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Abstract

Animals released into unfamiliar environ-
ments will often engage in “roaming” be-
havior, apparently for exploratory purposes.
It is likely that this behavior constitutes a
“behavioral primitive” which can be used in
the construction of more complex behaviors.
This paper reports a series of experiments
in which a Genetic Algorithm is success-
fully used to “evolve” efficient exploration
strategies in a population of software simu-
lated Khepera robots, controlled by Artificial
Neural Networks. Robots based on simple
perceptrons with no hidden neurons outper-
formed those with more complex control net-
works. These robots tended however to adapt
to the specific environments where they had
evolved. More robust behavior was obtained
from robots where input from the external
environment was enriched with data from
cyclical “time sensors”. It is suggested that
control-networks based on this architecture
could become a useful component in more
complex systems.

1 INTRODUCTION

When a mouse is released into an unfamiliar environ-
ment it will “wander” or “roam” in an apparently ran-
dom fashion. If we track the animal’s path during
roaming we discover that the exploration is “efficient”
- the mouse rapidly covers a large proportion of the
available territory (Carr & Watson, 1908). Similar
behavior may in fact be found in a broad variety of
species (Gallistel, 1990). It seems very likely that the
function of this behavior is exploratory: “roaming”
or “wandering” enables the animal to learn about the
new environment, to locate sources of food or danger,
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to create an internal map of the terrain or to identify
landmarks which can be used in subsequent navigation
(Thinus-Blanc, 1996). Wandering may also be a low-
level building block used in the construction of more
complex behaviors. (e.g. reaching a target while per-
forming a “detour” around an obstacle (Corbacho &
Arbib, 1995)). An ability to explore unknown envi-
ronments could be useful for man-made autonomous
or semi-autonomous agents as well as for animals. A
robot engaged in planetary exploration could search
a terrain for interesting geological material without
waiting for commands from earth; a software agent
exploring the World Wide Web could automatically
decide which site to visit next. Investigation and sim-
ulation of animal exploration strategies is thus of en-
gineering as well as scientific interest.

The problem of how to efficiently explore an environ-
ment of unknown shape and configuration is computa-
tionally equivalent to the task of “filling” a polygon in
computer graphics. The problem can be easily solved
by the use of recursive techniques (e.g. “flood-fill”
or “boundary fill” algorithms). It should however be
noted that these algorithms require the computational
system to keep track of the areas it has already visited.
This approach is memory intensive. Cognitive science
models positing the existence of detailed topological
maps suffer from the same difficulty. Perhaps more se-
riously the sensory input available to robots or biolog-
ical organisms, operating in real-world environments,
may not be rich enough to generate high resolution
location information. It is interesting therefore to in-
vestigate the feasibility of efficient exploration without
the use of topological maps or similar representations.

2 RELATED WORK

“Wandering”and “roaming” by animals has been stud-
ied extensively by field biologists (Gallistel, 1990). Ex-
ploratory behavior has often been reported in labora-



tory experiments designed to explore more complex
forms of behavior (Carr & Watson, 1908). It seems
likely that “wandering” behavior is closely related to
foraging. According to “Optimal foraging theory” ani-
mals forage “efficiently”, maximizing benefits and min-
imizing costs (Stephens & Crebs, 1986). Other workers
in the field argue, on the other hand, that actual an-
imal behavior may often be severely sub-optimal, ow-
ing to cognitive limitations and poor perceptual input
(Gould & Lewontin 1979). The debate is an interest-
ing one with implications for general issues in theoret-
ical biology. To the knowledge of the authors there
have, however, been relatively few attempts, prior to
the work reported in this paper, to model the basic
computational mechanisms underlying this kind of be-
havior - perhaps considered too simple to deserve se-
rious attention.

The use of simulated robots to explore cognitive mech-
anisms in animals was first introduced (at a concep-
tual level) by V. Braitenberg (Braitenberg 1984). Ar-
bib (Arbib, 1987) has used simulated (hand-designed)
robots to investigate animal exploration based on vi-
sual clues. Dorigo and Colombetti (Dorigo & Colom-
betti, 1994) applied evolutionary techniques in the de-
sign of physical robots with the ability to perform
simple behavioral tasks (light approaching etc.). Wee
Kheng Leow (Kheng Leow, 1998) has used evolution-
ary techniques to investigate exploratory behavior on
simulated robots guided by smell

The general methodology used in our experiments is
inspired by the basic techniques developed by Nolfi,
Floreano, Miglino and Mondada. (Nolfi, Floreano et
al., 1994). The simulator software used in the exper-
iments was developed in previously published work
by Miglino, Lund and Nolfi (Miglino, Lund et al.,
1996). In this work the robot was trained to per-
form an obstacle-avoidance task. Other work based
on the same basic model has included the modelling
of other forms of obstacle avoidance (Nolfi, Miglino et
al., 1994) as well as a “garbage collection” task (Nolfi
& Parisi 1997) and detour behavior (Miglino, Denaro
et al., 1998).

“Wandering” behavior has been investigated by
Miglino, Nafasi and Taylor (Miglino, Nafasi et
al.,1995) who used techniques derived from evolution-
ary robotics to develop an ANN-controlled mobile

Lego robot trained to explore an open arena.

3 OBJECTIVES AND METHODS

The aim of our investigation was to find the simplest
possible computational mechanism capable of generat-

ing efficient exploratory behavior, if possible, without
resort to detailed tracking information or topological
maps. In order to achieve this goal we used a Genetic
Algorithm to evolve robots exhibiting the desired be-
havior.

The genetic algorithm operated on a population of 100
robots, simulated in software. The basic structure
and behavior of the robots was based on the Khep-
era robot, developed at E.P.F.L. Lausanne (Mondada,
Franzi et al., 1993).The simulator software was based
on careful measurement of the behavior of the physical
robot in real life environments (Miglino, Lund et al.,

1996).

Khepera has a circular shape with a diameter of 5.5
cm. The robot’s basic architecture is based on three
main components: a set of sensors, a motor apparatus
and a control network. In the experiments reported
here the input to the control network comes from 8 in-
frared proximity sensors, two of which are positioned
on the front of the robot, two on the back and two
on each side. Fach proximity sensor is sensitive to
obstacles with a range of 3 cm and has an angle of
vision of 20 degrees. Output values are computed as a
function of the position of the robot, using data matri-
ces collected from Khepera. In one experiment input
from the proximity sensors was enriched with input
from two “internal clocks” The activation value of a
time sensor at time t is computed using the following
algorithm:

IF (activation, < 1) THEN
actwation; = actiwation,_1 + k
ELSE
actwation; = 0

For the Khepera control network we used 2 different
time sensors with £ = 0.002, k£ = 0.004.

The motor apparatus consists of a left and a right
wheel driven by stepping motors which can move both
forwards and backwards. With both stepping motors
working at full speed the robot is capable of moving
10 em/cycle of computation. The Control Network
is an Artificial Neural Network (ANN) whose input
neurons represent the state of the sensors and whose
output neurons control the stepping motors. Neuron
activation levels are a logistic function of total input to
the neuron including input from a permanently active
bias neuron.

In our experiments we tested three different net-
work topologies: a fully connected perceptron (Min-
sky & Pappert 1988) with eight infrared sensors
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Figure 1: Fully connected perceptron
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Figure 2: Perceptron with time sensors

(see Figure 1 ), a second fully connected perceptron
with 8 infrared sensors and two internal clocks (Figure
2) and a fully-connected 3 layer feed-forward network
with 5 hidden neurons (Figure 3).

Evolution involved “mutations” in the strengths of the
connections linking the output neurons to the input
and bias neurons. The genome of the organism con-
sisted of a sequence of binary coded numbers (8 bits
per number) representing the strengths of individual
connections.

In our experiments we evolved efficient exploration
strategies by applying artificial selection to the pop-
ulation of control networks. In the initial population
connection strengths for individual networks were set
to random real values uniformly distributed between
-1 and 1. Each robot was placed in an “open field
box” (a square or rectangular terrain surrounded by a
“fence”). Robots were tested four times in a rectangu-
lar 90cm by 40 ¢m box and four times in a square 60
cm by 60 ¢cm box. On each test the robot started with
a randomly chosen position and orientation. For mea-
surement, purposes the terrain was divided into square
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Figure 3: Perceptron with hidden units

10 ¢cm by 10 cm cells. Each test consisted of 1,000
cycles of computation. Efficiency of exploration was
measured by a fitness function which rewarded com-
pleteness and speed of exploration.

fit = ncells + (nCycles — cyclesToCompletion)
Where:
fit is the fitness attributed to the robot

nCells is the number of different cells touched by the
robot during exploraiton

nCycles is the duration of the exploration (in cycles)
and

cyclesToCompletion is the number of cycles tra-
versed before the robot has touched every cell in
the box. (If the robot never touches all the cells
cyclesToCompletion is assigned the same value as
nCycles.)

It will be noted that the fitness function used is addi-
tive rather than multiplicative - this ensures that any
increase in the number of cells traversed during explo-
ration will translate into improved fitness even if the
robot does not succeed in visiting all the cells in the
box.

When all robots had been tested the 20 robots with
the highest fitness scores (summed over the eight tests)
were selected for “reproduction”. Each of the selected
robots produced 5 offspring. Reproduction was asex-
ual. During the cloning process “mutations” were in-
troduced by flipping bits in the genome with a proba-
bility of 0.04 per bit per generation. This process was
iterated for 100 generations by which time no further
improvements in fitness were observed.

In order to guarantee the statistical robustness of our
results each simulation was repeated five times using



a different random number seed on each occasion.

Finally, the robots produced in each of the simulations
were tested in a new environment (a 120 cm by 90 cm
box) which they had not encountered during the evo-
lutionary process. This test made it possible to mea-
sure the robustness of evolved network configurations
with respect to changes in the shape of the environ-
ment to be explored. As in previous tests each robot
was tested from 4 different starting positions. Given
the larger size of the new environment the number of
computation cycles was increased to 3,000.

4 RESULTS

4.1 OVERALL FITNESS RESULTS
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Figure 4: Mean fitness on last generation

Figure 4 shows the mean levels of fitness (over the
five simulations) achieved by individuals in the last
generation tested. Data is presented for the whole
population, the population of individuals selected for
reproduction and the best individual in the popula-
tion. Analysis of variance shows that for each of
these groupings the architecture with hidden neurons
- the most complex of those tested - achieved signifi-
cantly lower levels of fitness than the combined results
for perceptron and time sensor architectures (Popula-
tionF (1498,1)=4.89, p<0.05; Selected:F(298,1)=4.35,
p<0.05; Best:F(73,1)=4.91, p<0.05).

Limiting the comparison to the Time Sensor and
the Perceptron-based architectures the Perceptron
achieved significantly higher levels of fitness in the
population as a whole (F(1498,1)=3.96, p<0.05) and
in the group selected for reproduction (F298,1)=4.09,
p<0.05). There was however no statistically significant
difference between the results achieved by the best or-
ganisms with these two architectures (F(73,1)=3,45,

p>0.03).

In terms of robustness (the ability to maintain their ef-
ficiency in unfamiliar environments) the fittest robots
were again those based on perceptron and time sensor
networks. For clarity of presentation we will limit our
statistical analysis to a comparison between the aver-
age performance for robots with these architectures.
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Figure 5: Mean performance in unfamiliar environ-
ments

Figure 5 compares the two architectures in terms of
average performance for the whole population, robots
selected for reproduction and the best performing in-
dividual. In each of these comparisons the time-
sensor based robots achieve significantly higher per-
formance than the perceptron models. (population:
£(998)=2560, p<0.01; selected: t(198)=2240, p<0.01;
best: t(48)=2100, p<0.01).
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Figure 6: Evolution of fitness over time

Figure 6 plots the evolution over time of mean popula-
tion fitness for the three network architectures tested.
From this data it appears that high levels of fitness



are associated with a longer evolutionary process. The
hidden neuron architecture - the least efficient of those
tested - reached its fitness plateau after approximately
20 generations; the neurons with time sensors failed
to improve their fitness after the fortieth generation;
robots based on the Perceptron architecture continued
to improve their fitness up to the eightieth generation.

4.2 CHOICE OF EXPLORATION
STRATEGIES

Figures 7 and 8 show examples of the trajectories fol-
lowed by fully evolved Perceptrons while exploring a
rectangular open field box. These can be compared
with the trajectories for time sensor networks pre-
sented in Figure 9. A qualitative examination of these
trajectories facilitates the explanation of the fitness
data presented earlier.

Figure 7: Trajectory of a Perceptron-controlled robot

The perceptron shown in Fig 7 followed a trajectory
consisting of a sequence of alternating semi-circle and
straight line segments. In the rectangular field box this
strategy enabled the robot to rapidly achieve complete
cell coverage. The high fitness score achieved in this
environment is more than enough to compensate the
relatively lower score achieved in the square box where
the strategy adopted failed to cover cells in the middle
of the field box (trajectory not shown).

The second perceptron whose trajectory is shown in
Fig 8 has evolved a simple strategy which consists of
proceeding in a straight line and turning by roughly
90 whenever the robot meets an obstacle.

For both robots the strategy which emerges during the
evolutionary process is highly adapted to the specific
environment where the robot has evolved. In the case
of the first robot the diameter of the semi-circles and
the length of the line segments in the trajectory are
perfectly adapted to to the cell-size used for evaluation
purposes. In the second case the ability of the evolved
strategy to cover all the cells in the box depends on the

Figure 8: Trajectory of a second Perceptron-controlled
robot,

precise relationship between the length and the width
of the field box.

The easy to describe, environment-dependent strate-
gies evolved by perceptron-based robots may be com-
pared with the more complex behavior of robots with
time-sensors (see Figure 9).

Figure 9: Trajectory of a robot with time sensors

In the experiments with these robots we observe, as in
the previous case, that the robot turns on meeting an
obstacle. It appears however that the robot also turns
(at an oblique angle) on receiving input from the time
In many cases the robot will then traverse
the field box following a curved trajectory which max-
imizes the number of cells visited en route. The ability
to periodically change direction is independent of the
external environment where the robot has evolved.

SEensors.

Comparing the perceptron and the time-sensor based
robots it may be observed that in the absence of
any other source of input the former have necessar-
ily adapted to the specific environments where they
evolved. The latter on the other hand have access
to a source of input (the time sensors) whose charac-
teristics are independent of the external environment.
This provides a possible explanation for the superior
performance of time-sensor based robots in unfamiliar
environments (see Figure 10)



Figure 10: Trajectory of a time sensor robot in an
unfamiliar environment

5 DISCUSSION

The results of the experiments presented in this paper
show that Genetic Algorithms can be used to generate
effective exploratory strategies for autonomous agents.
It shows, furthermore, that the minimal computational
mechanism capable of generating such behavior is ex-
tremely simple. In the perceptron and time-sensor ex-
periments the control network for an individual was
completely specified in 18 and 22 bytes respectively.
Networks with hidden neurons (specified in 52 bytes)
were significantly less efficient than the simpler mod-
els. The population used - 100 individuals - was ex-
tremely small. Even the most efficient architectures
achieved a fitness plateau in around 80 generations.
The combination of simple architecture, small popula-
tion size and a limited number of generations meant
that compute time was limited. A complete set of sim-
ulations for a particular architecture can be computed
on a Pentium 200 Personal Computer in less than two
hours.

The results achieved have both cognitive science and
engineering implications. From the former viewpoint
it is interesting to note how extremely simple neural
networks can generate highly efficient strategies of ex-
ploration. It is clear that the quantity of memory used
to specify each control network is insufficient to con-
tain a “map” of the open field box. It thus appears
that at least for purposes of exploration (if not for more
complex tasks) high resolution location data (stored as
a topological map or in other forms) is superfluous. In
more general terms this suggests that cognitive sci-
entists and network designers should be cautious in
their assumptions with respect to the complexity of
the networks needed to achieve specific goals. The

results presented here confirm that in some cases com-
plex networks with hidden neurons may be not only
unnecessary but actually counter-productive.

A second interesting result of the experiments is the
superior generalization ability of networks with time-
sensors. Animal psychologists have long recognized
the importance of internal “clocks”, in animal behav-
ior. To the knowledge of the authors, however, this is
the first time that this kind of sensor has been used in
evolutionary robotics. At this stage of our research the
exact role the time-sensors are playing is not entirely
clear. What is evident however is that if behavior is
made to depend exclusively on stimuli from the out-
side world (as in our perceptron-based robots) natural
selection will inevitably lead to the evolution of highly
specialized solutions with only limited ability to adapt
to environmental change. The results of our exper-
iments suggest that stimuli from internal clocks may
play an important role in maintaining the stability and
the viability of the organism in the face of changes in
the external environment. This result is worthy of note
both for the cognitive scientist and the engineer.

6 CONCLUSIONS - DIRECTIONS
FOR FUTURE RESEARCH

Much current research in the field of “evolutionary
robotics” is based on a “bottom up” approach (Clark
1997). Complex architectures are built up step by step
out of simpler modules - complex behaviors are con-
structed from simple behavioral primitives.

The existence of “wandering” and “roaming” in a
broad range of animal species, living in many different
environments, is evidence that ”exploration” should
be considered a behavioral primitive in biological or-
ganisms and suggests that it would be useful to incor-
porate such behavior in artificial autonomous agents.
This would however require the development of con-
trol networks capable of performing tasks which were
not tested in the current work.

In the research reported in this paper the environments
in which robots were tested were convex, highly regu-
lar spaces, containing no obstacles. It is evident that
to be useful in a real-life context robots should be ca-
pable of negotiating non-convex spaces characterized
by the presence of irregular boundaries and obstacles.
Only in this case could the robot be considered as com-
putationally equivalent to the computer graphics algo-
rithms mentioned at the beginning of this paper.

The authors predict that while “externally driven” de-
vices such as the Perceptron might adapt to the re-



quirements of (some) specific environments it will not
be possible for this kind of device to evolve strate-
gies applicable to unfamiliar environments. We be-
lieve however that the “internally driven” strategies
evolved by “time-sensor” networks will prove robust,
even in environments considerably more complex than
those where it has been tested up to now. Future
experiments will test this hypothesis, hopefully pro-
ducing robust networks which can be incorporated
as sub-systems in the larger, more complex machines
which the evolutionary robotics community is cur-
rently working to build.
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