How to Design Good Learning Agents in Organization?

Keiki Takadama

ATR Human Information
Processing Research Labs.

2-2 Hikaridai, Seika-cho, Soraku-gun
Kyoto 619-0288 Japan
keiki@hip.atr.co.jp
Tel: +81-774-95-1007
Fax: +81-774-95-1008

Abstract

This paper categorizes four types of multia-
gent learning in terms of both goals and eval-
uations in agents, and investigates the char-
acteristics of each categorization to find an
effective type for designing learning agents.
Since the characteristics in this categoriza-
tion are affected by the learning mechanisms
of agents, the characteristics are investigated
by referring to organizational learning in or-
ganization and management science as one
of methods. Through intensive simulations
on a complex domain problem, the following
implication has been revealed: agents that
pursue their own goals and are evaluated ac-
cording to their total results show high per-
formance in comparison with other types of
agents when all learning mechanisms in the
organizational learning are employed.

Keywords: multiagent design, learning
agents, organizational learning, learning clas-
sifier system

1 INTRODUCTION

What components or elements are needed to im-
prove the performance in multiagent environments?
How do we design good learning agents in dynam-
ical environments? These are very important ques-
tions to clarify for both practical and engineering
uses. To answer these questions, a lot of research
on multiagent (Tan 1993, Weiss 1996, Weiss 1997) has
been reported in recent years. Some examples in-
clude reinforcement learning (Sutton 1998), evolution-
ary computation (Goldberg 1989) ! and distributed
problem solving in distributed artificial intelligence

*Paper submitted to the 1999 Genetic and Evolutionary
Computation Conference (GECCO’99)

!This can be roughly considered as a kind of problem
solving method with many individuals.

Takao Terano
Univ. of Tsukuba
3-29-1, Otsuka, Bunkyo-ku
Tokyo 112-0012 Japan
terano@gssm.otsuka.tsukuba.ac jp

Tel: +81-3-3942-6855
Fax: +81-3-3942-6829

Katsunori Shimohara

ATR Human Information
Processing Research Labs.

2-2 Hikaridai, Seika-cho, Soraku-gun
Kyoto 619-0288 Japan
katsu@hip.atr.co.jp
Tel: +81-774-95-1070
Fax: +81-774-95-1008

(DAT) (Gasser 1988). However, such research seems
to have concentrated on improvements in particular
methods or techniques in multiagent environments.

Unlike these studies, our research analyzes what kinds
of properties are embedded in environments or how
these embedded properties affect the collective per-
formance in order to investigate the ways of de-
signing good learning agents. Although there are
some design frameworks for communication in mul-
tiagent environments (Balch 1995) or for team behav-
iors (Collinot 1996), they do not directly support the
design of learning parts of agents, especially in envi-
ronments where all agents learn at the same time. To
address this issue, our previous research focused on or-
ganizational learning (OL) (Argyris 1978, March 1991,
Cohen 1995) in organization and management as one
of methods and investigates the characteristics of OL
to find essential components for designing learning
agents (Takadama 1998¢). However, this research did
not discuss (1) a goal of agents and (2) an evaluation of
agents’ behaviors in detail, even though both of there
points are essential in learning. As a result, this paper
categorizes multiagent learning from the viewpoints of
goal and evaluation, and finds an effective category for
the design of learning agents considering the compo-
nents based on OL.

This paper is organized as follows. Section 2 starts
by categorizing multiagent learning, and Section 3 de-
scribes organizational learning and its model. An ex-
ample for analyzing the characteristics of each cate-
gory is shown in Section 4. Section 5 presents our
simulations, and our conclusions are finally made in
Section 6.

2 CATEGORIES IN MULTIAGENT
LEARNING

In the categories of multiagent learning, Moriarty
focused on the goal of agents and divided re-
search on multiagent learning into two categories
(Moriarty 1998): (1) agents pursue their own goals

and (2) agents achieve shared goals. However, his
research neither mentions which category 1s effective
in multiagent learning nor focuses on an evaluation
of agents’ behaviors which is one of the indispensable
pointsin the learning. To address this issue, this paper
categorizes four types of multiagent learning in terms
of goals and evaluations as shown in Fig. 1, and inves-
tigates the characteristics of each category.

e Type 1: Agents pursue their own goals and their
behaviors are evaluated according to their own
results.

e Type 2: Agents pursue their own goals and their
behaviors are evaluated according to their total
results.

e Type 3: Agents achieve shared goals and their
behaviors are evaluated according to their own
results.

e Type 4: Agents achieve shared goals and and
their behaviors are evaluated according to their
total results.

Evaluation
Own result Total result
Goal
Oown TYPE 1 TYPE 2
Shared TYPE 3 TYPE 4

Figure 1: Category in multiagent learning

Note that the goal in multiagent environments is as-
sumed to be shared when an agent cannot achieve its
goal without cooperation among other agents, and it
is not assumed to be shared when an agent can achieve
its goal by itself even if all agents have the same goals.
This claim indicates that (1) having the same goals
must be distinguished from sharing goals, and (2) in-
formation on other agents is required to achieve shared
goals through cooperation. To understand this claim,
let us look at the pursuit problem as one example. In
this example, predators (hunters) aim to track down
one prey (animal), and all predators have the same
goal. However, the goal 1s shared if more than one
predator is needed to track down a prey, and the
goal is not shared if one predator can track down a
prey by itself. This implies that the former predator
needs information on other predators (e.g., location)
to achieve shared goals but the latter predator, on the
other hand, does not need the information on other
predators.

3 ORGANIZATIONAL LEARNING
AND ITS MODEL
3.1 ORGANIZATIONAL LEARNING

Organizational learning (OL) has been studied in the
context of organization and management science. OL

is roughly characterized as organizational activities
for improving organizational performance, which can-
not be achieved at an individual level. In particu-
lar, OL consists of the following four kinds of learning

(Argyris 1978, Kim 1993):

¢ Individual single-loop learning improves per-
formance within an individual norm.

¢ Individual double-loop learning improves
performance through the change of an individual
norm.

¢ Organizational single-loop learning improves
performance within an organizational norm.

¢ Organizational double-loop learning im-
proves performance through the change of an or-
ganizational norm.

This categorization stipulates that (1) there are indi-
vidual and organization levels in the learning, and (2)
each learning can be classified as a single or a dou-
ble type. However, a norm 1in the above learning has
not been defined clearly from a computational view-
point. Thus, this paper assumes that (a) an individual
norm and an organizational norm are respectively
implemented by individual and organizational knowl-
edge and (b) individual knowledge and organizational
knowledge are respectively implemented by a rule set
and a set of individual knowledge (rule sets). Note
that the above assumptions only support to the rein-
terpretation of the four learning mechanisms from a
computational viewpoint and do not discuss the de-
tailed implementation. Based on this claim, this pa-
per defines computational organizational learning as
“learning that includes four kinds of reinterpreted loop
learning”.

3.2 ORGANIZATIONAL-LEARNING
ORIENTED CLASSIFIER SYSTEM

3.2.1 Aim of agent and function

An Organizational-learning oriented Classifier Sys-
tem (OCS) (Takadama 1998a) is a GBML (Genetics-
Based Machine Learning) architecture. OCS is com-
posed of many Learning Classifier Systems (LCSs)
(Goldberg 1989, Holland 1978), which are extended
to introduce four kinds of reinterpreted loop learning
mechanisms described in the previous section. In this
model, agents are implemented by their own LCSs and
divide given problems by acquiring their own appro-
priate functions through interaction among agents to
solve problems that cannot be solved at an individual
level. From this way of problem solving, the aim of the
agents is defined as finding appropriate functions, and
a function is defined as a rule set (which is one compo-
nent in LCS). In particular, a rule set drives a certain
sequence of actions such as ABCBC'- - -, in which the
A, B and (' actions are primitive actions.

Note that the learning for acquiring appropriate func-
tions in some agents is affected by the function acqui-
sition of other agents. For example, some agents are
affected when one of the A, B, or C actions of other
agents changes through learning, or when the fired or-
der of the A, B, and C' actions of other agents changes
due to a change in the rule strength. Furthermore,
an affection of learning in agents occurs when situa-
tions change to others, because a sequence of actions
changes according to situations even though the func-
tion remains the same.

3.2.2 Architecture

As shown in Fig. 2, OCS is composed of many agents,
and each agent has the same architecture that includes
the following problem solver, memory, and four learn-
ing mechanisms reinterpreted from OL.

< Problem Solver >

e Detector and Effector change a part of an envi-
ronmental state into an internal state and change
an internal state into an action (Russell 1995), re-
spectively.

< Memory >

¢ Organizational knowledge memory stores a
set comprising each agent’s rule set as organi-
zational knowledge. In OCS, this knowledge is
shared by all agents and is called the knowledge
on the division of work.

¢ Individual knowledge memory stores a rule
set (a set of CFs (classifiers)) as individual knowl-
edge. In OCS, agents independently store differ-
ent CFs that are composed of if-then rules with
a strength factor (i.e., the worth of rules). In
particular, one primitive action is included in the
then part.

¢ Working memory stores the recognition results
of sub environmental states and also stores an in-
ternal state of an action of fired rules.

¢ Rule sequence memory stores a sequence of
fired rules to evaluate them. This memory is
cleared after the evaluation.

< Mechanisms >

¢ Roulette selection probabilistically selects one
rule from among plural rules that match a partic-
ular environment. In detail, one rule is selected
according to the size of the strength attached to
each rule. Since each rule includes one primitive
action, one action is performed in each roulette
selection.

¢ Reinforcement learning, rule generation,
rule exchange, and organizational knowl-
edge reuse mechanisms are reinterpreted from
the four kinds of loop learning in OL (Details are
described later).

Environment

Sub Environment Sub Environment Sub Environment

State Action ~ State Action State Action
(Agent 1 N (Agent 2 D (Agent n D

Organizational

Organizational Organizational

Knowledge Knowledge Knowledge
Individual Individual Individual
Knowledge Knowledge i H Knowledge
CF1 CF 1 CF"1
CF2 CF 2 CF’2
1 1 H H 1
]]]
i CFi CF'j | === CF" k H
»_ Working Memory || [» _Working Memory | »_ Working Memory |

Rule Sequence Rule Sequence Rule Sequence

Roulette Selection Roulette Selection Roulette Selection

Reinforcement
Learning
Rule Generation
Rule Exchange

Organizational
Knowledge Reuse

Reinforcement
Learning
Rule Generation
Rule Exchange

Organizational
Knowledge Reuse)

Reinforcement
Learning
Rule Generation
Rule Exchange

Organizational
Knowledge Reuse
. VAN

Figure 2: OCS Architecture

3.2.3 Learning in OCS

(1) Reinforcement learning mechanism: In
OCS, the reinforcement learning (RL) mechanism en-
ables agents to acquire their own appropriate actions
which are is required to solve given problems. In par-
ticular, RL supports agents in learning an appropriate
order of the fired rules by changing the strength of
the rules. Since this mechanism improves the problem
solving efficiency at an individual level not by creat-
ing/deleting rules but by utilizing them while changing
the order of the fired rules, it works as one kind of “in-
dividual single-loop learning”, which is reinterpreted
to improve the performance within individual rules in
computational organizational learning. In detail, this
mechanism works as shown in Fig. 3, and is imple-
mented by profit sharing (Grefenstette 1988), which
reinforces a sequence of rules at once when agents ob-
tain some rewards .

(2) Rule generation mechanism: The rule gener-
ation mechanism in OCS creates new rules when none
of the stored rules match the current environmental
state as shown in Fig. 3. In particular, when the num-
ber of rules is MAX_CF (maximum number of rules), the
rule with the lowest strength i1s removed and a new
rule is generated. Since this mechanism improves the
problem solving range at an individual level by creat-
ing/deleting rules, it works as one kind of “individual
double-loop learning”, which is reinterpreted to im-
prove the performance through the change of individ-
ual rules themselves in computational organizational
learning.

As a process of rule generation, the condition (if) part
of a rule is created to reflect the current situation,
the action (then) part is determined at random, and

'Detail credit assignment in OCS was proposed in
(Takadama 1998b)

the strength value of the rule is set to the same ini-
tial value. Furthermore, when the situation does not
change because the same rules are repeatedly selected,
the strength of the rules is temporarily decreased and
these rules become candidates for a replacement by
new rules.

(3) Rule exchange mechanism: In OCS, agents
exchange rules with other agents at a particular time
interval (CROSSOVER_STEP ') to solve given problems
that cannot be solved at an individual level as shown
in Fig. 3. Since this mechanism improves the prob-
lem solving efficiency at the organizational level not
by creating/deleting a set comprising each agent’s rule
set but by utilizing it among the agents, this mecha-
nism works as one kind of “organizational single-loop
learning”, which is reinterpreted to improve the perfor-
mance within a set comprising each agent’s individual
rules in computational organizational learning.

In this mechanism, a particular number ((the number
of rules) x GENERATION GAP) of rules with low strength
values are replaced by rules with high strength val-
ues between two arbitrary agents. For example, when
agents X and Y are selected as shown in Fig. 4, CFs
are sorted in order of their strength (upper CFs have
high strength values). In this case, CFj_y ~ CFj
and CF|_, ~ CF} are replaced by CF| ~ C'Fj and
CFy ~ CF;3, respectively. However, the rules whose
strength is higher than a particular value (BORDER_ST)
are not replaced to avoid unnecessary crossover opera-
tions. The strength of replaced rules are reset to their
initial values following this operation. This is because
effective rules in some agents are not always effective
for other agents in multiagent environments.

(4) Organizational knowledge reuse mecha-
nism: Finally, agents in OCS store a set compris-
ing each agent’s rule set (individual knowledge) as the
knowledge on the division of work when they solve
given problems most effectively?, and reuse it when
REUSE_FLAG is TRUE 3. For example, n number of agents
most effectively solve problems with using their rule
sets, a set comprising each agent’s rule set is stored
as shown in Fig. 5. The rule sets already stored are
replaced by new ones. In OCS, this set is called or-
ganizational knowledge and is represented by {RS (1),
RS (2), - -, RS (n)} where RS(x) is the rule set for the
x-th agent and n is the number of total agents in the
organization.

1The step is defined in section 4.3.

2Since efficiency depends upon the problems, it is diffi-
cult to generally define efficiency. Some examples indicate
a “good solution” or “small computational cost”. In ad-
dition, efficiency does not mean optimal most of the time
but means the best since the agents have experimented up
to the present.

? Although REUSE_FLAG can be set as TRUE in anytime, a
reusing time in this stage of OCS is fixed at the iteration
0. In particular, the iteration is defined in section 4.3.

procedure reinforcement learning
begin
if problem is solved then
for all agents do
fired rules are reinforced;
end

procedure rule generation
begin
for all agents do
if no matched rules then
begin
if number of rules = MAX_CF then
a rule with the lowest strength is deleted;
a new rule is created;
strength of a new rule is set to an initial value;
end
end

procedure rule exchange
begin
if mod (Step, CRUSSUVER_STEP)ZO then
for all pair of agents do
for (number of rules) x GENERATION_GAP rules do
if lowest strength of rule < BORDER_ST then
begin
a rule with low strength is replaced by a rule
with high strength between two agents;
strength of a replaced rule is reset to an
initial value;
end
end

procedure organizational knowledge reuse
begin
if REUSE_FLAG=TRUE then
stored organizational knowledge is utilized;
else if solution is best then
begin
if organizational knowledge is stored then
stored organizational knowledge is deleted;
current organizational knowledge is stored;
end
end

Figure 3: Four learning mechanism algorithms

Agent X Agent' Y
Individual Individual
Knowledge Knowledge

CF1 CF1

CF2 CF 2

CF3 CF 3
1 1

1 1
CFj-2 CF k-2
CFj1 CF k-1
CFj CF K

Figure 4: Rule exchange mechanism

Since this mechanism improves the problem solving
range at an organizational level by creating/deleting
organizational knowledge, it works as one kind of “or-
ganizational double-loop learning”, which is reinter-
preted to improve the performance through the change
of a set comprising each agent’s individual rules itself
in computational organizational learning. Agents in
this stage of OCS cannot use organizational knowl-
edge until this knowledge is divided into each indi-
vidual knowledge. This indicates that agents cannot
utilize both individual and organizational knowledge
at the same time. Furthermore, organizational knowl-
edge is different from ordinary effective knowledge in a
single LCS. This is because the former knowledge rep-
resents the division of work and is utilized in an unit
of multiagent organization, while the latter knowledge
1s useful for all agents.

Agent
Organizational Rule Set (1)
Knowledge
Rule Set (2)
Individual
..... Knowledge _ Rule Set (3)
CF1 Rule Set (4)
CF2 :
CF3
: Rule Set (n)

Figure 5: Organizational knowledge reuse mech-
anism

3.2.4 Supplemental Setup

In addition to the above mechanisms, OCS is set up
as follows: In the beginning, a particular number
(FIRST.CF) of rules in each agent are generated at ran-
dom, and the strength values of all rules are set to the
same initial value.

3.3 COMPONENTS FOR DESIGNING
LEARNING AGENTS

Using OCS, our previous research has found that the
integration of four learning mechanism in OL is ef-
fective for both solutions and computational costs
(Takadama 1998c¢), also found that the effectiveness
of the integration is supported by the following three
components: (1) different dimensions in learning
mechanisms, (2) interaction among various levels and
types of learning mechanisms in addition to interac-
tion among agents, and (3) a combination of explo-
ration at an individual level and exploitation at an
organizational level. Three components are effective
because they respectively (1) make up for the defects
of the other single mechanism, (2) overcome a limita-
tion of each mechanism in improvements of solutions
and computational costs, and (3) explore an other
search space by “not reinforcing” /“removing” ineffec-
tive knowledge through the individual loop learning
mechanisms and exploit the characteristics of a search

space by utilizing effective knowledge through the or-
ganizational loop learning mechanisms.

4 PENTOMINO TILING PROBLEM
4.1 PROBLEM DESCRIPTION

Pentomino is a figure that combines b squares as shown
in Fig. 6 (a), and its tiling problem is to appropriately
place pentominos with minimizing the area that en-
closes all pentominos without overlap. We select this
domain because (1) this problem can be considered
as a multiagent problem when one pentomino is as-
sumed as one agent, (2) it is easy to increase/decrease
the number of pentominos, (3) the minimum solution
is known as shown in Fig. 6 (b), and (4) this prob-
lem can be directly applied to engineering domains
such as printed circuit boards (PCBs) design prob-
lems in Computer Aided Design (CAD) which finds
a parts layout that minimizes total wiring length (in
this case, each part corresponds to each pentomino

(Takadama 1998a)).

15

_ 0 m

(a) Pentomino

L]

(b) Minimum Area (c) Real Area

Figure 6: Pentominos

4.2 PENTOMINO DESIGN AND
PROBLEM SETTING

In this task, each pentomino is designed as an agent
in OCS, and each pentomino learns to acquire an ap-
propriate sequence of actions that minimizes the area
enclosing all pentominos without overlap. In detail,
the pentominos have 17 primitive actions such as stay,
move, or rotation.

As a concrete problem setting, all pentominos are
initially placed at random without considering over-
lap, and therefore most pentominos overlap with each
other. After this initial placement, the pentominos
start to perform some primitive actions to reduce the
overlap and to minimize the area that encloses all pen-
tominos. When the size of this area converges without
overlap, all pentominos evaluate their own sequences of
actions according to the size of the area. Then the pen-
tominos restart from the initial placement to acquire
more appropriate sequences of actions which finds a
smaller area. In this cycle, one step 1s counted when
all pentominos perform one primitive action, and one
iteration is counted when the size of the area converges
without overlap.

4.3 INDEX OF EVALUATION

In this task, the following two indexes are evaluated:

Real area

o Goodness = Minimum area

e Computational cost
— Zzt:ei'atzon_zn_convergence step (Z)

The first index (goodness) evaluates a solution and
shows how the current area, as shown in Fig 6 (c),
is small compared with the minimum area in Fig. 6
(b). In this case, goodnessis calculated in every itera-
tion by ”;;:ZI, where m’, n’, m and n are the lengths of
the sides 1n the area. The next index (computational
cost) calculates the accumulated steps. In this equa-
tion, “i”, “step (i)”, and “iteration_in_convergence”
respectively indicate the iterations, the steps counted
in ¢ iterations, and the iterations when the size of the
area converges through repetitions in an attempt to
find a smaller area from the initial placement. This
convergence is recognized when the size of the area
shows the same value in some particular iterations.

4.4 RULE SET DESIGN AND TASK
ENVIRONMENT

The rule sets in OCS and the task environment are
designed as follows.

e The condition part of CF (classifier) has the fol-
lowing four contents: (1) previous action (17 types
described in the previous section); (2) flag dis-
tinguishing whether a pentomino is overlapped
or not (1 or 0); (3) flag distinguishing whether
a pentomino is totally enclosed by other pen-
tominos or not (1 or 0); (4) flag distinguish-
ing whether a pentomino removes an overlapping
area within a certain time or not (1 or 0). Fur-
thermore, the action part of CF indicates primi-
tive behaviors (17 types). According to this de-
sign, one example of 2 1 0 # 6 in CF represents
that ¢f previous action is the 2nd action
& overlap & not enclosed then act the 6th
action. In this case, the mark of # indicates
“don’t care”.

e An action is indicated by a discrete number, and
a movement distance is also counted by a discrete
number.

5 SIMULATION
5.1 EXPERIMENT DESIGN

A simulation investigates the characteristics of four
categories (type 1 ~ 4) in multiagent learning envi-
ronments by referring to components for the design of
learning agents based on OL (Takadama 1998¢). All
four types are tested with 24 pentomino tiling prob-
lems in the following two cases. The reason for se-
lecting the above numbers of pentominos is because

the minimum area is known when the number of pen-
tominos is a multiple of 12 as shown in Fig. 6 (b).
Especially in 24 pentominos, there are two types of
the same pentominos.

e Type 1 ~ 4 with RGX (RGXK-K) mechanisms
e Type 1 ~ 4 with RGXK mechanisms

In the above cases, R, G, X and K indicate the mecha-
nisms of Reinforcement learning, rule Generation, rule
eXchange, and an organizational Knowledge reuse,
respectively. For example, RGXK indicates the case
when all four mechanisms are included.

5.2 EXPERIMENTAL SETUP

In the pentomino tiling problem, the goal and the eval-
uation in the four types of multiagent learning and the
learning mechanisms in OCS are designed as follows.

¢ Goal and evaluation are set as follows: Own
goal 1s to maximize the space that adjoins other
pentominos, and own result 1is evaluated ac-
cording to the total number of adjoining spaces.
Shared goal , on the other hand, is to minimize the
area that encloses all pentominos without overlap,
and total result is evaluated according to the size
of the area.

¢ Organizational knowledge in this simulation
is a set comprising each pentomino’s rule set ac-
quired by 12 pentominos in advance and is reused
as an initial rule set of 24 pentominos. In de-
tail, 24 pentominos utilize rule sets as follows,
where RS, (z) indicates the rule set of the x-th
pentomino whose total number is y.

RS24(z) — RS12(mod((z —1),12) +1),z=1,---,24

e Variables in OCS are set as follows: FIRST_CF
(the number of initial rules) is 30, MAX_CF (the
maximum number of rules) is 50, CROSSOVER_STEP
(the interval steps for crossover operations) is
20, GENERATION_GAP (the percentage of operated
rules) is 10%, and BORDER_ST (the lowest strength
of the rule not for removal) is —50.0 L.

5.3 EXPERIMENTAL RESULTS

Table 1 shows the results of the four types of multia-
gent learning, which are evaluated according to good-
ness ((real area)/(minimum area)) and computational
cost (the accumulated steps). In particular, Tables
1 (a) and (b) respectively show the results for RGX
and RGXK cases, and “—” indicates that the value

!Note that (1) these parameters are decided through
careful preliminary examinations to effectively show the
effect of each learning mechanism, and (2) the tendency in
OCS does not change dynamically according to the param-
eter setting.

of goodness does not, converge within 200 iterations .
All results are averaged from five situations with differ-
ent random seeds. Especially in the case of using the
organizational knowledge reuse mechanism, the steps
needed to acquire organizational knowledge are added
to the results. Furthermore, the steps in the case of
the shared goals are multiplied by the number of pen-
tominos for the computational cost. This 1s because
information on the location of all other pentominos is
required to accurately calculate the size of the current
area that encloses all pentominos. Therefore, the ad-
ditional steps for all other pentominos are needed in
one step.

Table 1: Comparison of types 1 ~ 4 in multiagent
learning

Typel | Type2 | Type3 | Type4

Goodness —_— 1.68 —_— 1.57

Computational Cost —_ 343 —_ 2376
(a) RGX

Type 1 Type 2 Type 3 Type 4

Goodness —_ 1.60 —_ 1.57

Computational Cost —_— 437 —_— 4326
(b) RGXK

5.4 DISCUSSION

From the results of the four types of multiagent learn-
ing, the following implications are discussed:

e Evaluation based on own result: Type 1 & 3

In the case of RGX in Table 1 (a), the goodness value
for in types 1 and 3 (which evaluate the actions of
pentominos according to their own results) does not
converge within 200 iterations. This is because differ-
ent evaluations among pentominos are performed even
if the same total result. This kind of evaluation avoids
a concentration on finding one solution (divergence),
because the same actions are not always selected due
to different evaluations among pentominos.

In the case RGXK in Table 1 (b), on the other hand,
there is a possibility to converge the goodness value for
types 1 and 3 due to the utilization of the characteris-
tics of a search space. However, the results shows the
same tendency as compared with RGK. This indicates
that the effect of evaluation at an individual level is
stronger than that of organizational knowledge reuse
at an organizational level.

!Since this paper aims to investigate how a solution and
a computational cost are affected by four types in multia-
gent learning to find essential points for designing learning
agents, a comparison of the results with other methods is
out of the scope of this paper. This comparison, however,
will be published elsewhere.

e Evaluation based on total result: Type 2 & 4

Unlike the results in types 1 and 3, the goodness value
in types 2 and 4 (which evaluate the actions of pen-
tominos according to their total results) converges in
both case of RGX and RGXK as shown in Tables 1
(a) and (b). This is because the evaluations among
pentomino is consistent.

Especially in RGX as shown in Table 1 (a), the good-
ness of type 4 is better than that of type 2 and the
computational cost of type 2, on the contrary, is bet-
ter than that of type 4. The former reason is because
pentominos in type 2 cannot recognize the current size
of the area that encloses all pentominos, while pen-
tominos in type 4 can do it. The latter reason , on the
other hand, is because pentominos in type 4 requires
a lot of computational costs to acquire all information
on the location of other pentominos, while pentominos
in type 2 do not require this.

As shown in Table 1 (b), the goodness of RGXK in
type 2 becomes small but that in type 4 does not im-
prove as compared with those of RGX because of the
following reasons: (1) pentominos in type 2 can uti-
lize the characteristics of a search space which cannot
be obtained with RGX mechanisms; (2) all informa-
tion on the location of other pentominos is enough to
improve the goodness (which means that the charac-
teristics of a search space is supplemental). On the
other hand, the computational cost of RGXK in both
types 2 and 4 increase as compared with that of RGX.
This 1s because the steps required to acquire organi-
zational knowledge in the case of 12 pentominos are
added. However, the increase degree of the computa-
tional cost in type 2 can be ignore as compared with
that in type 4. This indicates the effectiveness of type
2 with RGXK mechanisms.

¢ Effective type for designing learning agents

In multiagent learning environments, the actions of
some agents affect the learning of other agents, and
this kind of interaction often changes the results. As
a result, 1t 1s difficult to recognize which actions of
agents contribute to an improvement of performance
before given problems are solved. Although it is diffi-
cult for agents in type 2 to solve this problem, type 4
has the possibility of solving it. This is because type 4
can evaluate each action by using all information of the
other agents. However, a lot of computational costs
are required to implement such mechanisms, and this
makes it difficult to apply agents in type 2 for practical
and engineering uses.

In type 2, on the other hand, the goodness of this type
with RGXK 1is slightly larger than that of type 4 but
the computational cost of this type is much smaller
than that of type 4. This result indicates that agents
in type 2 with RGXK have found a good solution with
less computational cost, and shows a possibility of

solving the above problem of multiagent learning even
if agents cannot recognize which actions contribute to
an improvement of performance in each time. From
this fact, we arrive at a conclusion for designing learn-
ing agents that suggests the design of agents in type
2 with introducing the four loop learning mechanism
of OL (RGXK mechanisms). Although we find the
same characteristics in the example of PCBs design
problems in the CAD domain, we must distinguish the
kinds of problems or task domains in which agents in
each type perform well (This means finding a good
solution with less computational cost) and must also
perform a lot of experiments with other examples to
propose a guideline for designing learning agents.

6 CONCLUSION

This paper has introduced a new category in multi-
agent learning which is divided according to agents’
goals and evaluations, and also has found an effective
category for designing learning agents which suggests
the design of agents in type 2 with introducing four
loop learning mechanism of OL (RGXK mechanisms).
The main results are summarized as follows: agents
that pursue their own goals and are evaluated accord-
ing to their total results show high performance in
comparison with other types of agents when all learn-
ing mechanisms in the organizational learning are em-
ployed.

Future research will include the following.

e Many experiments with other examples to pro-
pose guidelines for the design of learning agents.

e An investigation of the characteristics of other
types of multiagent learning and the effectiveness
of introducing other concepts.

References

C. Argyris and D.A. Schon (1978). Organizational
Learning, Addison-Wesley.

T.R. Balch and R.C. Arkin (1995). “Communica-
tion in reactive multiagent robotic systems”, Au-
tonomous Robots, Vol. 1, No. 1, pp. 27-52.

M.D. Cohen and L.S. Sproull (1995). Organiza-
tional Learning, SAGE Publications.

A. Collinot, A. Drogoul, and P. Benhamou (1996).
“Agent Oriented Design of a Soccer Robot Team
7 The Second International Conference on Multi-
Agent Systems (ICMAS’96), pp. 41-47.

L. Gasser and A. Bond (1988). Readings in Dis-
tributed Artificial Intelligence, Morgan Kaufman
Publishers.

D.E. Goldberg (1989). Genetic Algorithms in
Search, Optimization, and Machine Learning,

Addison-Wesley.

J.J. Grefenstette (1988). “Credit Assignment in
Rule Discovery Systems Based on Genetic Algo-
rithms”, Machine Learning, Vol. 3. pp. 225-245.
J.H. Holland and J. Reitman (1978). “Cognitive
Systems Based on Adaptive Algorithms”, in Pat-
tern Directed Inference System, D.A. Waterman
and F. Hayes-Roth (Eds.), Academic Press.

D. Kim (1993). “The Link between individual and
organizational learning”, Sloan Management Re-
view, Fall, pp. 37-50.

J.G. March (1991). “Exploration and Exploitation
in Organizational Learning”, Organizational Sci-
ence, Vol. 2, No. 1, pp. 71-87.

D.E. Moriarty, S. Handley, and P. Langley (1998).
“Learning Distributed Strategies for Traffic Con-
trol”, The Fifth International Conference of the
Simulation for Adaptive Behavior (SAB’98), pp.
437-446.

S.J. Russell and P. Norving (1995). Artificial In-
telligence: A Modern Approach, Prentice-Hall In-
ternational.

R.S. Sutton, A.G. Bart (1998). Reinforcement
Learning — An Introduction —, The MIT Press.

K. Takadama, S. Nakasuka and T. Terano (1998a).
“Printed Circuit Board Design via Organizational-
Learning Agents”, Applied Intelligence, Vol. 9, No.
1, pp. 25-37.

K. Takadama, S. Nakasuka and T. Terano
(1998b). “Multiagent Reinforcement Learning with
Organizational-Learning Oriented Classifier Sys-
tem”, ITEFE 1998 International Conference On
FEvolutionary Computation (ICEC’98), pp. 63-68.
K. Takadama, T. Terano, K. Shimohara, K. Hori
and S. Nakasuka (1998¢). “Making Organizational
Learning Operational: Implication from Learning
Classifier System”, ATR Technical Report, TR-H-
257.

M. Tan (1993). “Multi-agent Reinforcement learn-
wng: Independent wvs. Cooperative Agent’, The
10th International Conference on Machine Learn-
ing (ICMT’93), pp. 330-337.

G. Weiss and S. Sen (1996). Adaption and Learning
m Multi-Agent Systems, Lecture Notes in Artificial
Intelligence, Vol. 1042, Springer-Verlag.

G. Weiss (1997). Distributed Artificial Intelligence
Meets Machine Learning — Learning in Multi-
Agent Environments —, Lecture Notes in Artificial
Intelligence, Vol. 1221, Springer-Verlag.

