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Abstract

The e�ect of genetic operators other than
selection, such as mutation and recombi-
nation, on the genotype-phenotype map is
considered. In particular, when the geno-
typic �tness landscape exhibits a \symme-
try", i.e. many genotypes corresponding to
the same phenotype have equal �tness val-
ues, it is shown that such operators can
break this symmetry. The consequences of
this \induced symmetry breaking" are inves-
tigated. Speci�cally, it is shown that it gener-
ically leads to an increase in order or self-
organization in the system and to the phe-
nomenon of orthogenesis. Additionally, it
is shown that it potentially leads to a more
robust evolution circumventing some of the
problems of brittleness. The above points are
supported by explicit, analytic results asso-
ciated with some simple one and two-locus
models and also by some much more compli-
cated numerical simulations.

1 Introduction

Modulo the debate over the competing roles of selec-
tion and mutation the Darwinian concept of natural
selection has stood alone for nearly a century and a
half as the principle source of order in the natural
world. More recently another paradigm has been pre-
sented [1] which draws for inspiration on the emer-
gence of order in the physical rather than the biolog-
ical world. Simply put: is order a consequence of the
adaptive changes that take place in a system due to the
e�ect of its environment, or does order appear \spon-
taneously", irrespective of any inherent selection? As
in the selectionist/neutralist debate the correct answer
is that order will appear both spontaneously and due

to selection. However, for which systems one predom-
inates over the other is a much more vexed question.

Traditionally, the tendency has been to view selection
as an ordering agent and mutation and recombination
as \disordering" e�ects. The Neutral theory [2], for
instance, in its traditional guise makes no statement
about any adaptive value of genetic drift, though oth-
ers [3, 4, 5] have raised the issue of whether or not
adaptive evolution can bene�t from neutral evolution.
Thus, genetic operators other than selection have gen-
erally been discounted as potential sources of order.
Here, I am de�ning a genetic operator to be any op-
eration H such that P (t+ 1) = HP (t), where P (t) is
the population at time t.

In this short paper I will attempt to put other op-
erators, such as mutation and recombination, onto a
more democratic footing vis a vis selection. by present-
ing and discussing a third alternative for explaining
the origin of order in biological systems that also has
its origin in physics | \induced symmetry breaking".
The \symmetry" here referred to is that inherent in
the genotype-phenotype map when it is many-to-one,
i.e. many genotypes correspond to the same pheno-
typic �tness value. It is of course not new to empha-
size the importance of the genotype-phenotype map
in Darwinian evolution, see for instance [6, 7], how-
ever it is new to show how this map may self-organize
and provide a qualitative and quantitative framework
within which this can be understood. In particular, we
will see how and under what circumstances the phe-
nomenon of orthogenesis may come about.

In section 2 I will introduce the concepts of order, sym-
metry and symmetry breaking. In section 3 I will give
analytic examples of induced symmetry breaking in
the context of some simple one and two-locus models.
In section 4 I will brie
y discuss some results found in
some much more non-trivial models and in section 5 I
will make some conclusions.



2 Order, Symmetry and Symmetry

Breaking

I will not go into detail about a precise de�nition of
\order". For the purposes of this paper its most salient
characteristic is the following: that for a dynamical
system with state space G of dimension DG for late
times the system occupies a subspace U � G of di-
mension DU � DG. Thus, the more ordered a system
is the smaller the subspace into which it dynamically
evolves.

Intuitively, it is clear that selection will induce order
in this sense. For example, in the presence of pure se-
lection an entire population will eventually order itself
around the optimum present in the initial population.
The dynamical attractor in this case is typically of di-
mension zero. In the presence of mutation, such as in
the Eigen model [8], the quasi-species represents the
dynamical attractor. i.e. if one starts with a disor-
dered random state then the e�ect of selection is to
arrive at a more ordered state | the quasi-species.
As is well known, however, for a large class of �tness
landscapes there exists a critical mutation rate above
which there is no dynamical reduction onto a smaller
dimension attractor, i.e. selection has its limits.

However, we must �rst ask what does selection mean?
Selection can be most precisely thought of in terms of
�tness and the corresponding notion of a �tness land-
scape [9]. Fitness, fQ :�! R+, is most naturally de-
�ned on the space of phenotypes, Q. In conjunction
with the genotype-phenotype map, � : G �! Q, where
G is the space of genotypes, one may de�ne an induced
�tness function on the space of genotypes, fG = fQÆ�.
As the genotype-phenotype map is more often than
not non-injective (many-to-one) the function fG will
be degenerate, many genotypes corresponding to the
same �tness value. Thus, �tness de�nes an equivalence
relation on G, many genotypes being equivalent selec-
tively. A simple example of this would be the stan-
dard synonym \symmetry" of the genetic code. I will
therefore refer to the equivalence of a set of genotypes
under the action of selection (i.e. they're all equally
�t) as a symmetry. Obviously, by de�nition, selection
preserves this symmetry. One can see this explicitly,
assuming proportional selection as a concrete exam-
ple, from the evolution equation for the probability of
�nding a genotype Ci

P (Ci; t+ 1) =
f(Ci)
�f(t)

P (Ci; t) (1)

where �f(t) is the average population �tness. Consider-
ing the same equation for a genotype Cj , where Ci and
Cj both correspond to the same phenotype and there-

fore f(Ci) = f(Cj), one sees that P (Ci; t)=P (Cj ; t) =
constant; 8t. We can in fact take this to be the de�n-
ing characteristic of the symmetry: that for Cg � G
where �(Cg) = Cq , Cq being a given phenotype,
P (Ci; t)=P (Cj ; t) = constant; 8t; and 8 Ci; Cj 2 Cg .

How may this symmetry be broken? In a �nite gene
pool the symmetry will be broken spontaneously by
stochastic e�ects. This can be understood in several
ways, e.g. via the theory of branching processes [10]
or using Kimura's difusion approximation [2]. To lend
a term from physics, such \spontaneous symmetry
breaking" lies at the heart of Kau�man's ideas about
the origin of order. Thus, even in the absence of selec-
tion a system can dynamically evolve to a smaller sub-
space, i.e. spontaneous symmetry breaking can lead to
an increase in order.

I will now turn to another form of symmetry breaking
by considering the e�ect of the other genetic operators
besides selection de�ning

P (Ci; t+ 1) =

H(ff(Cj)g; fpkg; fP (Cj ; t)g; t)P (Ci; t) (2)

where H is an operator that depends on the �tness
landscape, ff(Cj)g, the probabilities, fpkg, to imple-
ment the various genetic operators and on the pop-
ulation composition fP (Cj ; t)g. I assume that one
can write H � Hs + Ho, where Hs is the part of
the evolution operator associated with pure selection
and Ho contains the e�ect of the other genetic op-
erators. The landscape symmetry will thus be pre-
served by the action of the other genetic operators if
HoP (Ci; t) = HoP (Cj ; t) 8t; and 8Ci; Cj 2 Cg . If this
condition is not satis�ed we will say that the symmetry
has been broken by the action of the other genetic op-
erators; instead of a spontaneous symmetry breaking
there is an \induced" symmetry breaking.

As a quantitative measure of this symmetry breaking
we will use the concept of \e�ective" �tness, de�ned
via [11, 12]

P (Ci; t+ 1) =
feff(Ci; t)

�f(t)
P (Ci; t) (3)

One may think of the e�ective �tness as represent-
ing the e�ect of all genetic operators in a single \se-
lection" factor. Hence, if only pure selection was al-
lowed feff(Ci; t) would represent the �tness value at
time t required to increase or decrease P (Ci; t) by
the same amount as an evolution involving all the
genetic operators and with selective �tness f(Ci). If
feff(Ci; t) > f(Ci; t) then the e�ect of the genetic op-
erators other than selection is to enhance the number
present of genotype Ci relative to the number found



in the absence of those operators. The converse is true
when feff(Ci; t) < f(Ci; t).

3 Analytic Examples of Induced

Symmetry Breaking

We will now illustrate the phenomenon of induced
symmetry breaking in some very simple examples of
one and two-locus systems. Consider a single ge-
netic locus with two alleles, 0 and 1 which have the
same �tness value, f . In the absence of mutations
feff(Ci; t) = f(Ci; t) = f; 8i = 0; 1 \Synonym" sym-
metry here is manifest in the fact that in the in�nite
population case �P (t) = P (1; t)�P (0; t) is constant in
time. Thus, any initial deviations from homogeneity in
the initial population will be preserved. For non-zero
mutation rate, any initial inhomogeneity will be elim-
inated by the e�ect of mutations. i.e. if �P (t) > 0
one will �nd that feff(0; t) > feff(1; t) 8t until the de-
viation is eliminated. Hence, one sees that the e�ect
of mutations is to break the landscape symmetry be-
tween alleles 0 and 1. This mutation induced symme-
try breaking brings the system into \equilibrium", i.e.
into the homogeneous population state. During this
approach to equilibrium the less numerous allele, 0, is
\selected" more than the allele 1 in that it leaves more
o�spring. If the mutation rates for changing allele 1
to allele 0 and for changing allele 0 to allele 1 are not
equal, but are p1 and p2 respectively, then the induced
symmetry breaking is even more pronounced as can be
seen by

�P (t+ 1) = (1� 2p2)�P (t) + (p1 � p2)P (0; t) (4)

In this case limt!1�P (t)! ((p1 � p2)=(p1 + p2))

Now consider a two-loci system, once again with two
alleles, 0 and 1, evolving with respect to selection and
mutation. The �tness landscape we will take to be:
f(00) = f(01) = 1, f(11) = 10, f(10) = 0:1. The
�tness landscape in this case is only partially degener-
ate: the states 00 and 01 having the same �tness value.
However, although the �tness values are the same
the e�ective �tness values are di�erent: feff(00; 0) =
(1� 0:9p+9:9p2), feff(01; 0) = (1+ 9p� 9:9p2), where
p is the mutation rate and initial proportions of all
four states are equal at t = 0. Here, the synonym
symmetry is being broken due to the fact that the �t
chromosome 11 can more easily mutate (for p < 0:5)
to the chromosome 01. Therefore, there is a popula-
tion 
ow away from 00 to 01 even though there is zero
�tness gradient to cause it. Thus, we see a tendency
for the system to evolve along a preferred direction
not because of selection constraints but because the
system has preferred directions of change in the face

of random mutations. This is the phenomenon of or-
thogenesis and is simply a result of induced symmetry
breaking and is quantitatively measured by the e�ec-
tive �tness function.

Naturally this phenomenon encourages one to ask just
when neutral evolution is actually \neutral". In the
above case it is not neutral to the presence of non-
neutral adjacent mutants. The idea that neutral evo-
lution can facilitate adaptive evolution is not new
[3, 4, 5], however a clear, well de�ned framework
within which this can be understood, induced sym-
metry breaking and the concept of e�ective �tness, is.
In fact, it is clear that neutral evolution precisely leads
to adaptive evolution when the e�ective �tness land-
scape is non-
at. For a 
at �tness landscape where all
strings have �tness f

feff(Ci; t) = f

2
N
�1X

j=1

P (Cj ; t)

P (Ci; t)
pdij (1� p)N�dij (5)

where dij is the Hamming distance between the strings
Ci and Cj . For a homogeneous population the num-
ber of states Hamming distance dij from Ci is

NCdij

thus feff(Cj ; t) = f 8Cj ; t. Thus, under these circum-
stances the e�ective �tness landscape is as 
at as the
normal one and there is no symmetry breaking. Small
deviations from homogeneity will be manifest in small
corrugations of the e�ective �tness landscape which
will gradually diminish as the population homogenizes.
If the landscape only has a 
at subspace then how
well one can describe the population evolution as be-
ing neutral will depend on where the population is
located and, if located predominantly in the 
at sub-
space, what is the Hamming distance to states not
within the subspace and what is the �tness of those
states. Pictorially, if one thinks of a bowl with a 
at
bottom then the sides of the bowl with the largest gra-
dient will attract the population most strongly.

Above I considered only mutation as a source of in-
duced symmetry breaking. Similar considerations ap-
ply also to recombination. For the two-locus system
mentioned above feff(00; 0) = (1 � (9:9pc=12:1)) and
feff(01; 0) = (1 + (9:9pc=12:1)) where pc is the recom-
bination probability. Thus, once again we see the land-
scape symmetry broken by the e�ects of another ge-
netic operator. A simple, but striking example of in-
duced symmetry breaking can be seen with the land-
scape of the well known counting ones, or unitation
problem. A population of 5000 8-bit strings was con-
sidered. Figure 1 is a plot of M(l) versus time where
M(l) � (nopt(l)� nopt(8))=nopt(8). Here, nopt(l) is the
number of optimal 2-schemata of de�ning length l nor-
malized by the total number of length l 2-schemata



per string, i.e. 9� l. By optimal 2-schemata we mean
schemata containing the global optimum 11. nopt(8) is
the number of optimal 2-schemata of de�ning length
8. Figure 1 is with pc = 1. Averages over 30 di�erent
runs are shown. In terms of �tness there is absolutely
no preference for one size of optimal two-schema versus
another, however, recombination breaks this symme-
try in a very dramatic fashion giving a preference for
long rather than short schemata.
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Figure 1: Graph of M(l) versus t in unitation model
with pc = 1.

4 Numerical Examples

In the previous section I used some very simple
tractable models to illustrate the phenomenon of in-
duced symmetry breaking. In this section I will
present some more non-trivial examples. For more de-
tails I refer the reader to the original articles.

i) Self-Adaptation: It is well known that mutation
and recombination rates are not uniform throughout
a structure such as a protein. One may well wonder
why certain values are found rather than others and if
or not there is any adaptive value in it. In fact, in the
case of the HIV virus it can be shown that preference
for non-synonymous mutations in the neutralization
epitope of the virus is directly due to an induced sym-
metry breaking [13].

Normally one thinks of the mutation and recombi-
nation rates as exogeneous parameters. However, if
one considers a system where they are coded in the
chromosome, but are not directly selected for, then
one has a completely autonomous system wherein one
may examine whether the mutation and recombina-

tion rates across the population exhibit any degree of
self-organization. More explicitly, coding the two rates
into an Nc-bit extension of a chromosome of length N
which represents a non-degenerate �tness landscape
leads to a new one which has a degree of degeneracy
of 2Nc , i.e. the phenotype-genotype map is 2Nc fold
degenerate. In practice, starting o� with a random
population where the average rates are 0:5 one �nds
that the population in a class of interesting landscapes
self-organizes until preferred mutation and recombina-
tion rates appear [14]. It is important to emphasize
that such self-organization cannot come about as a
consequence of selection, as by construction mutation
and recombination rates are not selected for. However,
the genetic operators of mutation and recombination
themselves break the symmetry. The e�ective �tness
measures the strength of this induced symmetry break-
ing is.

As a speci�c example, consider a time dependent land-
scape de�ned on 6-bit chromosomes that code the in-
tegers between 0 and 63, where the initial landscape
has a global optimum situated at 10 and 11 and a lo-
cal optimum at 40 and 41. However, after 60% of the
population reaches the global optimum the landscape
is suddenly changed to a new landscape wherein the
original global optimum is now only a local optimum.
The original local optimum at 40 and 41 remains the
same but with a higher �tness value than the new local
optimum at 10 and 11 and furthermore a new global
optimum appears at 63. I will denote this landscape
the \jumper" landscape. Figure 2 shows the results of
an experiment where the mutation and crossover prob-
abilities were coded in the chromosomes, either with
three or eight bits to codify each probability. Tourna-
ment selection of size 5 was used and a lower bound of
0:005 for mutation imposed. The success of the self-
adapting system in converging to the time dependent
global optimum was compared to that of an \optimal"
�xed parameter system with p = 0:01 and pc = 0:8.

The upper curves show the relative frequencies of the
optima using 8-bit and 3-bit codi�cation and also what
happens when pc = 0 and only the mutation rate is
coded. There are several notable features: �rst of all,
the optimal �xed parameter system was incapable of
�nding the new optimum whereas the coded system
had no such problem. For the case pc = 0 the curve
40; 41 shows the relative frequency of the strings asso-
ciated with the optimum at 40 and 41. Before the land-
scape \jump" this optimum is local being less �t than
the global optimum at 10 and 11. After the \jump"
it is �tter but less �t than the new global optimum 63
which is an isolated point.
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Figure 2: Graph of relative concentration of the global
optimum (CR) (upper graph) and average crossover
and mutation probabilities (lower graph) as a func-
tion of time for the \jumper" landscape. CR-3b and
CR-8b are the results for 3-bit and 8-bit encoded al-
gorithms. CR-Mut8b is the result for coded mutation
with pc = 0, with 40; 41 being the relative concentra-
tion of strings associated with the local optimum at
40 and 41. Mut 3b, Mut 8b, Cross 3b and Cross 8b
are the average mutation and crossover probabilities
in 3-bit and 8-bit representations. The solid line for
Mut8b is the average mutation rate in the case pc = 0.

One thus sees that the global optimum was found in
a two-step process after the landscape change. First
the strings started �nding the optima 40, 41 before
moving onto the true global optimum, 63. Immedi-
ately after the jump the e�ective population of the
new global optimum is essentially zero. The number
of strings associated with 40 and 41 �rst starts to grow
substantially at the expense of 10 and 11 strings. At its
maximum the number of optimum strings is still very
low, however, very soon thereafter the algorithm man-
ages to �nd the optimum string which then increases
very rapidly at the expense of the rest. The striking
result here can be seen by comparing the changes in
the relative frequencies with the changes in the average
mutation rate, especially in the case pc = 0. Clearly
they are highly correlated. First, while the population
is ordering itself around the original optimum, there
is an e�ective selection against high mutation rates as
one can see by the steady decay of the average muta-
tion rate. After the jump there is a noticeable increase
in the mutation probability as the system now has to
try to �nd �tter strings. As the global optimum is
an isolated state it is much easier to �nd �t strings
associated with 41 and 40. The population is now

concentrated on this local optimum and starts to cool
down again only to �nd that this is not the global op-
timum, whereupon the system heats up again to aid
the removal of the population to the true global opti-
mum. It is clear that there is a small delay between
the population changes and changes in the mutation
rate. This is only to be expected given that there is
no direct selective advantage in a given generation for
a particular mutation rate. The selective advantage
of a more mutable genotype over a less mutable one
can only come about via a feedback mechanism. It
is precisly this feedback process that is described and
measured by the e�ective �tness function.

The average mutation rate also grows due to another
e�ect which is that the new optimum is more likely to
be reached by strings with high mutation rates which
then grow strongly due to their selective advantage.
Thus, high p strings will naturally dominate the early
evolution of the global optimum. After �nding the op-
timum however it will become disadvantageous to have
a high mutation rate hence low mutation strings will
begin to dominate. Induced symmetry breaking here is
once again manifest in a most striking way. Although
there is no direct selective bene�t to di�erently coded
strings their ability to produce o�spring that can adapt
to the changing landscape is very di�erent.

ii) Neuro-genetic models: In this case an analysis was
made [15] of the population dynamics of a variant
of Kitano's neurogenetic model [16, 17] wherein the
chromosome encodes the rules for cellular division and
the phenotype is a 16-cell organism interpreted as a
connectivity matrix for a feedforward neural network.
Speci�cally, an arti�cial ecological environment was
studied which consists of a single species composed of
neural networks as individuals. Every chromosome, or
genotype, is used to produce a particular architecture
for a feedforward NN that consists of 12 input neu-
rons, 4 hidden and 1 output neuron | the phenotype.
A genetic algorithm is then applied to the chromo-
somes present in the population at each epoch which
induces a search of the connectivity matrix space de-
termined by the structure of the NN. Environmental
e�ects are included in the �tness function that mea-
sures the learning capacity of a particular individual.

A chromosome consists of eight blocks of four genes
each one of which is a three bit structure. The blocks
themselves are labelled from a to h. The reproduction
process always begins with block a. Thus the �rst four
genes have a priviliged role as they label the cells that
are going to be reproduced in the second step of re-
production. As an example consider the chromosome
baea.dcaa.defa.becd.aaea.aafh.haec.fgaa. The two step



reproduction process speci�ed by this chromosome can
be written

a �!

�
b a
e a

�
�!

0
B@
d c b a
a a e a
a a b a
e a e a

1
CA

$

0
B@
0 1 1 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0

1
CA (6)

Thus the �rst block, baea, codes for the division of the
original cell a into four cells. The �rst of these cells,
b, then divides into four more which form the upper
left quadrant, dcaa, of the matrix. The second cell, a,
maps block a of the chromosome into the upper right
quadrant etc. Finally, one constructs the connectivity
matrix by reading left to right, row by row. Thus a 1
speci�es a connection between an input neuron and a
hidden neuron and a 0 its absence.

The genotype-phenotype map in this case is highly
degnerate. For example, in the above we can change
blocks c, e, f, g and h without changing the resulting
phenotype. It is also a non-local function on the chro-
mosomes since entries of block number one can target
any one of the other blocks irrespective of their dis-
tance. To de�ne a �tness function the learning speed
of the NNs on a given test function was measured

yc =
�

3
(x1 + x2 + x3) + (1� �)X

where � is a noise control parameter and X is a ran-
domly generated number. A genetic algorithm was
used to search the space of network architectures for
the one capable of learning this function with the
smallest number of attempts. Given the highly de-
generate nature of the genotype-phenotype map one
might expect to see an optimum phenotype emerge
corresponding to a random distribution of correspond-
ing genotypes. However, this was not the case |
certain genotypes were consistently preferred thus in-
dicating that the genotype-phenotype symmetry was
broken. The reason for this is that although degen-
erate genotypes were equivalent selectively the other
genetic operators, mutation and recombination, broke
the symmetry picking out those genotypes best able to
withstand the e�ects of mutation and recombination,
i.e. those that were most likely to lead to other \�t"
neural networks. Remarkably, it was found that the
induced symmetry breaking in this context could be
described in terms of the emergence of an \algorith-
mic language" [15].

iii) Gira�e necks [18]: This model consists of a popula-
tion of one thousand genotypes subject to random mu-

tations. A genotype is a cellular automata with binary
elements which gives rise to a gira�e neck size, i.e. a
phenotype, given by the number of automata elements
that are \switched on" at the �xed point (steady state)
of the automata dynamics. As there are many di�er-
ent automata that can evolve to the same �xed point
the genotype-phenotype mapping is highly degenerate.
One \master" gene in particular plays a special role as
it governs the way in which the Boolean rules used in
the evolution mutate.

Each member of the population is selected for the next
generation with probability Pi = fi=

P
j fj , where fi

is the �tness of phenotype i. Initially, there are ample
resources available from both small and large trees,
the only selective criterion being that gira�es prefer
to choose a mate among those that have similar neck
size. This \social pressure" landscape is modelled by
de�ning the �tness of the ith gira�e to be a function
of its neck size ni and the average neck size of the pop-
ulation, hni, with value one if hni � Æ < ni < hni + Æ
and zero otherwise. Here, Æ > 0 is a tolerance win-
dow. Note that landscape �tness depends only on neck
size, hence all genotypes that correspond to the same
dynamical �xed point (phenotype) have the same �t-
ness. Thus there is no direct selective advantage for
one genotype versus another. To introduce time de-
pendence into the landscape one imposes a short pe-
riod of drought in which food begins to be available
only in taller and taller trees. This period is mimicked
by making fi = 1 if hni�Æ+� < ni < hni+Æ+�, where
� is a stress parameter, and zero otherwise. After this
drought the landscape is restored to its original state.

The \master" gene divides the population into two ge-
netic categories, type zero and type one, which can
mutate one into the other due to the e�ect of purely
random mutations that have a probability �, except
for the master gene which mutates at a rate �. Type
zero chromosomes, by nature of the dynamical evolu-
tion rules they are associated with, tend to give rise
to gira�e o�spring with shorter necks, whilst type one
chromosomes, when they are expressed, tend to lead
to gira�es with longer necks. Before the draught there
is a period in which type one is not expressed. After
a certain period of time it becomes expressed then af-
terwards the draught starts. The social pressure land-
scape implies there are two possible attractors: all type
one or all type zero. The e�ect of the drought is to
change between one and the other.

A typical experiment leads to the following results, the
general behaviour can be seen in Figure 3: In the initial
period of evolution, before the drought, average neck
size is short. After the drought arrives the average
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Figure 3: Graph of average gira�e neck size (in arbi-
trary units) as a function of time for a population of
1000 gira�es. The drought starts at generation 240
and lasts for 30 generations. Subsequent neck growth
lasts for another 1000 generations. The parameter val-
ues used were: � = 0:0025, � = 10�6, Æ = 2:0 and
� = 1:0.

neck size grows very quickly. After it ends it continues
to grow, albeit more slowly, for a substantial amount
of time until a steady state is reached. These results
can be explained quite simply: In the period before
the draught, and before expression, type one chromo-
somes increase due to the e�ect of neutral drift. After
expression they are e�ectively selected against due to
their tendency to produce gira�es with longer necks
that pass outside the tolerance threshold and there-
fore cannot reproduce. Thus, before the drought the
e�ective �tness of type one chromosomes is low. How-
ever, due to the e�ect of mutations type one chromo-
somes are not eliminated totally but constitute about
1�5% of the total population. After the draught starts
the e�ective �tness of type one chromosomes increases
substantially, given that they lead to gira�es of longer
necks. The result is that the population becomes dom-
inated by type one chromosomes, with a small fraction
of type zero remaining due to the e�ects of mutation.
After the end of the drought as type one chromosomes
tend to produce longer necks the average neck size in-
creases until a steady state is reached and it cannot
grow anymore.

In the gira�e model there is absolutely no direct selec-
tive di�erence between type one and type zero chro-
mosomes. The only advantage of one versus the other
is in how they produce well adapted o�spring, a quan-
titative measure of this being the e�ective �tness.

5 Conclusions

In this contribution I have tried to brie
y lay out the
case for induced symmetry breaking as an origin of or-
der in biological systems. Without doubt it exists, as
has been conclusively demonstrated. It is possible to
see it at work in simple analytic one and two locus pop-
ulation models, and also numerically in several much
more non-trivial examples of arti�cial life system as I
have brie
y touched upon here. The extent to which it
exists in real biological systems is a question for future
research. The chief diÆculty in applying these ideas
to the latter is that it is very diÆcult to assure one-
self that apparent selection for a particular genotype
is due to an e�ective selection, via a symmetry break-
ing e�ect, and not via some direct, yet unobserved,
selective factor. For this reason I believe it is well
worthwhile continuing with the examination of math-
ematical models of increasing complexity wherein one
may better control the �tness landscape and the na-
ture of the genotype-phenotype map, and also to con-
sider arti�cial life systems where there is much more
control over selective factors.

One might enquire as to why bother introducing the
concepts of e�ective �tness and induced symmetry
breaking. There are several reasons: �rst of all they
allow one in a quantitative sense to understand the
di�erent mechanisms by which order may arise in bi-
ological systems. Secondly, they provide a framework
within which neutral evolution and natural selection
can be understood as di�erent sides of the same coin,
and in particular under what circumstances neutral
mutations may lead to adaptive changes. Thirdly, in-
duced symmetry breaking may well lead to more ro-
bust adaptive systems. It is no good having an ex-
tremely �t phenotype if when subjected to mutation
at the genotypic level it typically mutates into an un�t
phenotype. Rather one requires that an organism not
only be �t but that it gives rise to �t o�spring which
in their turn give rise to �t o�spring etc. Induced
symmetry breaking can pick out precisely those evolu-
tionary pathways that possess this type of robustness
as is found in the neurogenetic model of section 4.

To what extent the di�erent possible sources of order
predominate will depend very much on the landscape
considered and is as open to debate as the standard
selectionist/neutralist argument. I believe that arti-
�cial life research can play an important role in this
debate by examining the generic properties of land-
scapes and populations that admit as dominant one
source of order versus another.
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