
An Approach to Solving Combinatorial Optimization Problems
Using a Population of Reinforcement Learning Agents

Victor V. Miagkikh and William F. Punch III
Genetic Algorithms Research and Application Group (GARAGe)

Department of Computer Science and Engineering
Michigan State University
2325 Engineering Building

East Lansing, MI 48824
Phone: (517) 353-3541

E-mail: {miagkikh,punch}@cse.msu.edu

Abstract

This paper presents an approach that uses
reinforcement learning (RL) algorithms to solve
combinatorial optimization problems. In
particular, the approach combines both local and
global search characteristics: local information as
encoded by typical RL schemes and global
information as contained in a population of
search agents. The effectiveness of the approach
is demonstrated on both the Asymmetric
Traveling Salesman (ATSP) and the Quadratic
Assignment Problem (QAP). These results are
competitive with other well-known search
techniques and suggest that the presented RL-
agent approach can be used as a basis for global
optimization techniques.

1 INTRODUCTION

Generate-and-test optimization algorithms are known to
be efficient in finding optimal or near-optimal solutions in
complex optimization problems. The success of a
generate-and-test algorithm for a particular problem is
determined by factors such as: its ability to use past
experience to form feasible solutions, its
exploitation/exploration strategy, its utilization of
problem-specific information etc. In creating a feasible
solution, the algorithm has to make a number of
decisions, e.g. which value should be assigned to
particular free parameter. The quality of the generated
solution is often the only type of feedback available after
a sequence of decisions is made. Since we expect the
algorithm to make decisions, which result in better
solutions over time, the problem of intelligent solution
generation can be approached with reinforcement learning
(RL).

The problems with delayed reinforcement that RL
approaches face is well modeled by Markov Decision
Processes (MDPs). MDPs are defined by: a set of Markov
states, the actions available in those states, the transition
probabilities and the rewards associated with each state-
action pair. Model based RL-algorithms are explicitly
looking for MDP solution, an optimal policy, which is a
mapping from MDP states to actions which maximizes
the expected average reward received by following a path
through MDP states. An action-value function for a policy
is defined as a mapping from each state-action pair to the
expected average reward obtained by choosing an action
in that state according to the given policy and following
that policy thereafter. The state-value function for a
policy specifies the desirability of a state and is defined as
the expected average reward obtained by following that
policy from a given state. Since probabilities are not
always known, typical RL algorithms, e.g. SARSA or Q-
learning, are model free. Iterative updates used by these
algorithms do not use transition probabilities and are
proven to converge to optimal value function. A greedy
policy that chooses an action according to the maximum
optimal action-value is known to be globally optimal
based on the expected average reward criterion. Readers
interested in a more detailed treatment of RL should read
references such as Sutton and Barto (1997).

For an example of an optimization problem formulated in
RL terms, consider an RL approach to the Traveling
Salesman Problem (TSP). The states are the cities. The
actions are the choices of the next city to visit, and the
action-values indicate the desirability of the city to visit
next. Global reward is the inverse of the tour length.
Immediate rewards can be defined as inverse of the
distance between a pair of cities.

The idea of using RL in optimization problem solving is
almost as old as RL itself. It was first studied in n-armed
bandit by Bellman (1956) and later applied to more
difficult optimization problems by various researchers.

For example, Dorigo (1992,1996) has developed an
optimization technique known as Ant Systems(AS). The
key idea behind AS is a heuristic approximation to action-
values, which he terms pheromone. Even though AS were
derived by simulating the behavior of a population of
ants, they have much in common with other RL
algorithms. Another application of RL to optimization is
that of Crites and Barto (1996) where they applied Q-
learning to elevator scheduling. This paper is particularly
relevant to our research since it explores the possibilities
of multi-agent RL algorithms in optimization. Each agent
in a team of RL algorithms controls a particular elevator
car cooperatively solving the entire problem. Among
other relevant publications, Gambardella and Dorigo
(1995) who described the application of Q-learning to
TSP and asymmetric TSP. Zhang and Dietterich (1996)
use TD(λ) to solve a Job-Shop Scheduling problem.
Singh and Bertsekas (1996) used RL for the channel
allocation problem.

In order to discuss advantages and disadvantages of RL in
optimization, let us first contrast them against another
well-known optimization technique, genetic algorithms
(GA). While RL supports value-function, which reflects
the desirability of free parameter assignments, GA
approaches explicitly view only the overall fitness of a
solution. In constructing a new solution, GAs are not
guided by any synthetic fitness values associated with any
smaller part of solution. Rather, GAs are guided by
schema theory which states that the more favorable a
particular choice of values for a subset of solution
parameters is, the more frequently such a schema appears
as a part of solutions in the population. These building
blocks thus represent the preferred values of solution
parameters and their combinations. The ability to both
explore and exploit schemata in the search space is the
key to GA success as first pointed out by Holland (1975).

Thus, each schemata in a GA has an implicit probability
of appearing in generated solution where the better a
schemata is, the higher the probability of it occurring in a
solution. Such representation is similar to tossing a coin
and storing all outcomes instead of the number of trials
and the number of heads. This raises the question: is a
population of solutions an accurate and computationally
effective way of representing the preferences of free
parameter choices as compared to some form of sufficient
statistics? Since the number of schema grows
exponentially with the size of the problem, maintaining
values associated with each individual schemata becomes
prohibitive. On the other hand, GA do not directly learn
from bad experience. Moreover, finite populations can
drop some alleles from the population and there is only a
slight chance that they may be reintroduced via mutation,
and they may not survive to be used.

Use of RL techniques in optimization problems has good
and bad aspects. On the positive side, they are proven to

converge to optimum given the right circumstances and
are applicable to problems with a large number of states.
They can also be used in conjunction with function-
approximation techniques to add generalization and
reduce space requirements. Boyan and Moore (1998)
report good results on a number of discrete and
continuous optimization problems using this approach.
Direct estimation of desirability of assignments by value
functions has a potential to be both more precise and
computationally cheaper than other approaches. This
possibility is one of the major motivations for conducting
research on applicability of RL algorithms to
optimization.

There are also disadvantages. The first is the local rather
than global character of search in the RL schemes
proposed so far. The algorithm has to explore the space
by choosing probabilistically from among all actions, not
just the action with the highest action-value estimate. In
combinatorial optimization, even one incorrect
exploratory step can seriously damage the quality of the
resultant solution. To therefore generate a good solution,
the most preferable action has to be selected most of the
time, which strongly shifts the balance from exploration
to exploitation and leads to local rather than global search.
This problem is clearly seen in AS convergence on the
TSP when all ants begin to follow the same tour.

Another problem in RL is the coarse representation of the
state. For instance, in solving a TSP by AS as described in
Dorigo et al. (1996) or Ant-Q in Gambardella and Dorigo
(1995), the state is the current city, and the action is
which city to visit next. Clearly a full representation of
the state would contain both the current city and the tour
of cities already visited. Since this history obviously
influences further assignment, their simple definition
looses Markovian property, and a suboptimal sequence of
cities, a building block, is not captured. Consequently, the
algorithm will not be able to handle parameter
interdependence sufficiently well. As mentioned earlier,
the number of states in an RL approach cannot be so large
as to keep an estimate for every possible sequence
because the number of states grows exponentially.
Nevertheless, this problem may be addressed by the use
function-approximation and other means as will be
discussed further.

The remainder of this paper will explore how to improve
the two difficulties discussed in the application of RL
techniques to optimization problems. In particular, we
will show how to add global search characteristics to RL
problem-solving by using a population of RL search
agents and how to make the state information more
effective for the purpose of capturing interdependencies.

2 GLOBAL OPTIMIZATION USING RL
ALGORITHMS

One approach to capturing parameter interdependencies is
the use of Bayesian approach. Integrating Bayes rule into
RL allows one to compute the posterior probability of a
particular assignment given that some assignments have
already been made. However, even in the case of a naive
Bayesian scheme, such an approach is expensive (O(n4) in
space, O(n2) computational complexity of update rule in
TSP and QAP). This approach is therefore only feasible
for problem instances of moderate size unless used in
combination with a function-approximation technique to
reduce the space requirements. The authors describe this
approach in detail in Miagkikh and Punch (1999).

This paper concentrates on another possibility: we
continue to use a coarse representation of the state but
stop looking for general preference values which would
be valid in any part of the search space. Since coarse
representation collapses many “true” states of the system
into one making them indistinguishable, the action-values
associated with “coarse state”-action pairs can only be
valid for a local part of the search space. We will call this
the principle of locality of action-values. However,
action-values from different parts of the search space can
be more broadly applicable. Therefore, this approach
maintains a population of not only solutions, which are
the best results of the search conducted by the RL
algorithm situated in some area of the search space, but
also its action values. This coupling of a locally-best
solution, the action values and an RL algorithm is defined
as an agent, an expert in its local area of the search space.
As soon as we have local information from different parts
of the search space, we need a way to combine the results
of “best yet” search in one area with another.

Since each agent in the population is addressing the same
optimization problem, we expect that at least some other
agent’s preferences are useful in areas other than the local
space in which there were formed. This assumption of
homogeneity allows us to combine results from multiple
agents. Consider one such approach: a new solution is
formed by copying a part of the locally-best solution
found by one agent, while the remaining assignments are
made using preference values borrowed from another
agent. How would this compare to recombining two
solutions using GA crossover? In GA crossover we have
two kinds of information, the two instances and perhaps
some problem-specific information. For example,
Grefenstette (1985) crossover for TSP has to make 40%
of its assignments at random to avoid conflicts with
previous assignments. With action values, we can direct
those assignments rather than make them randomly. For
example, if a city-city representation of the state-action
pair is used, the assignments made via preferences assign
values based on correlations with previous assignments.
This increases the chances of finding a good sequence.
Thus, the operation described looks like a kind of

crossover, using two instances to generate one child,
based on indirect transfer of information though the
values of the state-action pairs. We may also think of it as
combining both partial results and preferences resulting
from search conducted by other agents. Possible variation
of this theme is to generate a partial solution with one
agent and use another agent to generate the remainder.

Another possible approach is to average the action-va

lues and use this average to make assignments. However,
such averaging has a tendency to produce very poor
results, which is more evidence for the stated principle of
locality for action-values. Approaches using both a central
solution and action-values are also possible. This
synthetic approach would allow combining the
advantages of both RL and GA.

In addition to capturing interdependencies, a population
of RL search agents provides oportunities for more global
serach. As was noted in the introduction, the local
character of the search comes in part from constructing
the entire solution from scratch. Our approach uses an RL
algorithm to generate not the whole solution, but only a
part of it. The other part is replicated from the best
solution found so far by this or another RL algorithm. At
first glance this might seem to make the approach even
more locally oriented. This is the case only if the
replicated part is discovered by some other agent, which
followed a similar thread of search. To enforce
independent threads of search as conducted by each agent
in the population, we can choose the following
replacement policy: the child competes with the parent
which was the source of replicated material, and the better
solution (parent or child) is placed into the next
generation. In this case, two agents are “similar” (same
preferences, etc.) only if they discovered the same
solution independently based on their own action-values.

Another way to make the search more global is to allow
the RL approach to “wander” more (follow less
stringently its preferences). To avoid introducing poor
solutions into the population, each solution can be passed
through a problem-specific local optimizer to see if this
exploration found a useful area of the search space. These
two approaches are complementary because independent
threads reduce crowding which can cause preliminary
convergence to a local optimum. In its turn, local
optimization allows broader search by allowing
parameters controlling exploration in the RL algorithm to
be set less tightly.

Since an instance in the population is not only a solution,
but also a matrix of action-values, it is costly to copy.
This is one of the reasons that competitive replacement is
used in the algorithm. We assume here that if the child is
better than the parent which served as the source of
replicated part, then the child inherits all the preference
values of that parent. Depending on the results of
competition, the update of the preference values is made

either in both parents or in the child and the parent and
there is no need to copy them.

Another reason for choosing this type of selection was
mentioned earlier: each agent in the population is more
like an independent search agent which occasionally
exchanges results with other agents. Thus strong selection
pressure, such as found in proportional selection, can be
used. However, since offspring must replace a parent to
be part of the population, crowding is reduced. That is,
similar preferences and solution parts must be generated
independently. This also means that local optimization is
less risky because one solution cannot easily dominate the
population.

We do not explicitly encode a mutation operation in this
algorithm. By copying a large part of one solution, the
whole process could be seen as a directed mutation, which
allows extrication from local minima.

The overall architecture of the approach is depicted in
Figure 1. There is a population of RL agents where each
is comprised of a locally best solution, a matrix of action-
values and the parameters for the RL algorithm. To
produce a new agent, two solutions are selected from a
population using proportional or another type of selection.
The new solution is formed using the solution of one
parent and the action-values of the other. After calculating
the fitness of the new solution, the child competes with
the parents for inclusion in the population. Then the
value-functions are updated. The global reward could be
based on the difference of the fitness of the new solution
and the average fitness of the parents or some other
baseline. Depending on the problem being solved and the
particular RL algorithm used, local rewards could also be
employed.

3 APPLICATION: ATSP

ATSP is a classic NP-hard problem of finding the shortest
Hamiltonian cycle in a complete weighted graph, where
the weight matrix is not necessarily symmetric.

In accordance with the approach, the new feasible
solution is formed in part by replicating the fragments of
the best solution discovered by one of the parents and
filling in the remaining part using the action-values of
another agent. An adaptation of the standard one-step Q-
learning by Watkins and Dayan (1992) was used:

 −++

+=

++

++

),(),(max)(

),(),(

11

11

nnn
a

nnnn

ccQacQnr

ccQccQ

γα

where),(1+nn ccQ reflects the desirability of choosing
city 1+nc to follow nc , a denotes all actions available in
cn+1. α and γ are learning and discounting parameters
respectively. The reward r is a weighted combination of
immediate and global rewards:

() () global
nn

tour R
ccdN

L
nr ββ −+

⋅

=
+

1
,

)(
1

where N is the size of the problem, tourL is the length of

the tour,),(1+nn ccd is the cost of traveling from city nc to

1+nc , globalR is the global reward, and β is a parameter

controlling the balance between goodness of the action in
local and global contexts. This update procedure with
complexity O(N2) was run after each new tour was
obtained. The value of global reward globalR was

calculated on the basis of the average fitness of the
parents:

itavParentsF

LitavParentsF
R tour

global
−= , where

2

)2()1(PLPL
itavParentsF tourtour +=

Other ways of calculating global reward using the basis of
the entire population are possible. For example, instead of
the average fitness of the parents, the average fitness of
the last M solutions can be used. This approach for

2) Select two agents
proportionally to their
fitnessCentral Solution

Action
values

Population of Agents

1) Fitness of the agent is the
fitness of the locally best (central)
solution it discovered.

3) Make a part of
assignment based on
the values of central
solution of one parent
and use the action-
values to fill in the rest

RL alg.

4) Compare the fitness of the offspring and
parent, keep the best of them as the central
solution; update desirability values.

Figure 1: The structure of the search using a population of RL agents

RL Agent

If

calculating the baseline is smoother and has a slight
advantage over basing the average fitness on two parents,
but not enough to justify the increased computational
efforts.

An individual step, that is, from city a choosing the next
city b is based on the Q-values Q(a,bi), where bi belongs
to the set of not-yet-visited cities. Among different
selection strategies tried, the authors chose a simple ε -
greedy proportional policy: make the most desirable
action with the probabilityε , or with probability 1-ε
choose one of the remaining options with probability
proportional to the action-value estimate.

The balance between copying the fragments of the best
solution and generating the rest using Q-values was
controlled by the parameter λ , which is the fraction of
copied values among the total number of assignments.
Thus, λ =0 corresponds to use of Q-learning to make all
assignments. Since a feasible solution is a sequence of
cities, there is an advantage to replicating adjacent values
in groups rather than uniformly. To correspond with the
definition of λ , k fragments of size si are randomly
chosen for replication in the range [1,l]. The maximum
length of the fragment, l, was set to 10/Nl = . The
number of fragments k is calculated from equation

Ns
k

i
i λ∑

=

=
1

. We also observed that if the value of λ is

close to 1, the simpler approach described in the section
on the QAP produces almost identical results.

After a new solution is generated, it passes through a
relatively inexpensive local optimization procedure
which, including the fitness evaluation, has a complexity
of O(N2). One of the following two local optimization
procedures was randomly selected each time: attempt to
insert a randomly chosen city between all pairs of cities,
or test order swaps of two random cities. The complexity
of ATSP in comparison to symmetric TSP comes in part
from the fact that in ATSP, exchange of any fixed number
of cities requires O(N) to reevaluate the solution, while in
TSP it can be done in O(1). This is one of the reasons
ATSP is harder and more interesting than its symmetric
case.

4 APPLICATION: QAP

The Quadratic Assignment Problem is a problem of
finding a permutation ϕ minimizing:

∑ ∑∑
= = =

⋅+=
n

i

n

i

n

j
jiijii BACZ

1 1 1
)()()(ϕϕϕ

where n is the number of facilities/locations, Cij cost of
locating facility i at location j, Aij is cost of transferring a
material unit from location i to location j, Bij is the flow
of material from facility i to facility j. The permutation ϕ

indicates the assignment of a facility to a location. The
double summation of the products term makes the QAP
highly non-linear. The action-values can estimate the
goodness of assigning a specific location to some facility.
The result of assigning a facility to a location is highly
dependent on how other facilities are assigned.

Since there is no obvious order in which assignments
should be made, it makes the application of bootstrapping
algorithms such as Q-learning difficult unless some order
is imposed, that would put a strong bias on solution
generation. There are a number of ways to resolve this
difficulty, but in the context of the present approach, a
simple Monte-Carlo update rule that does not require a
particular order was used, at the price of slower
convergence. In our application, the values of the
estimates p(li fj) of assigning facility fj to location li were
trained by:

() () ()()tiittiitii flprflpflp ,,, 11 −+= ++ α

where reward rt+1 was calculated as the global reward
Rglobal in ATSP on the basis of the average fitness of two
parents. The choice of the values for replication was also
simplified since there is no adjacency relationship
between the cells in a permutation. Each cell had a
probability of being copied equal to N/λ and the
remaining on average ()λ−1N positions were filled
using the values of p(li fj). The order of assigning facilities
to locations was random each time. ε -greedy
proportional selection was used to determine which
facility from the set of not-yet-assigned facilities was to
be assigned to a given location. Generated solutions were
improved by a simple 1-Opt optimizer.

5 RESULTS

One of the interesting results regarding the usefulness of
this approach is the quality of the search as controlled by
the parameter λ, which controls the amount of replication.
To show this relationship, we use one of the ATSP
benchmarks (ftv44) and plot the average best value found
against λ. The results were averaged over 10 runs and
shown in Figure 2. The setting λ=0 corresponds to the
generation of an entire solution from scratch based on Q-
learning. As λ increases, the algorithm finds better
solutions, and optimal performance was found in the
range [0.75,0.95]. Further increases of λ lead to
stagnation of the search due to lowered variability. The
average number of function evaluations required to obtain
a tour with fitness 1650 or lower depending on the value
of λ is shown in Figure 3, curve 1. Furthermore, a low
value of λ resulted in increased computational effort to
reach a similar level of performance. As λ was increased,
the curve got almost flattened in the range [0.4, 0.85].
Further increase of λ resulted in a growing amount of
computational effort to reach similar performance.

Curve 2 in Figure 3 shows the average number of function
evaluations required to reach the optimum. The value of
λ=0.9, which corresponds on average to 4-5 modifications
in problem instances of this size, required the least
number of function evaluations to find the optimum each
time, out of ten runs. Additional research on a number of
different benchmarks is required to make general
conclusions about the optimal value of λ, but these graphs
show that generating an entire solution from scratch or
exhaustive replication results in a performance decrease.

The setup for experimental runs for the QAP and ATSP
were similar. The population consisted of 50 agents,
which is relatively small for GA, but was enough to
obtain good results with the approach presented. Roulette
wheel selection was used. The parameter λ was randomly
generated in range the [0.7,0.95] for each application of
RL crossover. A generation-based approach with a
crossover rate 0.1 was used. The learning, global/local,
discounting, and selection greediness parameters were in
ranges the [0.005,0.015] for α, [0.5,1.0] for β, [0.8,1.0]
for γ, and [0.4,0.95] for ε respectively. These ranges of
parameters were determined by a series of preliminary
experiments similar to those on the value of λ, (not
described). Each of the agents in the population was
assigned a combination of parameters in these ranges
during initialization. Thus there was a broad range of
agent types, based on random selection of the various
control parameters.

Results based on the average of 10 runs over each of the
benchmark problems from QAPLIB by Burkard et al.
(1997) and TSPLIB by Reinelt (1991) are given in the
Tables 1 and 2, respectively. Since the presented approach
has many features in common with AS and GA, those
approaches are used as a comparison. The columns AS
and GA+LS in Table 1 show the results obtained with AS
due to Maniezzo and Colorni (1998) and GA with local
search by Merz and Freisleben (1997a) respectively. In
ATSP, we compare the results obtained by pure AS by

Gambardella and Dorigo (1996), MAX-MIN AS with
local search (MMAS) due to Stützle and Hoos (1997) and
GA with local search (GA+LS) by Merz and Freisleben
(1997b).

The RL-agents approach achieves the same or better
results on all test problems in comparison to AS-based
algorithms. In comparison to GA+LS, the approach
presented showed results that were better on some
benchmarks and slightly worse on the others (of 15
problems, 8 better and 7 worse). It can be concluded that
the RL-agents approach and GA+LS were quite
competitive.

One of the remarkable features is the consistency of the
search: the presented algorithms found the optimum or
best-known solution in each of the 10 runs on all small
and moderate-sized instances. This is not the case with
GA+LS, which had a non-zero standard deviation of the
best-found solutions even on relatively simple QAP
benchmarks such as Nug30 or Kra30a. Unfortunately,
only a small number of benchmark results for GA+LS are
available, which precludes a more detailed comparison.

6 CONCLUSIONS AND FUTURE WORK

Our results are competitive with the other search
techniques which suggests that adapted RL algorithms
deserve more attention as a search paradigm. The
presented approach addresses the two major problems of
RL algorithms in application to optimization, namely, the
local character of search and coarse state representation.
It has been shown that these problems can be overcome to
obtain a global search technique capable of producing
good results.

There are still many issues to be addressed. One is to
show that RL algorithms provide a computationally
cheaper and more precise way of maintaining desirability
in comparison to GA and other search techniques, and if
so, under what conditions? There are many other

1590

1600

1610

1620

1630

1640

1650

1660

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

lambda

B
est f(x)

 1613 (Opt)

100

1000

10000

100000

1000000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.98

lambda

N
um

ber of function evalua
tions

1 2

Figure 2: Average best value in ftv44 depending λ Figure 3: The average number of evaluation
f ticomputations to reach the fitness 1650 (curve 1)
and optimum (curve 2) in ftv44 depending on λ

problems, such as the absence of natural ordering in QAP
and many other search problems, which can result in
complications when bootstrapping RL update rules are
used. The high space complexity of the Bayesian
approach (O(n4)) requires function approximation.
However, in spite of all these difficulties, the results are
very encouraging.

References

R. Sutton and A. Barto (1997). Reinforcement Learning:
An Introduction. MIT Press.
R. Bellman (1956). A Problem in Sequential Design of
Experiments”, Sakhuya, 16:221-229.
M. Dorigo (1992). Optimization, Learning and Natural
Algorithms. Ph.D.Thesis, Politecnico di Milano, Italy,
in Italian.
M.Dorigo, V. Maniezzo, and A. Colorni (1996). The Ant
System: Optimization by a Colony of Cooperating
Agents, IEEE Transactions on Systems, Man, and
Cybernetics-Part B, 26 (1):29-41, IEEE Press.
L. Gambardella and M. Dorigo (1995). Ant-Q: A
Reinforcement Learning Approach to the Traveling
Salesman Problem. In Proc. 12th Int. Conf. on Machine
Learning, 252-260, Morgan Kaufmann.
C. Watkins, P. Dayan (1992). Q-learning. Machine
Learning, 8:279-292, Kluwer Academic Publishers.
R. Crites and A. Barto (1996). Improving Elevator
Performance using Reinforcement Learning, Advances in
Neural Information Processing Systems: Proc. of the
1999 Conf., 1017-1023, MIT Press.
W. Zhang and T. Dietterich (1996). High Performance
Job-Shop Scheduling with a Time-delay TD(λ) Network.
In Proc. of Advances in Neural Information Processing
Systems, 1024-1030, MIT Press,
S. Singh and D. Bertsekas (1996). Reinforcement
Learning for Dynamic Channel Allocation in Cellular
Telephone Systems. In Proc. of Advances in Neural
Information Processing Systems, 974-980, MIT Press.

J. Holland (1975). Adaptation in Natural and Artificial
Systems. University of Michican Press.
J. Grefenstette et al (1985). Genetic algorithms for the
traveling salesman problem. In Proc. of 1st Int. Conf. of
Genetic Algorithms and their applications,160-165,
Lawrence Erlbaum Associates Publishers.
J. Boyan, and A. Moore (1998). "Learning Evaluation
Functions for Global Optimization and Boolean
Satisfiability", Fifteenth National Conference on Artificial
Intelligence, AAAI.
V. Miagkikh and W. Punch (1999). “Global Search in
Combinatorial Optimization using Reinforcement
Learning Algorithms”, To appear in Proc. of 1999
Congress on Evolutionary Computations.
R. Burkard, S. Karisch, F. Rendl (1997). QAPLIB - A
Quadratic Assignment Problem Library. Journal of
Global Optimization, 10:391-403.
G. Reinelt (1991). TSPLIB-A Traveling Salesman
Problem Library. ORSA Journal on Computing, 3(4):
376-384.
V. Maniezzo and A. Colorni (1998). The Ant System
Applied to the Quadratic Assignment Problem. To appear
in IEEE transactions on Knowledge and Data
Engineering.
P. Merz and B. Freisleben (1997a). A Genetic Local
Search Approach to the Quadratic Assignment Problem.
In Proc. of the 7th Int. Conf. on GA (ICGA’97), 465-472,
Morgan Kaufmann.
L.Gambardella and M. Dorigo (1996). Solving Symmetric
and Asymmetric TSPs by Ant Colonies. in Proc. of IEEE
Conf. on Evolutionary Computation, 622-627, IEEE
Press.
T. Stützle and H. Hoos (1997). MAX-MIN Ant System
and Local Search for the Traveling Salesman Problem. In
Proc. of 1997 IEEE 4th Int. Conf. On Evolutionary
Computation, 308-313, IEEE Press.
P. Merz and B. Freisleben (1997b). Genetic Local Search
for the TSP: New Results. In Proc. of the 1997 IEEE Int.
Conf. on Evolutionary Computation, 159-164, IEEE
Press.

Appendix

Table 1: Results on QAPLIB by Burkard et al. (1997).

The meaning of the columns is as follows: Benchmark – the name of the benchmark; Opt./BKS. – optimal or best known solution for
this problem; Best – the best result found by the population of RL agents in 10 runs; Average – average among the best solutions
found in 10 runs; Std. Dev. – standard deviation of the distribution of the values of the best solutions found; NFE – average number of
the function evaluations to find the best solution; AS - the fitness of the best solution obtained by the AS by Maniezzo and Colorni
(1998); GA+LS the average fitness of solution obtained by GA with local search as described in P. Merz, B. Freisleben (1997a). The
best solution among the three techniques is bolded.

Benchmark Opt./BKS. Best Average Std. Dev. NFE AS GA+LS
Bur26a 5426670 5426670 5426670 0.0 26187 5426670 N/A
Bur26b 3817852 3817852 3817852 0.0 44086 3817852 N/A
Bur26c 5426795 5426795 5426795 0.0 41360 5426795 N/A
Bur26d 3821225 3821225 3821225 0.0 30020 3821225 N/A
Bur26e 5386879 5386879 5386879 0.0 55209 5386879 N/A

Benchmark Opt./BKS. Best Average Std. Dev. NFE AS GA+LS
Bur26f 3782044 3782044 3782044 0.0 16630 3782044 N/A
Bur26g 10117172 10117172 10117172 0.0 59161 10117172 N/A
Chr20a 2192 2192 2192 0.0 304419 2192 N/A
Chr20b 2298 2298 2298 0.0 628084 2362 N/A
Chr20c 14142 14142 14142 0.0 35636 14142 N/A
Chr22a 6156 6156 6156 0.0 299388 6156 N/A
Chr22b 6194 6194 6194 0.0 416755 6254 N/A
Els19 17212548 17212548 17212548 0.0 8375 N/A N/A
Esc32a 130 130 130 0.0 264 130 N/A
Esc32b 168 168 168 0.0 264 168 N/A
Esc32c 642 642 642 0.0 264 642 N/A
Kra30a 88900 88900 88900 0.0 70563 88900 N/A
Kra30b 91420 91420 91420 0.0 524071 91420 N/A
Lipa20a 3683 3683 3683 0.0 6716 3683 N/A
Lipa30a 13178 13178 13178 0.0 39671 13178 N/A
Nug20 2570 2570 2570 0.0 17524 2570 N/A
Nug30 6124 6124 6124 0.0 488602 6124 6125.6
Scr20 110030 110030 110030 0.0 61332 110030 N/A
Ste36a 9526 9526 9526 0.0 637048 9598 9535.6
Ste36b 15852 15852 15852 0.0 132011 15892 N/A
Ste36c 8239110 8239110 8239110 0.0 1239520 8265934 N/A
Sko42 15812 15812 15812 0.0 1352249 N/A N/A
Sko49 23386 23386 23397.8 6.21 3539170 N/A N/A
Sko56 34458 34458 34465.2 6.87 6180615 N/A N/A
Sko64 48498 48498 48513.8 13.11 5577520 N/A N/A
Sko72 66256 66324 66355.6 21.11 7702169 N/A N/A
Sko81 90998 91090 91186.8 43.34 2759429 N/A N/A
Sko90 115534 115782 115863.4 40.49 2517729 N/A N/A
Sko100a 152002 152250 152374.6 104.51 4925566 N/A 152253.0
Tai60a 7208572 7299714 7305455 6818.07 5937914 N/A 7309143.4
Tai60b 608215054 608215054 608283498 76833.33 5783030 N/A 608215040.0
Tail100a 21125314 21452028 21505981.8 27060.3 7516822 N/A 21372797.6
Tail100b 1185996137 1186007112 1187068525 998793.5 4328802 N/A 1188197862.44
Tai150b 498896643 501198597 502255500.1 704186.2 2547670 N/A 502200800.0
Tai256c 44759294 44830390 44838185.14 8639.366 68935793 N/A 44839138.3
Tho30 149936 149936 149936 0.0 2951608 149936 N/A
Tho40 240516 240516 240516 0.0 3754472 242108 N/A
Tho150 8134030 8166808 8170678 8149.168 9476401 N/A 8160088.0

Table 2: Results on TSPLIB by Reinelt (1991).
The meaning of the columns as follows: Benchmark – the name of the benchmark; Opt./BKS. – optimal or best known solution for
this problem; Best – the best result found by the presented algorithm in 10 runs; Average – average among the best solutions found in
10 runs; Std. Dev. – standard deviation of the distribution of the values of the best solutions found; NFE – average number of the
function evaluations to find the best solution; AS - the average fitness of the best solution obtained by the AS in Gambardella and
Dorigo (1996); MMAS - the average fitness of the best solution found by MAX-MIN AS described in T. Stützle, H. Hoos (1997);
GA+LS the average fitness of solution obtained by GA with local search by P. Merz, B. Freisleben (1997b). The best solution among
the three techniques is bolded. The only available result for Ant-Q by L. Gambardella, M. Dorigo (1995) on the problems from
TSPLIB is the ry48p benchmark. Average: 14690, best: 14422.

Benchmark Opt./BKS. Best Average Std. Dev. NFE AS MMAS GA+LS
Ft53 6905 6905 6905 0.0 101181 N/A N/A N/A
Ft70 38673 38673 38674.0 8.50 10443706 39099.1 38707 38674.2
Ftv44 1613 1613 1613 0.0 971701 N/A N/A N/A
Ftv47 1776 1776 1776 0.0 52792 N/A N/A N/A
Ftv55 1608 1608 1608 0.0 91670 N/A N/A N/A
Ftv64 1839 1839 1839 0.0 51421 N/A N/A N/A
Ftv70 1950 1950 1950 0.0 148583 N/A N/A N/A
Ftv170 2755 2810 2824.7 16.13 6830936 2826.5 2807 2762.2
Kro124p 36230 36230 36263.3 59.78 7934886 36857.0 36655 36231.5
P43 5620 5620 5620 0.0 79676 N/A 5623.8 5620.1
Rbg323 1326 1342 1350.4 5.68 3117520 N/A N/A N/A
Rbg358 1163 1181 1190.5 5.81 3182564 N/A N/A N/A
Rbg403 2465 2465 2466.3 1.86 10536418 N/A N/A N/A
Rbg443 2720 2720 2722.8 3.55 12116328 N/A N/A N/A
Ry48p 14422 14422 14422 0.0 51947 14565.45 14494 14451.2

