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Abstract

Whilst XCS (Wilson, 1998) has been shown to
be more robust and reliable than previous LCS
implementations (Kovacs, 1996, 1997), Lanzi
(1997) identified a potential problem in the
application of XCS to certain simple multi-step
non Markovian environments. The 'Aliasing
Problem' occurs when the environment provides
the same message for two states in
environmental positions that generate different
constant payoffs. This prevents classifiers
forming a correct payoff prediction for that
message. This paper introduces a sub-class of the
aliasing problem termed the 'Consecutive State
Problem' and uses the subclass to identify the
effects of consecutive state aliasing on the
learning of the Stat® Action x Payoff mapping
within XCS. It is shown that aliasing states can
prevent the formation of classifiers covering
preceding states due to the trade-off of accuracy
for match set occupancy made by the classifiers
covering the aliasing states. This can be
prevented by identifying a condition encoding
which makes such match set 'piracy' improbable.
However, under conditions of intense
competition for population space where the
classifier covering the aliased states cannot gain
additional match set occupancy these classifiers
will not be maintained within the population.
Barry (1999) uses these findings to identify a
solution to the Consecutive State Problem which
is less heavyweight than the more general
solution proposed by Lanzi (1997, 1998).

INTRODUCTION

that of reproductive utility (‘fitness', based on predictive
accuracy). By adding GA niching mechanisms derived
from work by Booker (1982) XCS achieves the ability to
discover and maintain a full State Action x Payoff
mapping for the test environment, with optimal levels of
generalization (Kovacs, 1996). XCS thus represents a
quantum leap forward in the reliability and utility of
Learning Classifier Systems. The interested reader is
directed to Kovacs (1996) which provides a detailed
explanation of the construction and operation of XCS.

Early results for the application of XCS to simple test
environments were presented by Wilson (1995, 1998) and
Kovacs (1996, 1997). These were predominately focused
on single step environment, although Wilson presented
results for XCS within the Woods 2 environment (Wilson,
1995). Lanzi (1997, 1998) aght to apply XCS to more
complex Markovian and non-Markovian Woods-based
test environments in order to investigate multiple step
environments further. As part of this work Lanzi (1998)
identified a significant problem for XCS learning in
multi-step environments - the aliasing of states. Within
certain Woods environments it is possible to derive an
input vector which is repeated elsewhere in the
environment with a different payoff value. For example,
in the simple Woods environment shown in Figure 1,
under the payoff, parameterization, and encoding used in
Wilson (1995), the two blank positions in the center of the
environment will each generate the same input message
010000010010010000010010, but the expected payoff to
the right central position will be 504.1 and to the left
central position will be 357.911. Since a single classifier
will represent these two positions, the payoffs that this
classifier will receive will vary and therefore the classifier
will be adjudged to be inaccurate.
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System (Holland, 1986) with ancestry in the Animat and
ZCS LCS implementations (Wilson, 1983, 1994). It
maintains the basic condition-action structure and
ternary/binary encoding of the ‘traditional' LCS with
novel mechanisms for recording the 'strength' of th
classifier which separate the measure of performanc
utility within a given situation (payoff 'prediction’) from

Figure 1 - A simple aliasing environment.

é.anzi attempted to overcome this problem by introducing
state memory mechanism proposed by Wilson (1994,
995) and originally applied within ZCS by Cliff & Ross



(1994). Lanzi (1997) demonstrated that the mechanismmanner as Classifier 4 withieSW-5 Let us assume that
was able to disambiguate internal states with aliased inptihe prediction of classifier 3 has converged to this value.
within the Woods101 environment. In Lanzi (1998) thisFor moving froms, to s;, classifier 2 will be consistently
mechanism was identified as imperfect because it couldiven a payoffyR. However, for moving froms, to s,
generate the same memory configuration for the twalassifier 2 will also be given a payoff whichyi,. If the
aliased positions. He therefore introduced twolearning rate} within the Widrow-Hoff mechanism was
modifications which link the internal memory register 1, then the prediction would oscillate well within the
setting more closely to the external actions of the Animalimits y’R and yR. For simplicity, let us assume thBj

and the provision of payoffs (see Lanzi (1998) for furthewaries around the average payoff that would have been
details). He demonstrated that this mechanism iseceived at the states had they not been aligggd \'R)
sufficient to disambiguate the environment and thereforé 2), and that the learning raffeis less than unity. In this
cause separate classifiers to be generated for each of ttese the variance will reduce#®((yR - \’R) / 2). Unless
aliased inputs. the value off3 is very small, or the aliased states are
Cﬁufficiently far from the reward source for the successive
&pplication of the discount factgrto reduce the payoff to
very small amount, the variance will remain sufficient to
roduce an oscillation iR, which is greater thagy, the
inimum error for a classifier to be considered accurate.

The 'Aliasing Problem’ was not central to Lanzi's resear
program and therefore his work has not investigate
further the effects of aliasing on the classifiers coverin
the aliasing states or learning within the XCS as a whole:
Furthermore, he has not distinguished between the!
varieties of state aliasing which may be found within tesiThe '‘Consecutive State Problem' is introduced to label this
environments, and therefore does not identify possibléorm of the Aliasing Problem:

solutions to these sub-classes of the Aliasing Proble
which may be simpler to implement. In this paper th
'‘Consecutive State Problem' is identified as a sub proble

o . : . ates which exist at separate locations within an
of the Aliasing P_rob_lem and is used to identify some(?nvironment, but will also be seen whenever two or more
effects of the aliasing states on the performance o

classifiers within various Finite State World XCS testconsecunve states admit to the same sensory perception

environments. Barry (1999) extends this work to(given the limitations of the sensory system of a given

demonstrate two solutions to the Consecutive Statémmat) and together lead to a later consistent reward.

Problem which, while not addressing the whole AliasingConsider the stage in the operation of an XCS within
Problem, are simpler to implement. FSW-5Awhere the payoff to the last aliased sttavill
be constant afR. At the start of the next trial classifier 1
moves the FSW to statg. At this iteration (which we
2 HYPOTHESIS will call iteration i) the prediction of the classifier

In the domain of Finite State Worlds (Grefenstette, 198760Vering the aliasing statesks On the next iteration the
Riolo, 1987), consider the FSW (which we will denotePrediction Pi., of classifier 2 (the aliasing classifier)
FSW-5 consisting of a start statg, further statess becomes P+ B(yP —P), causing the classifier's
labeleds, to s; and a terminal state labelegl Each of prediction to reduce toward8yP;. In the following

; jterationP;,, become®;,; + B(YR - Pi+1) which increases
statess, to s; are sources of directed edges drawn so th era 2 +1 i+l .
for all statess (0 < i < 3) a single edge gmanates frgm P towardsfyR. The whole update has the effect making

and terminates is.,. Each edge is labelede = i + 1 (0 P, = P.». The preceding classifier therefore receives a

<i < 3), which is the action required to traverse that edgeqonstant prediction value so long as all the aliased states

Every state emits a signa capable of unambiguous are Visited within each trial.

sensory detection such that for all stege=i. The start Now consider the case where each aliased state may not
state iss, and upon reaching, a rewardR is given and be visited within each trial. INFSW-5 the payoff
the FSW is reset ts,. Four classifiers are required to delivered to classifier 1 would bg’R. Within the
traverse this FSW : 01, 1-.2, 2.3, 3-4. On reaching circumstances described FSW-5A classifier 1 receives
s classifier 4 receives a rewaRl Since XCS uses the payoff from classifier 2 whose maximum prediction
Widrow-Hoff update mechanism, over successive trialscillation limits lie between/R and yR, as discussed
classifier 4 will converge to the predictign= R, and  above. Classifier 2 will converge towarg® if in all
classifiers 1 to 3 will converge to the predictioyia.R preceding trials the trial started frasy but will converge
where y is the discount factor applied to reduce theto below but neaf(yR + V°R) / 2) if in all preceding trials
prediction value paid from classifiers in the currentthe trial starts frong, or s,. Therefore the payoff received
Action Set [A] to the previous Action Set [A-1]. by classifier 1 will oscillate and the prediction of

Now consider a modification to this FSW (denoR@wW- classifier 1 will oscillate. Although the learning rgtevill

5A) such thas, ands, emit the signati=1 with the edges

si— S ands,— s labeled 2. Three classifiers are now* Of course, the valug; will not actually vary around(yR - Y'R) / 2)
required to traverse this ESWo@. 1.2 3.4 Again due to the Widrow-Hoff update mechanism adopted by XCS (Wilson,
upon reachings, classifier 3' réceive’s a r'ewarR’ 1995). The valud®, will be below the average of the feedback to the

o J . equivalent non aliased states because the first update in each transition
Classifier 3 will converge so thgs = R in the same past sand s will, in effect, be averaging..

rplypothesis 1
he aliasing problem is not restricted to independent




reduce the degree of variance in the error in predictiostates, each labeled with the action which causes an
calculated by the preceding classifier, for large payoffsinstantaneous' transition along the edge. Finite State
received within aliased states late in the payoff chain an@d/orlds can be created which are equivalent to Woods
whereg, is small, the variance in payoff may be sufficientenvironments but FSW are more precise than Woods
to cause inaccuracy in the preceding classifier. environments. Each state can be given a distinct label so
that it is possible to ensure that aliasing problems do not

Hypothesis 2 ccur even in long chains. Furthermore, configurations

The cla_153|f|er covering the non-_allased state 'mm.ed'atelg/hich would not be possible with a Woods environment
preceding the aliased states will be able to achieve an ,
an be created, as figure 2 demonstrates.

accurate payoff prediction in cases where each aliased
state is visited in each trial, but can be considered
inaccurate in cases where the aliased states are not
visited within each trial.

What is the likely effect of aliasing upon the induction
mechanisms within XCS? The XCS selects classifiers for
reproduction using their fithess, which is based upon their
relative accuracy. If we accept Hypothesis 1, the classifier
which covers the Aliasing States will have a very low
accuracy and therefore a fitness which is similar to other
competing classifiers within each [A] it participates in.
Since the classifiers covering non-aliased states (with the
exception of those covering the immediately preceding
states - see Hyp. 2) will eventually be classified a3.2 HYPOTHESIS1

accurate, these will have a high fitness and be selected iy, empirically verify Hypothesis 1 theFSW-5

the GA proportionally more often. Their numerosity will enyironment was constructed and five classifiers inserted
then increase, putting pressure on all inaccuratgyo the initial population to cover each of the states
classifiers. Ultimately the combination of selection andythin the environment. The XCS was allowed to run
population pressure will eradicate the classifier coveringyithout induction algorithms and with parameterisation
the Aliasing State. The Covering Operators will rapidlyget toN=400, p,;=10.0,£,=0.01,f,=0.01,R=1000,y=0.71,
replace this classifier with another, but no replacemen[gzo_zy80:0_01,0(:0'1,9=25,X:O_S,u=0_04yp(#)=o_33,

will be deemed more accurate. s=20 (see Kovacs (1996) for a parameter glossary). To
Hypothesis 3 measure the error wit_hin the population a new measure
The aliasing of consecutive states will generateermed 'System Relative Error' was computed. The error

inaccuracy in any classifier that matches the sensoryneasure used by Wilson (1995, 1998) only captures the
input and moves the Animat to the next aliasing state. THebsolute error in the System Prediction. This work
inaccurate classifier will rapidly be replaced by the required a measure of the error in each [A] formed during
action of the GA without any suitable replacementéach trial which accounted for the payoff discount
available to generate a greater degree of accuracy. Thigrough the payoff chain. This measure was constructed
will prevent the formation of an accurate Statdctionx by averaging the magnitude of the error in System
Payoff mapping and lead to the perpetual ineffectivenesgrediction (P, - payoff) / P, where P, > payoff,
of the classifier population if no alternative set of actions(Payoff - Pi1) / payoffotherwise) for [A.,] during each
is available. exploitation trial and for [A] at the end of the trial, reset at
the start of a new trial. Alongside this, the maximum and
minimum magnitudes in the error of the System
3 EXPERIMENTAL INVESTIGATION Prediction were recorded so that a measure of spread in
error was also available. As figure 3 shows, the System
Relative Error reduces rapidly to zero within the non-
3.1 THE TEST ENVIRONMENT aliasingFSW-5in a typical run with the aforementioned
Both Wilson and Lanzi have utilized the Woods parameterisation.

environments in their work, but these environments arg . o.vir-onmenESW-5Awas then constructed and the

not eaS|.Iy scaled with fine control in .e|ther length O tour classifiers required for this environment inserted into
complexity. Therefore, the Woods environments are sehe population before running XCS, again without

aside in favor of a FSM-like environment similar to that. : . . L
proposed by Grefenstette (1987) and used extensively l?lgducuon algorithms and with the same parameterisation.

Riolo (1987). A 'Finite State World' is an environment igure 4 shows that System Relative Error fails to fall.

that is modeled as a finite Markov process. Similar inThe predictions of the classifiers within these tests were

appearance to a State Transition Machine. each state captured and plotted to identify the source of the error,
ppeare : . ; : tate g Figure 5 clearly demonstrates the oscillation within
the environment is associated with a labeled node within

directed graph. The nodes depict the individual states, an%aSSIerr 2 of the XCS population f6SW-5Ashowing
the directed edges denote the legal transitions between

Figure 2: An Example "Woods-impossible" FSW.



this classifier to be the source of the error. These findingsumber of consecutive aliased states will increase the

confirm Hypothesis 1. range of oscillation in the prediction of the classifier
XCS Output which covers those aliased states, as would be expected. It
1 —— can also be seen that, as predicted, the stable prediction of
ool System Relative Error ~+— the classifier covering the aliasing states oscillates about a
' lower prediction than the average discounted payoff over
08| the aliasing states since the classifier is feeding back the
ol discount of its moving average of the payoffs.
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Further investigations were conducted to identify the . ol
effect that the number of aliasing states has upon the 0=

50 100 150 200 250 300 350
lterations

degree of oscillation in the prediction of the classifier
covering the aliasing states. For these experiments the
FSW-5Aenvironment was extended to nine states, with
the aliasing states for the 2 alias @sB\V-9A-2 beings;  Figyre 6 : Change in oscillation with more aliasing states.
ands;, expanded to the statgsto s; for the four state test

(FSW-9A-4, and expanded further to statgdo ss for the

six state test {SW-9A-§. For each test the initial 3.3 HYPOTHESIS 2

classifiers required by the environment were inserted intqhe results of the experiments used to empirically prove
the population and XCS was run with the sameqypothesis 1 can be applied to address Hypothesis 2.
parameterization as given above. Figure 6 plots thexamining figure 5 we see that the prediction of classifier
prediction of the classifier covering the aliasing states in has been changed to a higher prediction WiESkV-5A
each case, and demonstrates that an increase in tfian was the case for classifier 1 witFi8W-5 as would



be expected. However, the payoff given to the precedingscillation in prediction not only affected the immediately
classifier does not oscillate, indicating that the fixed poinpreceding classifier, but also influenced earlier classifiers.
prediction of the classifier covering the aliased stateslowever, at no time were these earlier classifiers
remains stable at the payoff point as predicted. In order toonsidered to be inaccurate - the oscillations had been
verify the second proposition of Hypothesis 2, thesufficiently smoothed out by the discounting within the
experiments with 2, 4, and 6 consecutive aliased staté&idrow-Hoff mechanism to move the changes in
were repeated with the same parameterization, buyirediction within the 1% accuracy boundary used within
allowing statessto § to be start states with the start statethese problems. In all 30 runs in each environment these
chosen arbitrarily from the available start states at theffects were repeated and therefore it is concluded that
beginning of each trial. Figure 7 plots the predictionsHypothesis 2 is verified by these findings.

from a typical run within each environment (a typical run

is shc_)wn bec_:ause averaging.the 30 runs within ea 4 HYPOTHESIS 3

experiment hides the fluctuations), and illustrates tha

under these new conditions the aliasing states do affedio obtain a baseline performance a two action nine state
the stability of the prediction of the preceding classifier. FSW termedFSW-9(2)was used, with the first action
causing a transition to the following state and the second
action causing a transition to the current state - an
effective null action. All parameterization was as given
previously. The GA and covering operators were turned
on and no initial population members were provided. The
XCS was run for 30 runs, with each run consisting of
5000 exploitation trials (10000 trials in total). Figure 9
plots the average System Relative Error from 30 runs
illustrating that the System Relative Error measure rapidly
falls as the accurate optimally general set of classifiers
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classifiers before the aliased states. Figure 10 shows the
averaged results for the first 5000 exploration iterations
and illustrates that, as expected, the aliasing states prevent

Figure 8 : All classifiers are affected by the aliasing statehe System Relative Error from reducing. It is important

when the exploration rate is not uniform across all statest0 note that the System Relative Error values typically
jittered' around a mean by 0.025 and the Max/Min by

Figure 8 plots the predictions of all classifiers in a typicalp 07, so the averaging in both experiments has flattened
run within FSW-9A-4 and demonstrates that the ihe results.



. xesowew A further unexpected result was that the classifier

lterations — covering s, action 0 was present, but the classifiers
Relative Emor —— coverings, ands; action 0 were represented by an over-
08 Max Rel Error — general classifier and no high numerosity classifiers

covered action 1 in these states. In order to identify a
reason for this result, the experiment was re-run and the
06 predictions of the expected members of [O] were
recorded. An examination of the match sets and
predictions demonstrated that the aliasing classifiers not
only covered the aliasing states but also the preceding
states, thereby competing with these classifiers in each
0.2 GA. It was hypothesized that, whilst this will cause the
prediction of the classifier covering the aliased states to
oscillate more, since it is already inaccurate this has little
0 effect compared to the benefit of being involved in more
O oo ity 0 000 4500 5000 match sets. The classifiers coveri®ggo s, have a higher
prediction as a result of the payoff directly from the
classifier covering the aliasing states, and the prediction
Figure 10 - System Relative Error is not reduced in FSW-of 55 ands; is sufficiently close to replace them both with
9A(2), demonstrating the effects of the aliasing states. one more general classifier. An experiment that attempts
verify this finding by contradiction was constructed.
e stimulus presented by each state was changed so that
e aliasing states would provide a stimulus sufficiently

Proportion

0.4

- - t
Examining the classifiers produced by the run revealeel(»)h
some very unexpected results. All 30 runs found thqh

following classifiers (taken from one typical run) with different from all other stimuli so as to make the

high numerosity : appearance of the classifier covering the aliased states in
Classifier Predict. Error Fitness Acc. N. MS Exp. the match sets of other states improbable. If the
##1##->0 1000.00 0.000 1.000 1.000 74 75 30000 hypothesis is correct, the other classifiers should be able
##1##->1  710.000 0.000 1.000 1.000 71 75 14901 to form stable prediction and high numerosity values
##0##->0  294.104 0.189 0.679 0.000 50 79 209457 without disruption from the inaccurate classifier. This
##0##->1  138.055 0.004 0.933 1.000 87 97 104850 experiment gave stimuli to states as follows: 0- 11110, 1-
###10->0 171.518 0.000 0.990 1.000 34 108 29593 11101, 2- 11011, 3..6- 00000, 7- 10111, 8- 01111. The
###0#->0 147.872 002 0.968 1000 34 101 59824 experiment consisted of 30 runs of tFRSW-9A(2)-4

o N . environment, and the resulting populations were analyzed.
All the remaining classifiers were not uniformly |n all 30 runs all of the State Action x Payoff mapping
represented across the populations, and had lowas covered demonstrating clearly that the classifier
numerosity (mean N<3). Two co-acting reasons can bgovering the aliasing states previously was interfering in

identified for this. Firstly, the only competing classifiers the match sets and preventing the formation of accurate
in [M] for these states will be less general but no more;ompeting classifiers.

accurate, more general and less accurate, or of the same . . . :
generality but selecting a lower rewarding action. Thus©Ven the results obtained, is it possible to set aside
the competition within the match set is insufficient to putHyPothesis 3? Unfortunately, the experiments neither
deletion pressure on the classifier. Secondly, and mordirm nor deny the hypothesis because the tests failed to
substantially, the hypothesis failed to account for the fagprovide the classifiers in the aliased states with credible
that in an environment with consecutive aliasing state§°Mpetition but  rather ~afforded them more GA
XCS will dwell in the aliased states for proportionately ®PPOrtunity which instead encourages the maintenance of
longer than the other states and will therefore providéhe inaccurate classifiers. Therefore, a modlflgd FSW was
more opportunities for the GA to be invoked. Less generdfonstructed based updfSW-9A-2 The two alias state
classifiers will be no more accurate and will compete fof€St €nvironment was chosen to minimize disruption to
GA involvement less often and so will be eradicated,preced'”_g classifiers, reduce the prevalence of the aliased
whilst more general classifiers will have a lower accuracy?t@tes within a GA, and thereby increase competition. To
and therefore a lower fitness and be selected for GA uddrther increase competition the environment was
less often. Thus the classifier covering the aliasing staté&<tended to provide four actions in each state. One action
will put deletion pressure on competing classifiers (00) moved the FSW into the following state, and all
Furthermore, the increased frequency of GA invocatiorpther actions kept the FSW in the current state. The
negates any potential deletion pressure from classifief§Créase in actions increases competition for population
covering other match set niches. As a result, the classifiPace further. To prevent the aliasing states looping
covering the aliasing states is maintained within a’€tween themselves an additional state was provided.
population niche inspite of its inaccuracy, contrary to] NiS State was obtainable from all the aliasing states by
Hypothesis 3. transitions labeled with the actions 01, 10, and 11. As for
the other non aliased states the only transition out of the



state was labeled with action 00 and moved;td-inally = mean of 15893) classifiers with low numerosity (mean
a message encoding for the states was chosen to prevenimerosity 1.7, compared with [O] mean of 11.2) but
the classifier covering the aliasing states interfering withwith a Match Set estimate equivalent to other members of
preceding classifiers. The following encoding, selectedO]. This demonstrates that the classifiers representing the
from three devised encoding attempts, produced thaliasing states are in competition between themselves to
minimum interference: 0- 00111, 1- 00110, 2- 00011, 3find an accurate generalization but because of the pressure
0010, 4- 00100, 5..6- 11111, 7- 00000, 8- 00010, 9for population space no one inaccurate classifier is able to
00001. XCS was run ten times within this environmentdominate the population niche and the XCS continues in
using the same parameters as the previous tests. perpetual ineffective exploration for a suitable accurate

Table 1: The optimal classifiers produced within the classifier, as Hypothesis 3 predicted.

modified FSW-9A(2)-Zhowing the failure to establish
long-term classifiers covering the aliased states. 4 DISCUSSION

Classifier Mean Mean Mean The work of Lanzi is the only other commentary on the
Numerosity Match Set Experience  |earning of aliased states within XCS. The work which
##010->00 13.5 16 29043 has been presented in this paper is complementary to that
##010->01 10.8 12.9 14229 work, verifying the phenomenon, and identifying the
##010->10 11.2 13.7 13315 effect that aliased states will have on the attempt by XCS
##010->11 9.8 11.9 14238 o establish an accurate, optimally general and complete
##00#->00 14.4 17.6 29460  statex Action x Payoff mapping. Important additions to
##00#->00 10.7 13.4 14601 the current body of work are the identification of the
##00#->00 11.8 13.8 14533 Consecutive State Problem, which Barry (1999) goes on
##00#->00 111 13.2 14438 o demonstrate is a sub-problem of the Aliasing Problem,
1#####->00 17 10.4 43 the establishment of the disruption caused to existing
1###->01 8.3 10.2 7010 classifiers covering the preceding states, the
L#####->10 8.9 111 4834 demonstration of extensive disruption caused by
Lr->11 8.5 10.5 7678 additional match set involvement by over general
##100->00 14.5 17.4 27188  classifiers covering the aliased states, and the
##100->01 11.4 13.3 14578 establishment of the conditions under which classifiers
##100->10 10.8 12.6 12980 covering the aliased states are established or eradicated by
##100->11 10.9 12.7 12713 the action of the induction operators.
###01->00 13.7 17.5 24960 _ - .
#H##01->01 12.7 14.8 12991 Lanzi (1997) reported that within tests using the XCSM1
H#H##01->10 10.8 14.4 13972 memory solution to the Aliasing Problem within the
HHH01->11 10.1 12.2 13503 environment Woods102 the modified XCS failed to
#HO#1->00 125 16.2 27671 obtain a reasonable performa}lnce whenever non-uniform
HHOH1->01 10.6 13.3 15874 exploration rates were used. "Most important the system
H#HOH1->10 10.9 14.0 14524 fails to converge to optimal performance when, due to the
HHOH1->11 98 12.4 14741 structure of the environment, the agent is pot able to visit
##110->00 13.5 16.5 25447 all the areas of the environment uniformly” (Lanzi, 1997,
##110->01 11 12.5 10760 section 7.3). The results obtained from the non-uniform
##110->10 111 13.1 13801 run without learning in the simple FSW-5A environment,
#4#110->11 95 11.72 12962 depicted in figure 7, shed some light on Lanzi's findings.
0#111->00 14.3 17.2 21601 Non-uniform exploration will cause the prediction of the
0#111->01 11.2 13.1 11658 classifiers to fluctuate much more than under uniform
0#111->10 9.2 11.7 15090 exploration; therefore the disruption to both classifiers
0#111->11 10.9 12.7 12312 attempting to cover the aliased states and those covering

preceding states will be more significantly affected.

n the application of XCSM to the more difficult

The resultant populations were captured and examined AZE7 environment Lanzi (1997) reported difficulties in

identify [O] and look for evidence of the competition

driving the classifiers covering the aliased states out in th%Stab“Shlng effective performance until exploitation only

: ; ns were used. Given the distance between the aliased
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