation requires a
change in the explore/exploit regime, thus removing one
of the key features of XCS learning, namely the formation
of a complete, accurate, and optimally general state ×
action × payoff mapping (Kovacs, 1996). If the
Consecutive State Problem is a sub-problem of the
Aliasing Problem, it should be possible to devise
alternative solutions to this sub-problem which may be
simpler to implement with less impact upon the operation
of XCS. This paper seeks to investigate this hypothesis
and provide results from two potential solutions to the
Consecutive State Problem.

2 XCS STRUCTURE AND OPERATION

The XCS Learning Classifier System (Wilson, 1995,
1998) is, on an initial inspection, similar to traditional
Learning Classifier Systems. Detectors interact with an
'environment' to produce a binary encoded message which
becomes the input to the XCS. This is matched against a
population of classifiers, each consisting of a ternary

coded condition and an encoded action, in order to
identify those classifiers which are relevant to the current
input condition. Those classifiers which match the
message are used to create the Match Set [M] of the
classifier system - the set of Action Sets which each
identify: an action, the classifiers which have been
matched that propose the action, and the predicted payoff
that will be received upon performing the action
calculated from a weighted sum of the payoff prediction
of each classifier in the action set. An action set [A] is
chosen from [M] to perform an action; chosen arbitrarily
if exploring to enhance the classifier representation or
chosen by selecting the highest predicted payoff Action
Set if seeking to exploit the learnt classifier
representation. The action advocated by [A] is performed
in the environment by decoding the action representation
through an effector interface. If a reward R is received
from the environment the goal is considered to have been
reached and R is used to update the predictions of all
classifiers in [A] using the modified Widrow-Hoff update
mechanism known as MAM (Venturini, 1994). If no
reward is received, and the environment is potentially a
multi-step environment, the action is considered to be one
action en route to the goal and payment is taken from the
maximum prediction of [M] in the next iteration
discounted by a discount factor γ (0 < γ < 1). Thus, any
accurate classifiers in an [A] which leads directly to a
reward R can be expected to converge to a prediction of
R, those one step back will converge to a prediction of γR,
and those i steps before the reward will converge to γiR.
The speed of convergence is controlled by the learning
rate parameter β (0 < β ≤ 1) within the Widrow-Hoff
update equations.

Although these processes are clearly related to traditional
LCS, in particular Animat and ZCS (Wilson, 1983, 1994),
the update method is novel within an LCS. In fact, the
entire XCS 'strength' formulation is novel. Each classifier
carries with it not only the Prediction measure, the
prediction of the average payoff it receives when invoked,
but also two other related measures - the Error and
Accuracy which identify the accuracy of this prediction.
A classifier can be inaccurate because it's prediction has
not yet been updated sufficiently to make it accurate or
because it has an over-general condition which involves
the classifier in too many [M]. Inaccurate classifiers could
nonetheless have a high prediction and therefore it is
important to remove them in favor of accurate classifiers.
To facilitate this, the GA induction element of XCS
separates the measure used in the selection of classifiers
for crossover and/or mutation from the prediction. The
new measure introduced is termed the classifier Fitness,
and is the accuracy of the classifier relative to other
classifiers in the [A] the classifier occurs within. Thus, the
GA will favor accurate classifiers over inaccurate and
will, over time, replace inaccurate classifiers with
accurate versions. Furthermore, the fitness is used to
weight the contribution of the classifier's prediction
within [A] so that accurate classifiers contribute more and
drive the System Prediction towards higher accuracy



whilst increasing the calculated error within the
inaccurate classifiers. Interestingly, because an accurate
general classifier occurs in more [A] than an accurate but
more specific classifier, and because the invocation of the
GA is tied to occurrences within [A], the more specific
classifiers are also driven out of the population. The
classifier deletion mechanism, used when the population
becomes full, deletes classifiers based on the average
number of classifiers which exist in the Action Sets each
classifier appears within, thereby dynamically adjusting
the population composition to provide sufficient
population niches (Booker, 1989) for all the accurate
optimally general classifiers (given sufficient population
space). The Optimality Hypothesis (Kovacs, 1996)
suggests that XCS is thus capable of identifying and
maintaining the accurate optimally general population
(termed [O]), and this has been demonstrated for a
number of small problems (Kovacs, 1996, 1997; Saxon
and Barry, 1999).

Within the limits imposed the explanation of the XCS
structure and operation is necessarily truncated, and other
novel features (such as the MacroClassifier formulation
and Subsumption Deletion) have not been addressed. The
interested reader is directed to Wilson (1995, 1998) and
Kovacs (1996) for more detailed explanations.

3 CONSECUTIVE STATE PROBLEM

A Finite State World (Grefenstette, 1987; Riolo, 1987) is
an environment consisting of nodes and directed edges
joining the nodes. Each node represents a distinct
environmental state and is labelled with a unique state
identifier. Each node also maintains a message that the
environment passes to the XCS when at that state. Each
edge represents a possible transition path from one node
to another and is labelled with the XCS generated
action(s) that will cause movement across the edge in the
stated direction to a destination node. An edge can lead
back to the same node. Each node has exactly one label
and message, and each message is unique within a
Markovian FSW and normally equivalent to the node's
label. Non-Markovian environments can be created by
allowing a message generated by one node to be re-used
by other nodes. Each edge may have one or more labels
and these will be re-used on edges emanating from any
node which allows that action to be executed when in the
state represented by the node. At least one node must be
identified as a start state, signifying that the XCS will be
operating in that state when each new learning trial
begins. If more than one start state is provided the actual
state from which a trial is started is chosen randomly from
the available start states. Additionally, one or more nodes
must be identified as terminal states. Transition to any
one of these states represents the end of a learning trial
and each will have an associated reward value
representing an environmental reward which is passed to
XCS upon transition into such a state. Terminal states do
not have any transitions emanating from them - upon
arrival the trial is ended, the next iteration will represent a

new trial and the environment will reset to a [selected]
start state.
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Figure 1: Markovian and Non-Markovian FSW

Consider a finite state world consisting of the five states
s0 to s4, depicted in Figure 1a. The state s0 is the start
state, s4 is the terminal state generating reward R. To
create a non-Markovian FSW the states s1 and s2 are
labeled with a detector message d=1, and the edges s1→ s2

and s2→ s3 are labeled with action a=2. This finite state
world will be termed FSW-5A-2 to identify the 5 states, an
aliased world, aliased over two states.

Three classifiers are required to traverse this FSW : 0→1,
1→2, 3→4. Call these classifiers c1, c2, and c3. Upon
reaching s4 classifier c3 receives a reward R. c3 will
eventually converge so that p = R. From this point, for
moving from s2 to s3, c2 will be consistently given a
payoff γR. However, for moving from s1 to s2 the
classifier c2 will also be given a payoff which is γP2. If the
learning rate β within the Widrow-Hoff mechanism was
1, then the prediction would oscillate well within the
limits γ2R and γR. For simplicity, let us assume that P2

varies around the  average payoffs that would have been
received at the states had they not been aliased  ((γR +
γ2R) / 2), and that 0 < β < 1. In this case the variance will
reduce to ± β((γR - γ2R) / 2). Unless the value of β is very
small, or the aliased states are sufficiently far from the
reward source for the successive application of the
discount factor γ to reduce the payoff to a very small
amount1, the variance will remain sufficient to produce an
oscillation in P2 which is greater than ε0, the minimum
error for a classifier to be considered accurate.

4 HYPOTHESIS

Barry (1999) demonstrated that the Consecutive State
Problem is a form of the Aliasing Problem and identified
a number of important consequences of the Consecutive
State Problem for the formation of an accurate optimally
general State × Action × Payoff mapping of the
environment. From this work it seemed that the

                                                          
1 At present XCS presents the allowable prediction error ε0 as an
absolute parameter. However, given that the discount factor for an
arbitrary classifier i steps from the reward source ci is γιR, classifiers
more than about 12 steps away from even a moderately generous reward
source such as those in the Woods environments used within (Wilson,
1995) will have sufficiently low prediction to allow significant variance
relative to it's stable prediction without exceeding ε0. The investigation
of relative error measures for the accuracy calculations, similar to those
used by Barry (1999) for collecting error readings across all classifiers
within a trial, may therefore be productive.



Consecutive State Problem could be solved using
techniques which are simpler but not appropriate for all
forms of the Aliasing Problem. This gave rise to the
following hypothesis:

The Consecutive State Problem is a sub-problem of the
Aliasing Problem. The Consecutive State Problem will
admit to specific solutions that cannot address the
Aliasing problem as a whole.

To see the rationale for the development of this
hypothesis we need to introduce two lemmas.

Lemma 1 - The memory solution (Lanzi, 1997, 1998) is a
general solution which is applicable to all occurrences of
the Aliasing Problem.

Consider the following formulation of the Lanzi (1997)
memory solution to the Aliasing Problem applied to FSW-
5A-2. One bit of memory which is appended to the input
message created by the XCS detectors can be used to
solve this FSW. Classifiers covering all non aliased states
can ignore the setting of this bit by adding a wildcard at
the designated bit position. When in state s1 or s2 the bit
can be used to differentiate between the aliased states by
using it's 0 value to identify s1 and it's 1 value to identify
s2 [we shall not discuss how this might be achieved]. In
order to create accurate classifiers the GA within XCS
will then discover two separate classifiers distinguished
by this bit value, each of which will accurately reflect the
relevant discounted payoff value. If the FSW was
changed so that the aliasing states were states s1 and s3, or
any other combination of two states, the same technique
could be used. This argument can be trivially extended to
any reflect two aliased states on joined but distinct state
chains at different payoff positions or at the same position
in distinct state chains ending in different reward values.

Lemma 2 - The Consecutive State Problem is distinct
from the Separate State Problem

Consider again the five state aliasing problem of FSW-5A-
2. The inaccuracy of the classifier covering s1 and s2 was
due to the discount of the payoff between invocations of
the classifier. If the discounting mechanism was disabled
until a change of input then the classifier would receive
one payoff for its full time of activity and the payoff
would be consistent, thereby making the classifier
accurate. Now if the FSW was changed so that the
aliasing states were states s1 and s3, or any other
combination of two non consecutive states, the same
technique could not be used to achieve classifier accuracy
due to the correct discounting of the payoff for any
intervening classifiers. Clearly the same argument can be
applied to any situation where two aliased states on joined
but distinct state chains at different payoff positions or at
the same position in distinct state chains ending in
different reward values are considered. Thus the
Consecutive State Problem is a particular instance of the
Aliasing Problem, separate but related to the case where
aliased states appear at non consecutive states (which
shall be termed the Separate State Problem).

If Lemma 2.1 and 2.2 are correct, then it is possible to
suggest that the Consecutive State Problem and the
Separate State Problem are two sub-problems which show
the same properties and can admit to the same solution,
but for which there can be devised independent solutions
which do not cover the whole, thereby giving the
hypothesis.

5 EXPERIMENTAL INVESTIGATION

In the previous section it was claimed that if the
application of the reward could be delayed until the point
of leaving the aliasing states, the discounting of payoff
would not occur within the aliasing states and therefore
the classifier covering the aliasing states would be able to
represent a single payoff value accurately. In this section
we identify and examine one candidate mechanism.

5.1 A PROPOSED SOLUTION

In seeking a solution the main obstacle is the difficulty in
identifying the difference between an action that leads to
a consecutive aliasing state and an action which leads
back to the same state (a 'null' action). The same message
is received from the environment in consecutive iterations
in both cases and oscillations in prediction will still occur
in the latter case for over-general classifiers matching in
this state. However, if the environment does not allow
null actions, then it would be possible to repeatedly re-
choose the same action set while the message remains the
same, rewarding the action set only when payoff is
received from the first action set chosen from a different
message. Preventing payoff in this way will ensure that
only a single payoff is received for each distinct input
vector (unless the Separate State Problem exists within
the environment) and therefore eliminates the causes of
the Consecutive State Problem.

There exists a simple implementation to this proposed
mechanism which requires the storage of the message
received in the previous iteration (set to a dummy
message in the first iteration of a trial). At the start of a
new iteration the message received is compared with the
stored message and if the same then the previous match
set and action set are restored. The action selection stage
is therefore not needed in this iteration, and the restored
action is applied to the environment. If an environmental
reward is received, this is given to the restored action set,
but if no reward is received the payoff to the previous
action set is prevented. The induction algorithms operate
as normal.

This mechanism would appear, on first inspection, to
prevent the Animat exploring alternative reward routes
from within the aliasing states. However, unless the
alternative route could be reached from all the aliasing
states within a set of consecutive states, the action leading
to the alternative route will itself be aliasing. If the route
can be reached from all the aliasing states, then it could be
chosen at the first of the aliasing states and will still be
explored.



5.2 THE TEST ENVIRONMENT

Both Wilson and Lanzi have utilized the Woods
environments in their work, but these environments are
not easily scaled with fine control in either length or
complexity. Therefore, the Woods environments are set
aside in favor of the Finite State World environments
introduced in the preceding section. All Woods
environments can be represented using FSW in any case,
though not all FSW can be represented by Woods
environments. For these tests a nine consecutive state
FSW was constructed. The first state s0 is also the start
state, and the terminal state is s8 at which a reward
R=1000 is provided. The states si (1 ≤ i ≤ 7) each have
two edges si → si+1 and si → si-1, labeled with actions 0
and 1 respectively. The state s0 has a single edge
emanating from it, 0 → 1, labeled with actions 0 and 1.
This environment provides uniform exploration rates for
all states but does not have any 'null action' edges leading
back to the originating state as was the case in the
environments used in Barry (1999). The states s3 to s6

were aliased by providing an appropriate message in each
experiment. Other parameters for XCS were set in all
experiments as follows: N=400, p1=10.0, ε1=0.01, f1=0.01,
R=1000, γ=0.71, β=0.2, ε0=0.01, α=0.1, θ=25, Χ=0.8,
µ=0.04, P(#)=0.33, s=20 (see Kovacs (1996) for a
parameter glossary), and the maximum trial length was
set to 50.

5.3 APPLYING ACTION PERSISTENCE

In order to provide an empirical proof for the hypothesis,
the previously described persistence mechanism will be
applied within the test environment.
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Figure  2 : The fall in System Relative Error in the non
aliased FSW-9(2) environment averaged over 10 runs.

A non aliased version, termed FSW-9(2) was created by
using state messages which were equivalent to the state
numbers. The aliased version, FSW-9A(2)-4 was created

using the messages for each state as follows: 0- 00000, 1-
00001, 2- 00010, 3..6- 11000, 7-00011, 8-00100, chosen
in order to minimize any likely aliasing state disruption to
other classifiers (Barry, 1999). Baseline results for
learning within the non aliased version of the environment
and within the aliased version were obtained by running
the XCS ten times in each environment, capturing the
System Relative Error measures  (Barry, 1999) at the end
of each exploitation trial and averaging the results across
each run. The results from the first 5000 exploitation trials
within the non aliased environment are shown in Figure 2.
These results are interesting when compared to the
equivalent non-aliased nine state environment used Barry
(1999). The greater oscillation in the maximum System
Relative Error suggests that the wider range of movement
and lack of null actions in the environment used for these
tests makes the task of learning more difficult.
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Figure 3 : The averaged System Relative Error results
from 10 runs of XCS within FSW-9A(2)-4.

When the environment was modified to it's aliased form
and the experiment was run it was therefore unsurprising
that the degree of oscillation of the maximum and
minimum System Relative Error readings was much
higher than in previous environments tested. As a result of
the greater movement allowed, the classifier covering the
aliasing states was noticed to have an even more profound
effect upon the classifiers covering the neighboring states
than reported in Barry (1999) when the populations
resulting from these runs was examined. A number of
alternative message encoding schemes were tested but
non appeared to provide any advantage over that which
had already been chosen. The averaged results of this
experiment are shown in Figure 3.

The XCS was modified in the manner outlined in section
5.1 to introduce action persistence over aliased states to
the XCS. The modified XCS was initially tested by
inserting the hypothesized [O] into the population, turning
the induction algorithms off, and running the XCS with



all other parameterization set to the values stated
previously. These tests indicated that the modified XCS
was able to find the optimal predictions for all classifiers
with no error and in the same time span that would be
expected for the equivalent non-aliasing five-state FSW
environment. Knowing that the modified XCS could deal
with the aliased states correctly, the ability of the
modified XCS to learn within the FSW-9A(2)-4
environment was examined by running the XCS in the
environment ten times with no initial population and all
induction algorithms on. The System Relative Error was
captured from each run and averaged, and the results from
the first 5000 exploitation trials are shown in Figure 4.
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Figure 4 : The minimal System Relative Error illustrates
that the environment FSW-9A(2)-4 is mapped optimally
when using persistence of actions over aliased states.

The rapid reduction in the System Relative Error
measures indicates rapid and accurate learning. A
comparison with Figure 1 illustrates that learning is
actually more rapid within FSW-9A(2)-4 with persistence
of actions than in the non aliased FSW-9(2) environment.
This is due to the effective reduction in states to a five
state environment, making the learning task much
simpler. An examination of the final populations from the
10 runs showed that they had all converged on [O], with
the total population size between 27 and 40 macro
classifiers with all classifiers which were not members of
[O] having low experience and very low numerosity
indicating they were the unfruitful product of continued
exploration. Table 1 gives [O] taken from a typical run.

This experiment has demonstrated that the consecutive
aliasing state problem can be overcome by a mechanism,
the use of persistent actions, which does not solve the
more general Aliasing Problem. Therefore, it is concluded
that the Consecutive State Problem is a sub-problem of
the more general Aliasing Problem and that a solution
exists for the Consecutive State Problem which does not
address the whole aliasing problem.

Table 1 : Classifiers in [O] learnt by the persistent form of
XCS acting within FSW-9A(2)-4

Class. Pred. Error Fit. Acc. Num. MS Exp.
###11→0 1000.0 0.0000 1.00 1.00 41 42.7 27517
###11→1 503.35 0.0007 1.00 1.00 31 41.0 12371
1####→0 707.21 0.0013 0.92 1.00 38 44.6 40047
1####→1 357.91 0.0006 0.97 1.00 34 40.2 25079
###10→0 503.18 0.0007 0.99 1.00 49 51.7 53263
###01→0 358.76 0.0009 0.98 1.00 51 54.3 66974
###01→1 180.50 0.0004 0.92 1.00 36 45.4 52773
0##00→0 254.05 0.0003 1.00 1.00 38 44.0 41199
0###0→1 253.91 0.0003 0.95 1.00 48 58.0 81085

6 DISCUSSION

The experiments demonstrate that within the simple FSW
developed for these tests it is possible to utilize action
persistence to eliminate the Consecutive State Problem.
However, this solution is limited by it's inability to deal
with null actions. Unfortunately, even in environments
like the Woods environments which would appear not to
allow null actions these are often present - an action
which is not allowed, such as an attempt to move onto a
'Rock' square within the Woods environments, will
prevent movement to a new state and would therefore be
modeled within a FSW as a null action. This is therefore a
fairly severe limitation.

6.1 DEALING WITH NULL ACTIONS

Fortunately it is possible to conceive of a number of
potential solutions to the problem. In environments such
as the Woods environment the attempt to move to an
illegal position can be easily detected by providing the
XCS with feedback from the environment that the
attempted move was illegal. This information can be used
to prevent action persistence from starting, which together
with the standard discounting payoff mechanism should
allow XCS to learn to select more appropriate actions
during exploitation trials. A similar effect can be gained
by introducing an additional parameter π to XCS which
gives a limit on the number of iterations over which
action persistence may operate. On each iteration in
which an action is reinstated because the same message is
presented from the environment a counter is incremented.
Upon reaching the limit π action persistence is stopped, a
'reward' equal to the minimum environmental reward is
given, and the trial is concluded. Over a short number of
explorations the classifier leading to a persistent action
over a null action will converge to a low prediction and
therefore not be selected during exploitation trials. It is
worth noting that a parameter already exists within XCS
that gives a maximum trial length before a trial is
terminated and a new trial begins. This parameter
prevents XCS from eternally iterating between two or
more cyclically connected states, and has the same effect
as the proposed new parameter. The new parameter π is
introduced because the existing trial length parameter has
a relatively high value which is inappropriate for the
detection of null actions.



6.2 SPECIFYING ACTION DURATION

Cobb and Grefenstette (1991) employed classifiers which
included actions which identified a duration over which
the action of the classifier was to occur within the
SAMUEL LCS. They were able to demonstrate that a
LCS which included this facility was able to discover
classifiers with suitable action duration under the action
of the GA for a missile pursuit problem. On first
inspection it would appear that this technique could be
readily applied to XCS to solve the consecutive state
aliasing problem. A classifier which identifies both the
action and the correct duration for the action would
receive a constant payoff and therefore be identified as
accurate and of high fitness. A classifier identifying the
incorrect duration would receive no payoff (if it persists
too long), a fluctuating payoff (if it persists for too short a
time and so is re-invoked), or a lesser payoff (if it persists
for too short a time but is not re-invoked it will be further
down the feedback chain), and therefore in each case will
not be selected in exploitation. Therefore, without change
to the credit allocation or induction mechanisms of the
XCS, and with only minor changes to the performance
component, XCS would appear to have all the
mechanisms necessary to generate, identify and
proliferate classifiers which act for the correct time
period.

However, this approach has potential limitations. Firstly,
if classifiers can be discovered which successfully move
over all the aliased states, they will only be useful if all
occurrences of consecutive aliasing state sets generating a
given message are the same length since the length of
invocation is hard coded within the classifier. Secondly,
the addition of timing information to a classifier increases
the action length (and thereby the search space)
unnecessarily for the many other classifiers which do not
require this facility. Thirdly, and finally, the XCS
implementation proposed by Wilson (1995, 1998)
includes only primitive search over the action space
(mutation only) and thus any significant extension of the
action encoding will necessitate the full application of GA
search to the whole classifier in order to search over the
duration fields adequately.

Unfortunately, the operation of the XCS itself provides
some more fundamental problems. Firstly, in an
environment where consecutive states have the same
action message all the way to a terminal state a classifier
with the move-to-goal action could develop a duration
which continues the action over all intermediate states to
the goal. Whilst this is potentially beneficial in the short
term, it limits exploration of later states and prevents the
timely production of a full State × Action × Payoff
mapping within the classifier population. This problem
was investigated by using FSW-9 with one action (move
forward) and a maximum action persistence sufficient to
traverse from the start state to the terminal state. The
population was initialized to cover all conditions and
actions and the induction algorithms were disabled. After
15000 exploration trials the population was examined.
The classifiers covering the start state that did not lead

directly to the terminal state were found to have over 10
times more experience than the next most experienced
classifiers in the population (average 2190 for s0

compared with 219 for s1 in one typical run), with the
classifier that led directly to the terminal state having over
60 times more experience.

 Secondly, the persistence of an action will cause the
classifiers concerned to be given the payoff received from
the destination state and so converge on a prediction
which would normally occur much later in the state chain.
Since the maximum system prediction is used as the
payoff value within multi-step problems the prediction of
these classifiers will be passed on to other preceding
classifiers. In the investigation using FSW-9, all
classifiers leading to the terminal state converged on R
whilst all classifiers which lead to other states within the
environment converged to γR. Whilst still allowing XCS
to choose the optimal classifier, the destruction of the
temporal difference properties of the mapping generated
by XCS cannot be justified.

This problem would seem to be able to be addressed, for
the sole solution of the consecutive state aliasing problem,
by limiting the persistence of an action to the cases where
the message remains the same in consecutive states. In
this case a classifier which tries to persist with an action
for longer than a message is consecutively posted can be
rewarded an arbitrary very low reward so that the
mapping for actions of an incorrect duration are poorly
valued and thus not selected during exploitation.

This possibility was investigated using FSW-9A(2)-4 and
a two aliasing state version of FSW-9A(2)-4 termed FSW-
9A(2)-2. The XCS was modified so that the environment
decodes the persistence specification in the action and
repeats the action the number of times specified, or until
the environment gives a new message, before handing
control back to the XCS with an indication of whether the
full action persistence was completed. If the full duration
was completed before the message changed then the
normal payoff mechanism is used at the end of the delay
to give a constant feedback to the classifier. If, however,
the full duration was not completed the XCS now pays
back the minimum environmental reward in lieu of the
normal payoff. If the duration is too short, the classifier
will be inaccurate. If it is too long, the classifier will have
a low prediction and not be used within exploitation trials.
Thus, the classifiers proposing an action which persists
for the correct duration should be selected.

The experiments consisted of 10 runs of 15,000
exploitation trials with all other parameterization kept at
that described in section 5.2. The results showed that
System Relative Error, although reduced, remained high
for the four alias state test. The two alias state test was
better, shown in Figure 5, but the System Relative Error
was never eliminated.

An examination of the populations revealed that the XCS
found classifiers with high numerosity which identified
that no length three or four delays were required in any
state, and no length two delays were required in the non-



aliased states. It was also able to learn the generalized
classifiers for most of the non aliased states, although
there was a degree of disruption present. The classifiers
covering the aliased states were present in small numbers
with low experience. An examination of the location of
the disruption of other classifiers revealed that, under
exploration, a classifier could be invoked that moved into
the second of the aliasing states from s7. This would cause
the invocation of the classifier providing a two step delay
to receive a zero reward, generating inaccuracy. No
solution to this problem, apart from memory solution
similar to the approach used by Lanzi, exists. Thus the
provision of action persistence specification within XCS
is inappropriate both as a solution to the Consecutive
State Problem and for general XCS use.
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Figure 5 : System Relative Error remains within FSW-
9A(2)-2 when attempting persistence delay learning.

7 CONCLUSIONS

Using results on the Consecutive State Problem from
Barry (1999), it has been demonstrated that the
Consecutive State Problem is a sub-problem of the
Aliasing Problem. This finding allows the existence of a
solution to the Consecutive State Problem that does not
address the whole Aliasing Problem but can be
implemented more simply. A solution was demonstrated
which maintained an action whilst the same message was
received by XCS, and its extension to environments
which contain 'null actions' was discussed. An alternative
candidate solution was identified based on a previous
LCS implementation, but investigations have
demonstrated that this solution is inappropriate for
implementation within XCS.
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