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Abstract

A recent method of optimization has been
presented involving macroevolutionary dy-
namical rules. Extinction and diversi�cation
are introduced by following a set of steps
where species/solutions are wired through an
antisymmetric matrix of interactions. These
connections are de�ned in terms of the �tness
landscape and allow to explore the landscape
in a highly e�ective way. It is shown that this
search method is able to outperform genetic
algorithms in a wide range of conditions.

1 INTRODUCTION

Most methods of optimization based on evolutionary
algorithms involve a set of rules somewhat inspired
in biological microevolution (Goldberg, 1989; Holland,
1992; Mitchell, 1996). Using the basic framework of
Darwin's Natural Selection, strings of bits represent-
ing solutions to given problems (like optimization in
rugged landscapes) are manipulated by following sim-
ple sets of rules mimicking mutation, recombination
and competition for resources (typically for a �nite
space). The underlying philosophy is that of popu-
lation genetics, and the results obtained from these
methods have been widely used in both theoretical and
applied sciences (Back et al. 1997).

But another aspect of the evolutionary process can
also be used as a source of inspiration for optimiza-
tion purposes in �tness landscapes. This aspect is
the set of special phenomena arising in the so called
macroevolutionary dynamics. By macroevolution we
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refer to the long-term time scale where species extinc-
tion and diversi�cation (together with some special
external stresses) dominate the large-scale dynamics.
Some authors have in fact suggested that the rules op-
erating at this large scale are basically di�erent than
those involved at the microscale. Several recent de-
velopments have shown that the large-scale dynam-
ics of species extincion can be satisfactorily modelled
through a network of species interacting through a ma-
trix of connections (Sol�e and Manrubia, 1996; Sol�e et
al. 1996; 1997). More recently, this model has been
used as a basic framework to develop a new optimiza-
tion method which has been shown to outperform ge-
netic algorithms in several instances (Mar��n and Sol�e,
1998). In this paper we further explore this model
and introduce a simpli�cation which is applied to some
simple cases.

2 MODEL OF EXTINCTION

DYNAMICS IN

MACROEVOLUTION

Following previous papers (Sol�e and Manrubia, 1996;
Sol�e et al. 1996) we brie
y introduce the original for-
mulation of the macroevolution model before to use it
as the basic framework to optimization purposes. The
model is a network ecosystem where the dynamics is
based only on the relation between species. The links
indicating trophic in
uence between units/species (so-
lutions in the optimization problem) are essential to
determine the new state (alive or extinct) of each
species at each generation and are given by real num-
bers �1 < Wij < +1. The \state" of each species i (in
a population of size P ) in generation t is updated by
following a set of simple rules. Brie
y, each generation
in the biological model consists in the following set of
steps:

1. Random variation: for each species i, a connec-
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Figure 1: Basic rules in the macroevolution model, for
a system of P = 6 species. Starting from a random
network, we �rst make random changes in the con-
nections (one per species). As a consequence of these
changes, some species become extinct (empty circles).
Now one of the survivors is chosen (number 1 here)
and copied into the (two) empty spaces (2 and 4 in
this example). Arrows indicate trophic relation direc-
tion.

tion Wi;j(t) is randomly chosen, and a new ran-
dom value between -1 and 1 is assigned

2. Extinction: the relation of each species with the
rest of the population determines its survival co-
e�cient h de�ned as

Si(t+ 1) =

�
1 (alive) if

PP

j=1Wi;j(t) � 0

0 (extinct) otherwise
(1)

This step allows for the selection and extinction
of species. Here the sum hi =

P
j Wi;j is the so

called local �eld in statistical physics (Weisbuch,
1991).

3. Diversi�cation: we colonize vacant sites freed by
extinct species with surviving species. Speci�-
cally, a colonizer c will be randomly chosen from
the set of survivors. For all vacant sites (i. e.
those such that Sk(t) = 0) the new connections
will be updated in this way:

Wk;j = Wc;j + �k;j

Wj;k =Wj;c + �j;k (2)

where � is a small random variation and we have
Sk(t+ 1) = 1.

These rules are sumarized in �gure 1, where an exam-
ple for a very small system is shown. This model was
shown to reproduce most of the statistical features of
macroevolution (Sol�e et al. 1996) and it provided a
natural source for the decoupling between microevo-
lution and macroevolution. It generates avalanches of
extinction of many di�erent sizes, and small changes
in the network structure are able to quickly propagate
through the system. Perhaps this sensitivity could be
used in optimization problems where small di�erences
among nearest species need to be ampli�ed in order to
reach better solutions.

3 MACROEVOLUTIONARY

ALGORITHM

In this section we show how to map the previous model
of extinction into a model of optimization. The new
model has been called macroevolutionary algorithm
(MA). Let us de�ne the d-dimensional �tness func-
tion f to be maximized. Our objective is to �nd the
best values for the d-dimensional vectors of our prob-
lem under consideration. Thus our individuals/species
are now Si � p 2 
 2 <d, i. e. d-dimensional objects
constrained to a subspace 
. In this context p will be
a good approximation if 8q : f(q) � f(p) + � where p
and q are individuals and � > 0 is a threshold. Thus
each individual in MA is described by a d-input vector
with �tness f . The domains for these inputs describe
the search space where our �tness function is nothing
but a (more or less) rugged landscape (Palmer, 1991).

As with GA, MA uses a constant population size of P
individuals evolving in time by successive updates of
the given operators. The main idea is that our system
will choose, through network interactions, which are
the individuals to be eliminated so as to guarantee ex-
ploration by new individuals and exploitation of better
solutions by further generations. To this purpose, it is
essential to correctly establish a relationship between
individuals. This is described by the following criteria:

(a) each individual gathers information about the rest
of the population through the strength and sign of its
couplings Wij . Individuals with higher input �elds
hi will be favoured. Additionally, they will have a
harmful e�ect on other less-�t solutions.

(b) In this version of the MA model, we de�ne theWi;j

as:

Wi;j = F (f(pi); f(pj))

where two di�erent alternatives are considered, to be
compared with standard genetic algorithms. Here
F (x; y) describes the speci�c de�nition of the coupling



as a function of the local �tnesses. The two possibili-
ties analyzed here are:

(i) Wi;j =

(
f(pi)�f(pj)

jpi�pj j
if f(pi) 6= f(pj)

0 otherwise
where

the denominator is a normalization factor that weights
the relative distance among solution (Mar��n and Sol�e,
1998).

(ii) the reduced version Wi;j = f(pi) � f(pj). Here
pi = (p1i ; :::; p

d
i ) are the input parameters of the i-th

individual.

Now we can de�ne the most important ingredients that
will be used in building the set of operators to be ap-
plied each generation:

1. Selection operator : it allows to calculate the sur-
viving individuals through their relations, i.e. as
a sum of penalties and bene�ts. The state of a
given individual Si will be given by:

Si(t+ 1) =

�
1 if

PP

j=1Wi;j(t) � 0

0 otherwise
(3)

where t is generation number and Wi;j =
W (pi;pj) is calculated according to the previous
possibilities (i-ii). In the following this rule will
be indicated as Si(t+1) = �(hi(t)) where �(z) = 1
if z � 0 and zero otherwise. Additionally, for the
(ii)-case, computing time can be reduced through
mean of population �tness without computingW :

Si(t+ 1) = f(pi) �
PP

j=1
f(pj)
P

.

2. Colonization operator : it allows to �ll vacant sites
freed by extinct individuals (that is, those such
that Si = 0). This operator is applied to each
extinct individual in two ways. With a proba-
bility � , a totally new solution pn 2 
 will be
generated. Otherwise exploitation of surviving
solutions takes place through colonization. For
a given extinct solution pi, we choose one of the
surviving solutions as best-�tness solution, say pb.
Now the extinct solution will be attracted towards
pb.

Mathematically, a possible (but not unique)
choice for this colonization of extinct solutions
reads:

pi(t+1) =

�
pb(t) + ��

�
pb(t)� pi(t)

�
if � > �

pn if � � �

(4)
where � 2 [0; 1] is a random number, � 2 [�1;+1]
(both with uniform distribution) and � and � are

given constants of our algorithm. So we can see
that � describes a maximum radius around surviv-
ing solutions and � acts as a temperature param-
eter. Other alternatives gave similar results. For
example, one can take pi(t + 1) = ps(t)(1 + ��)
where ps is one of the surviving solutions. In �g-
ure 2, we show an example of a typical run of the
reduced MA.

0 100
Generations

0

10

20

30

40

50

M
ax

 fi
tn

es
s/

E
xt

in
ct

io
ns

max fitness
extinction size

0 10 20 30 40 50
0

10

20

30

40

50

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
0

10

20

30

40

50

Figure 2: An example of the time dynamics of the
MA (reduced version). Here a two-dimensional land-
scape has been used. The function is of the form
f(x; y) =

PS

j=1 AjGj(x; y) where Aj 2 (0:8; 1) and

Gj(x; y) = exp(�((x�x0)
2+(y�y0)

2)�j). The points
(x0; y0) are randomly scattered in the [0; 50] � [0; 50]
and �j 2 [10; 100]. The maximum is located at (23; 40)
and is reached at the G � 50 generation using a small
population of P = 20 solutions and � = 0:2; � = 0:2.
The maximum �tness and the size of the extinction
events are shown. Three examples of the location of
the solutions at t = 5; 25 and 55 are shown (insets,
from left to right). We can see that large extinctions
are linked to increases in �tness.

Although all essential rules de�ning the MA have been
presented, several improvements and additional rules
have been explored. In particular, we can decrease �
with time as in simulated annealing (Kirkpatrick et al.,
1983) to get a good convergence. In this context, the
\temperature" � , when lowered, provides a decrease
in randomness which favours the exploitation around
the best individual found. In order to lower � in each
generation, we can use a given decreasing function. In
our analysis, we have used a linear relation:

�(t;G) = 1� t

G
(5)



where G is number of generations. The results of using
this linear annealing procedure do not strongly di�er
from other choices of �(t).

4 NUMERICAL RESULTS

A number of systematic explorations using MA, both
(i) and (ii), have been performed 1 and compared with
standard GA with tournament selection (Mitchell,
1996). In order to obtain a standard comparison with
previous studies, we have introduced examples of d-
input functions (proposed for real valued spaces in
the contest helded during the 1996 IEEE International
Conference on Evolutionary Computation):

(a) Griewank's function where xi 2 [�600; 600] with
d = 10:

f1(~x) = � 1

4000

dX
i=1

(xi�100)2+

dY
i=1

cos
�xi � 100p

i

�
+1

(6)

(b) Michalewicz's function where xi 2 [0; �] with d =
10:

f2(~x) =

dX
i=1

sin(xi) sin
20(

ix2i
�

) (7)

(c) Rotated version of Michalewicz's function where
xi 2 [0; �] with d = 10 and � = �

4 :

f3(~x) = f2(Rotation(~x)) (8)

where Rotation means to perform d� 1 rotations of �
radians centered at point (�2 ;

(d : : : ; �2 ) (see �gure 3).

In experiments performed with GA's, we have used a
crossover probability of 0.7 and calculated � according
to equation (5), and we have used a constant value
for �: 0.3 for example (a), and 0.5 for exemples (b)
and (c). Other parameters for these experiments are
summarized in table 1.

The results of these experiments are shown in �gure
4. Example (a) is a typical case in the standard per-
formance of the MA's in relation to GA's. We can
see a very rapid convergence of the MA's in relation
with the smooth, slow approach of the GA. Both types
of MA's show similar behavior, although the reduced
version is typicaly faster and more e�cient in terms
of computational time. Example (b) is a special type
of test function involving geometric features favour-
ing GA methods. In this case GA's work better than
MAs, but in fact a rotation of this function (c) leads
to a di�erent relation of e�ciencies: GA's performance
fall considerably.

1For all the numerical experiments, a Sun Ultra-1 work-
stations with SunOS operating system has been used
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Figure 3: Up: Graphical representation for d = 2 of
Michalewicz's function |example (b). Down: Rotated
version of Michalewicz's function |example (c).
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Figure 4: Relation between �tness value reached and
time needed, applying GA, MA and reduced MA to f1,
f2 and f3 (from top to bottom).

Table 1: Some parameter values for the performed ex-
periments. Here P is population size, G is number of
generations used, R number of runs and, �T is in-
terval of time choosen to calculate the mean of �tness
value. For each pair P and G value, 25 runs were
performed.

FUNC. ALG. P G �T

f1 GA 20 to 150 10 to 500 15
f1 MA 10 to 90 100 to 1200 15
f1 Red.MA 20 to 800 100 to 2100 15
f2,f3 GA 20 to 330 50 to 250 120
f2,f3 MA 10 to 250 10 to 1250 120
f2,f3 Red.MA 70 to 400 500 to 7500 120

5 CONCLUSIONS

In this paper a novel optimization technique, which
we have called macroevolutionary algorithm, has been
explored using two di�erent versions of the MA model.
The MAs are based in a simple procedure inspired in
macroevolutionary dynamics and extinction events. In
the original model extinctions removed some species
and new ones were generated by diversi�cation of the
survivors. In the MA approach, the basic ecology-like
structure is also preserved, but now applied to a set of
candidate solutions to a given optimization problem on
a �tness landscape. The survival of solutions is linked
with the �tness f(x) of each species in relation with
all the other species. If the total sum of input con-
nections to a given species hi is positive, it survives.
If negative, it becomes extinct. Extinction events are
typically linked with the �nding of new, high-�t so-
lutions and large (mass-) extinction events take place
when a very good solution is found. The replacement
process guarantees both the exploitation of the high-
�t solutions as well as further, random exploration of
other domains of the landscape. Because of the con-
nection matrix, the whole population is able to obtain
a rather accurated map of the relative importance of
the solutions being explored in the landscape.

These algorithms are easily extended to optimization
problems in high-dimensional parameter spaces. In a
recent study, we have shown that its e�ciency in neu-
ral network training problems (Mar��n and Sol�e, 1999).
A speci�c example is shown in �gure 4 for the two-
spirals problem (Peretto, 1991). Since several stan-
dard combinatorial optimization problems as the trav-
eling salesman can be mapped to a multidimensional
�tness landscape (in terms of an energy/cost function



Figure 5: Generalization performed from two-spirals
problem with a 2-16-1 neural networks architecture and
sinusoidal function in hidden layer. Left: Using back-
propagation. Right: Using MA.

plus constraints) the MAs also o�ers a new approach
to such area of research.
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