
Two Evolutionary Representations for Automatic Parallelization

Kenneth P. Williams
Dept. of Computer Science,

University of Reading,
Whiteknights, Reading, RG6 6AY, UK

K.P.Williams@reading.ac.uk

Tel. +44 118 9875123, Ext. 7645

Shirley A. Williams
Dept. of Computer Science,

University of Reading,
Whiteknights, Reading, RG6 6AY, UK
Shirley.Williams@reading.ac.uk

Tel. +44 118 9875123, Ext. 8613

Abstract

In this paper we describe use of the Re-

volver system, a test-bed for experiment-
ing with combinations of evolutionary rep-
resentations and algorithms for automatic
parallelization. Results show evidence of
adaptation of auto-parallelization strategy by
the evolutionary algorithms (EAs) tested,
thereby suggesting that EAs are more capa-
ble of �nding enabling transformations than
current parallelizing compilers.

Acceptable ?
Results

Generate Parallel Code

Sequential Program

End

Update Program Dependency Graph (PDG)

Build Program Dependency Graph (PDG)

Transformations
Apply 0 or more

No

Yes

Estimate Performance

Figure 1: Typical Automatic Parallelization Process

1 Automatic Parallelization

Automatic parallelization is the automatic translation
of sequential code into parallel form. This is a di�-
cult problem since the parallel code must also perform
e�ciently on the target machine (with costly loss of
performance if this is not the case) - hence it is an
optimization as well as translation problem. The tra-
ditional approach has been to concentrate on restruc-
turing computationally intensive loops using depen-
dency analysis to determine which loops can be paral-
lelized - and then using linear programming techniques
during the code-generation phase to spread the work-
load evenly across the processors available. This ap-
proach (see Fig. 1) may be performed fully automati-
cally (by a parallelizing compiler) or interactively (by
a programmer guided by a parallelization tool). This
analytical approach has only proved successful with
highly-patterned, regular (i.e. a small, restricted-set
of) programs.

One of the main di�culties encountered is identifying
enabling transformations 1(i.e. transformations which
by themselves have little, no, or possibly even a de-
grading e�ect of program performance but which en-
able other transformations (or sequences of transfor-
mations) to be made which do produce signi�cant im-
provements in program performance. Conceptually,
such transformations represent non-linearities in the
search-space of semantically equivalent parallel pro-
grams. These transformations can be easily missed by
a parallelizing compiler or by a programmer using an
interactive tool.

One of the strongest motivations for particularly us-
ing evolution is that a lower-bound can be put on the
quality of the solution produced by the evolutionary
algorithm (EA). This can be achieved by the use of

1In this paper the terms transformation and compiler
optimization are used interchangeably.

heuristic information and the incorporation of exist-
ing heuristics into the evolutionary algorithm which
be done in such a way as to guarantee that the worst
solution found will be at least as good as that found
by existing techniques, and probably better. Extensive
research into automatic parallelization over the years
has lead to the development of a large body of heuris-
tic and analytical techniques which may be included
into such an evolutionary algorithm.

In section 2.1 we describe the Gene-Transformation
(GT) representation and operators. In 2.2 we describe
the Gene-Statement (GS) representation and opera-
tors. Section 3 describes the �tness function used with
both representations. Experiments and test data are
described in section 4 and the evolutionary algorithms
(EAs) used in 4.1. A brief overview of the major re-
sults are presented in 5 with related research presented
in 6. The paper �nishes with a section of Conclusions.

2 Evolutionary Representations

It is well known that the choice of representation of
a problem can often determine the success or failure
of tackling the problem. In this section we present
two representations of automatic parallelization (the
Gene-Transformation representation, and the Gene-
Statement representation) both of which are suitable
for manipulation by evolutionary algorithms.

2.1 Gene-Transformation (GT)
Representation

The �rst representation of the automatic paralleliza-
tion problem developed (as presented in [8]) is called
the `gene-transformation' representation. As the name
suggests, in this representation a single gene repre-
sents a single optimising transformation to be applied.
Hence a whole chromosome (i.e. a sequence of genes)
represents an ordered sequence of transformations to
be applied. In our model, each transformation may be
abbreviated by a three letter acronym, e.g.

LFU Loop Fusion.
LSP Loop Splitting.
LRV Loop Reversal.
LIC Loop Interchange.
: : : etc

Currently the Revolver transformation catalogue
only consists of loop transformations but other classes
of transformations may be added and encoded in a
similar style.

Our model also requires some means of referring to in-
dividual loops within a program. Simply, in a program
containing n loops for example, we assign a number to
each loop (from zero upwards) in lexicographic order-
ing. Hence all loops in the program will be assigned
a unique number in the range [0..n-1]). All loops are
renumbered [0..n0�1]) after application of each trans-
formation (where n0 is the new number of loops in the
program). All loop transformation functions currently
take at least one parameter - the number of the loop
they are to be applied to. For example:

LFU(6) \Fuse together loop 6 and any immediately
following or else any immediately "
preceding loop in the program."

LIC(3) \Apply loop-interchanging to loop 3
in the program."

LSP(7) \Apply loop-splitting to loop 7."

Using the model we have de�ned so far we thus have a
means of describing variable-length sequences of trans-
formations (applied, in order from left-to-right), e.g.:

[LSP(3), LRV(5), LFU(7)]

This chromosome consists of three genes which encode
the sequence:

\Apply a loop-splitting transformation to loop 3 in the
program followed by loop-reversal to loop 5 and then
�nally loop-fusion to loop 7."

Given the representation thus far a number of issues
now arise which need to be addressed, namely:

1. What to do if we try to apply a transformation
which cannot be legally applied to the loop spec-
i�ed (i.e. the transformation `fails')?

2. We need clearer de�nitions of how a number of
transformations are to be applied (notably loop-
fusion and loop-interchanging).

3. What evolutionary operators does the representa-
tion naturally give rise to?

These questions are answered next.

2.1.1 Decoders

It may happen in the course of restructuring that a
particular transformation cannot be successfully ap-
plied. The failure to apply a transformation may arise
for two reasons (i) it is semantically invalid (i.e. ap-
plication of the transformation would violate the loop-
dependency relations), or (ii) it is syntactically invalid

(i.e. the loop is not suitable for the transformation,
such as trying to apply loop-interchange to a single
loop rather than a loop-nest, or trying to apply loop-
fusion to a loop which is not immediately adjacent
to another). The strategy of a traditional paralleliz-
ing compiler towards such a failure is to simply ig-
nore the failed transformation and continue, however
in the context of an EA how a failed transformation
is handled has a signi�cant e�ect on the movement
of the population of transformation sequences as they
progress across the search-space. As such this issue
deserves closer scrutiny. Failure to apply a transfor-
mation may be handled in one of three ways:

� delete-and-continue (D-A-C): if a transformation
cannot be applied, simply delete the gene (i.e. the
transformation and loop-number) from the chro-
mosome and continue to apply the following trans-
formations speci�ed in the sequence.

� delete-and-stop (D-A-S): if a transformation can-
not be applied, delete the gene from the chromo-
some and delete the rest of the sequence.

� repair (REPAIR): if a transformation cannot be ap-
plied, replace the gene with a randomly generated
new gene. If this new gene cannot be applied then
repeatedly generate and test new genes until a le-
gal one is created - (essentially the approach is
to `repair' the chromosome so it contains a valid
sequence of transformations.

The process of resolving these con
icts is called de-
coding. The current version of Revolver implements
all three of these decoders. A decoding-strategy there-
fore simply tells the compiler what to do when it comes
across a transformation that cannot be applied. Which
decoding strategy is employed may be speci�ed by
the user at run-time as a compiler-switch (the default
value is delete-and-continue).

2.1.2 Transformation De�nitions

The implementation of many compiler transformations
arises naturally from their de�nition. For example, for
a loop to be in `normal form' means that its index
variable is initialised to 1, and its increment-size is 1.
Any counted loop (such as the F77 DO loop) can be
transformed into normal-form simply by adjusting the
loop-bounds and any array-acccess expressions to pre-
serve loop behaviour. Hence, the implementation of
this transformation (loop-normalization) is clear and
unambiguous. However, some transformations may be
implemented in more than one way. A detailed dis-
cussion of this issue is beyond the scope of this paper,

Gene = Transformation & Loop number.

Chromosome = Sequence of Transformations.

Mutation Operators = In
ict a small change on

a sequence of Transformations.

Crossover Operators = Recombine two sequences

of Transformations.

Figure 2: Summary of Gene-Transformation Repre-
sentation

however we note that the strict implementation of a
transformation will have a signi�cant e�ect on the per-
formance of any parallelization tool. Here we brie
y
describe only how loop-fusion and loop-interchanging
are implemented in Revolver .

In Revolver the loop-fusion (LFU) transformation
is implemented as follows: �rst, attempt to fuse the
speci�ed loop with an immediately following loop, if
this is not possible then attempt fusion with an imme-
diately preceding loop, if this is not possible then the
transformation fails.

The loop-interchange (LIC) transformation is imple-
mented in the following manner: �rst, if the speci�ed
loop is not the outermost loop of a perfect loop-nest
then the transformation fails. Otherwise, if the depth
of the loop-nest is two, then simply interchange the
two loops, else (i.e. depth > 2) generate some random
permutation of the loops and attempt interchange ac-
cordingly.

2.1.3 Operators and Algorithms

Using the `gene-transformation' representation, what
operators naturally arise, and what evolutionary algo-
rithms work best with this representation?

The notion of mutation usually involves making small
random changes to the chromosome (with the aim of
improving the `�tness' of the chromosome). Hence,
three mutation operators immediately come to mind
- (i) mutate the transformation speci�ed by the gene,
(ii) mutate the loop speci�ed by the gene, and (iii) mu-
tate the transformation and the loop speci�ed by the
gene (i.e. the whole gene). These three mutation op-
erators, (all implemented in Revolver) currently re-
place mutated information with bounded-random val-
ues - more purposeful replacement of information us-
ing heuristic information may be implemented in fu-
ture work. The notion of crossover usually involves re-

CHROMOSOME

gene(0) gene(1) gene(11)

A
(
I
)

=

B
(
I
)

*

2

P
R
O
G
R
A
M

P
R
O
G
1

I
N
T
E
G
E
R

I
,

J
,

K

R
E
A
L

A
(
1
0
)
,

B
(
1
0
)

D
O

I

=

1
,

1
0

P
R
I
N
T
*
,

’
B
R
A
N
C
H
-
2
’

E
L
S
E

P
R
I
N
T
*
,

’
B
R
A
N
C
H
-
1
’

I
F

(
A
(
I
)

.
G
T
.

1
0
0
)

T
H
E
N

E
N
D
D
O

E
N
D

E
N
D
I
F

FOR
STMT

IF
STMT

PROG
STMT

ASG

STMT STMT
PRINT PRINT

STMT

i

Figure 3: Gene-Statement Representation of a
Fortran-77 Program (turn Figure right-sideways 90�)

combining two chromosomes in some meaningful way
so as to produce two new o�spring. Using the `gene-
transformation' representation two factors had to be
considered in the design of our new crossover opera-
tors: (i) we are working with variable-length chromo-
somes, and (ii) the type of problem we are tackling is
a scheduling-type of problem where the preservation
of good sub-sequences of transformations is a desir-
able property of any operators we create. The pop-
ular one and two-point crossover operators adapted
to work with variable length chromosomes would be
useful in preserving good sub-sequences of transfor-
mations. Such operators have been implemented in
Revolver and are referred to as VLX-1 (Variable-
Length Xover, 1-point) and VLX-2 (Variable-Length
Xover, 2-point) respectively.

A uniform crossover operator would have a disruptive
e�ect on any potentially useful sub-sequences of trans-
formations, yet some disruption is necessary for the
search to make progress. Hence, a compromise was
reached and a new operator created. Operator VLX-3
protects developing sub-sequences of transformations
by only applying uniform crossover to the �nal two-
thirds (i.e. centre and right-hand two-thirds) of the
two parent chromosomes. The �rst transformations
to be applied (i.e the left-hand third of the chromo-
somes) are protected and not subjected to the uni-
form crossover operation. Having applied the muta-
tion and crossover operators, we then need to select

Gene = Statement

Chromosome = Program

Mutation Operator = A type of Transformation.

Mutation Operation = An application of

a Transformation.

Crossover Operator = Not used.

Figure 4: Summary of Gene-Statement Representation

which members are to survive into the new popula-
tion. Simple binary tournament selection (where re-
peatedly the �ttest of 2 randomly chosen members of
the current population is placed into the next gen-
eration, until the new population is full) is the only
selection operator currently used in Revolver with
the `gene-transformation' representation. Most evo-
lutionary algorithms can be made to work with this
representation - some however, are more suitable than
others. The current algorithms used in Revolver

with this representation are random-mutation hill-
climbing, simulated annealing, genetic algorithms, and
self-adaptive genetic algorithms. A summary of the
GT-representation is in Fig. 2.

2.2 Gene-Statement (GS) Representation

In the gene-statement representation (see Fig. 3),
as the name suggests one gene represents one state-
ment in the program. Hence, a sequence of genes
represents a sequence of statements (i.e. a pro-
gram). Each program statement has a type (e.g.
a DO STATEMENT, an IF STATEMENT, an AS-
SIGNMENT STATEMENT, etc). Transformations
are seen as mutation operators which are applied to
statements. In this context there is no `meaningful'
need for a crossover operator. Chromosome lengths
may increase/decrease as mutations are applied - ap-
plication of a loop-fusion/mutation (for example) will
reduce the number of statements in the program (i.e.
the number of genes in the chromosome), application
of a loop-splitting/mutation will increase the num-
ber of statements in the program (i.e. the number
of genes in the chromosome). A summary of the GS-
representation is in Fig. 4 (cf: Fig. 2). Since trans-
formations are now mutation-operators, each needs to
be assigned a probability. (e.g.

pLRV = 0.02;

pLSP = 0.05;

1 begin
2 t := 0
3 initPopulation P (t)
4 evaluate P (t)
5 while :terminate do
6 t := t + 1
7 P' := selectParents(P)
8 LSPmutation(P')
9 LRVmutation(P')

10 LICmutation(P')
11 : : : (allow other mutations)
12 LFUmutation(P')
13 evaluate(P')
14 P := P'
15 end
16 printResults()
17 end

Figure 5: Gene-Statement Evolution Strategy

pLFU = 0.15;

pLIC = 0.10;

............

The mutation operators can now be applied probabilis-
tically as they sweep across the genes of each chromo-
some in the population (Figs. 5 and 6). A meaning-
ful order in which the operators may be applied then
needs to be worked out. The optimizing phases of
a typical parallelizing compiler (as described in [10])
gives us a useful guide. (Essentially, loop-splitting
should initially be applied so as to allow more poten-
tial for restructuring to take place, in the �nal phases
loop-fusion should be applied so as to increase the
workload of slave processes). It is noteworthy that the
GS-representation has the appearance of a population-
based, iterative, probabilistic version of a standard
parallelizing compiler (i.e. it is essentially an exten-
sion of current parallelizing compiler design).

3 Fitness Function

Once a sequence of transformations has been applied
to a member of the population (i.e. the sequential pro-
gram has been restructured) parallel code is generated.
Several important features of this code are analysed
(e.g. communication patterns, operations count, pro-
cess granularity) and an estimated execution-time is
returned. This estimate forms the `�tness' value of the
sequence of transformations which produced the code
(in the GT representation), and the �tness value of the
actual code produced (in the GS representation). The
techniques used in computing this estimation are the

1 for p := 1 to POPSIZE
2 do
3 stmt := p! firstStatement()
4 while (stmt) do
5 if (stmt! type() == FOR � STMT)
6 then
7 x = rand()
8 if (x < pLSP) then
9 following = stmt! followingStmt()

10 success = ApplyLSP (stmt)
11 if success then
12 stmt = following

13 else
14 stmt = stmt! followingStmt()
15 �
16 �
17 �
18 end
19 end

Figure 6: Example Mutation-Transformation Algo-
rithm

same as those used in the VFCS parallelizing compiler
system and are fully described in [2].

4 Experiments

A test suite of 5 programs (4 publicly available F77
benchmark programs plus 1 specially constructed ex-
ample) were used to test Revolver . The programs
were LFK-18 and ADI (Livermore Loops Fortran Ker-
nels), EFLUX (Perfect Benchmarks) and M44 generic
code [2] plus TEST-1. The Revolver system was im-
plemented for automatic parallelization of Fortran-77
programs onto a message-passing Meiko CS-1 network
of 12 transputers and consisted of a pro�ler, depen-
dency analyzer, loop-transformation catalogue, static
performance-estimator, and code-generator - as well as
the EA codes.

4.1 Evolutionary Algorithms (EAs)

In the following experiments we use six evolution-
ary algorithms. Each algorithm uses one of the
two representations described and, if using the GT-
representation only, will also be using one of the
three decoding strategies described in section 2.1.1.
Furthermore, six genetic operators (described in sec-
tion 2.1.3) will also be available to the EAs, al-
though not all can be used with the various al-
gorithm/representation combinations we experiment
with - none of the crossover operators can be used with

0 10 20 30 40 50
Generations

0.0

10.0

20.0

30.0

40.0

Tim
e E

sti
ma

te
(F

itn
es

s)
EA Runs for Livermore Fortran Kernel 18

HC-1
SA-1
GA-1
ES-1
SAGA-1
HC-2

Figure 7: EA Runs on Livermore Fortran Kernel-18

the hill-climbing or simulated-annealing algorithms,
and are not used with the GS-representation, for exam-
ple. Six Evolutionary Algorithm/Representation com-
binations are de�ned.

HC-1 Steepest-ascent hill-climber using GT represen-
tation.

HC-2 Steepest-ascent hill-climber using GS represen-
tation.

SA-1 Standard simulated-annealer using GT repre-
sentation.

ES-1 Evolution-strategy using GS representation.

GA-1 Genetic-algorithm using GT representation.

SAGA-1 Self-adaptive genetic-algorithm using GT
representation.

Further parameters are de�ned, such as popula-
tion size (POPSIZE = 5) and number of generations
(MAXGENS = 50). In the results presented each run
was for 50 generations (experiments showed that with
the Revolver system most improvements occurred
within the �rst 50 generations). After some experi-
mentation operator probabilities were set: crossover
operators 0.5 and mutation operators 0.2 except in
SAGA-1 where these were starting-values and the oper-
ator probabilities were changed as the run progressed.
Where the GT representation was used, the population
of transformation-sequences were randomly initialised
to chromosomes of 5 transformations in length.

5 Results

Each of the 6 EAs de�ned in 4.1 was run 10 times on
each of the 5 test F77 programs. In each run the pa-
rameters were exactly the same (as above) the only
di�erence being the random number generator was
seeded di�erently each time. Space restrictions pre-
clude a complete exposition of results (see [9]) however,
by far the clearest result found overall was that EAs us-
ing the GS representation consistently produced more
signi�cantly e�cient code than EAs using GT (em-
phasising the importance of representation over algo-
rithm). An example of the progress of the EAs can be
seen in Fig. 7. This also con�rms our idea of the ter-
rain of the solution-space being searched by the EAs
as being uneven and irregular.

Table 1: t-Test comparisons of EAs using �ttest values
returned from 10 runs on each of the 5 test programs.

CONFIDENCE
HYPOTHESIS VALUE

GA-1 out-performed HC-1 38%
SAGA-1 out-performed HC-1 30%
GA-1 out-performed SAGA-1 9%
ES-1 out-performed GA-1 99%

ES-1 out-performed SAGA-1 99%
ES-1 out-performed HC-2 53%
HC-1 out-performed SA-1 8%
ES-1 out-performed HC-1 100%
ES-1 out-performed SA-1 100%
HC-2 out-performed SA-1 100%
GA-1 out-performed SA-1 44%

SAGA-1 out-performed SA-1 36%
HC-2 out-performed GA-1 93%

HC-2 out-performed SAGA-1 95%

5.1 Comparison of Algorithms and
Representations

The results of the runs for each EA were tabulated and
con�dence values were computed to compare the e�ec-
tiveness of each EA across all runs. These con�dence
values are summarised in Table 1. The dominance of
GS-based algorithms is clear.

5.2 Comparison of Decoding Strategies

Decoding strategies are only necessary with the GT-
representation. As before, we are able to calculate con-
�dence values of all comparable results. These values
are presented in Table 2. Use of the REPAIR strategy
is the clear winner. This result is interesting because

Table 2: t-Test Comparisons of Decoding Strategies.

CONFIDENCE
HYPOTHESIS VALUE

REPAIR out-performed D-A-C 88%
REPAIR out-performed D-A-S 98%
D-A-C out-performed D-A-S 50%

the reasons for the REPAIR strategy performing signi�-
cantly better than the other two are not clear. It might
be expected that the D-A-S strategy may not perform
so well since the approach may prevent the popula-
tion from sampling a large proportion of the search
space. However this is not the case for D-A-C which
was expected to perform roughly equal with REPAIR.

5.3 Auto-Parallelization Strategies

Generating parallel code for a loop introduces time
overheads of communication (sending data), mes-
sage/process start-up times, and synchronisation (be-
tween processes waiting for data) - these overheads
must be o�set against the gain of executing the loop
workload in parallel. Most parallelizing compilers per-
form extensive memory and communication optimiza-
tions to minimize these overheads that have yet to be
implemented in Revolver . In all the results pre-
sented so far the code-generator has worked by gener-
ating parallel code for all loops which contain no cross-
iteration dependencies regardless of whether the loop
workload made it worthwhile or not - and whether
the loop was in normal form (section 2.1.2) or not
(i.e. pre-normalisation of loops prior to code gener-
ation is disabled). The alternative is to normalise all
loops before attempting to generate parallel code (i.e.
pre-normalisation of loops prior to code generation is
enabled). This is signi�cant since in our transforma-
tion catalogue we have one transformation which can
take a loop out of normal form, namely Loop-Reversal
(LRV). By application of LRV the EA can in
uence
whether or not a loop may be parallelized. The idea
is that by not forcibly normalising loops before code-
generation we are giving the EA the option of prevent-
ing parallelization of code by applying Loop-Reversal
and hence taking a loop out of normal form.

The point is it became possible to compare the per-
formance of EAs working under two sets of conditions
(i) do not normalise all loops prior to code-generation
(the default strategy), called preNorm-disabled, and
(ii) normalise all loops prior to code-generation called
preNorm-enabled.

Comparison of performance results shows that at no

time did EAs using preNorm-enabled generate better
code than EAs using preNorm-disabled (due to the
introduction of expensive communications overheads
and the result of the code-generator performing no op-
timizations). Most signi�cantly, under the two sets of
conditions two di�erent auto-parallelization strategies
emerged. Examination of the code produced shows
that when pre-Normalisation was disabled - the EAs
adopted the strategy of `keeping loops sequential' (by
repeatedly applying loop-reversal) so as to avoid in-
curring message communications overheads that would
slow the program down. When pre-Normalisation was
enabled - the EAs adopted the strategy of `making
loops larger' (by applying loop-fusion) so as to increase
the size (the granularity) of the parallel processes cre-
ated when loops are parallelized. In short, under two
di�erent sets of conditions the EAs were able to adapt
their own strategy for automatic parallelization - with-
out any user intervention.

6 Related Research

Research into automatic parallelization can be traced
back to the vectorizing Fortran compilers of the late
1960's. More recent research has concentrated on par-
allelizing code for a wider range of languages (C/C++)
and aiming at both shared-memory and message-
passing MIMD architectures. Many of the compiler
techniques developed over this time are described in
[1]. Such a body of work also serves as an extensive
source of heuristic techniques for incorporation into an
EA.

The main evolutionary approach to automatic paral-
lelization previously has been to use genetic program-
ming techniques to restructure sequential code [7] into
equivalent parallel form. This eliminates the need for
costly dependency analysis but introduces the require-
ment for stringent checking to preserve program cor-
rectness.

The work presented in [8] was the �rst description
known to the authors of using a genetic algorithm
to automatically parallelize sequential code (using an
early version of the GT representation). This idea was
adapted for automatic parallelization onto a shared-
memory multi-processor in [6] which reported a 21-
25 % performance improvement against parallel code
simply generated using the Petit /UTF paralleliza-
tion libraries [4]. In [9] a comprehensive description
of the Revolver system is presented introducing the
GS and GT representations, operated on by various
combinations of evolutionary algorithms and (some
novel) operators. In [5] a hybrid genetic algorithm
for task allocation (HGATA) of workloads to a multi-

computer keeping the workload balanced and commu-
nication down to a minimum, is described. A novel
approach utilising neural networks (using a technique
called `cellular encoding') is used to parallelize Pascal
programs as described in Gruau et al [3].

7 Conclusions

The main �ndings of this research are (i) evidence
of adaptation by the EAs at the auto-parallelization
strategy level (i.e. a high level of abstraction) - this
strategy was changed by the EAs in order to optimize
the performance of the code it generated under the
conditions in which it found itself. In our experiments
this meant direct intervention with the code-generator
- which caused the EA to change strategy (from `keep-
ing loops sequential' to `maximise the granularity of
processes'). It follows that an EA which is capable of
adapting its own auto-parallelization strategy is sig-
ni�cantly more likely to �nd enabling-transformations
(than simply using traditional techniques) and hence
produce better quality code - due to the non-linear ef-
fects of applying transformations. (ii) Demonstration
of the clear superiority of the GS representation over
GT (probably due to the strong interaction between
the genes (epistasis) that GT su�ers from).

Executing an EA will take longer, and use more com-
putational power than existing parallelizing compilers.
However the time requirement can be o�set by the user
receiving intermediate `best solutions so far' found by
the EA. In order to receive higher quality solutions the
EA will have to execute for a longer period of time than
traditional compilers - however, it is felt that most
users will accept this because of the great importance
attached to restructuring code to achieve the highest
degree of performance possible and the expensive costs
of failure to do so.

Acknowledgements

The authors thank Dave Corne (University of Read-
ing, UK) and Paul Walsh (University College Cork,
Ireland) for comments during this work. Part of this
research was �nanced under grant 94701308 from the
Engineering and Physical Sciences Research Council
(EPSRC) of the UK.

References

[1] Bacon, D.F, Graham, S.L., and Sharp, O.J., Com-
piler Transformations for High-Performance Com-
puting, ACM Computing Surveys, Vol 26, No. 4,
pgs 345-420, Dec (1994).

[2] Fahringer, T., Automatic Performance Prediction
for Parallel Programs on Massively Parallel Com-
puters, Ph.D Thesis, University of Vienna, Austria,
Sept., (1993).

[3] Gruau, F., Ratajszczak, J-Y., and Wiber, G., A
Neural Compiler, Theoretical Computer Science,
1834, pgs 1-52, Elsevier, (1994).

[4] Kelly, W., Maslov, V., Pugh, W., Rosser, E.J.,
Shpeisman, T., and Wonnacott, D., Petit Ver-
sion 1.00 User Guide, Omega Project, Dept. of
Computer Science, University of Maryland, April
(1996).

[5] Mansour, N., and Fox, G.C., A Hybrid Genetic Al-
gorithm for Task Allocation in Multicomputers, in
Proceedings of the 4th International Conference on
Genetic Algorithms (ICGA-4), pgs 466-473, Mor-
gan Kaufman Publishers, San Mateo, CA, (1991).

[6] Nisbet, A., GAPS: Genetic Algorithm Opti-
mised Parallelisation, invited presentation - 7th
Workshop on Compilers for Parallel Computing,
Linkoeping, Sweden, June, (1998).

[7] Walsh, P., and Ryan, C., Automatic Conversion
of Programs from Serial to Parallel Using Ge-
netic Programming - The Paragen System, in Pro-
ceedings of PARCO-95 (Parallel Computing 1995),
Universiteit Gent, Belgium, 19 - 22 September,
(1995).

[8] Williams, K.P., and Williams, S.A., Genetic Com-
pilers: A New Technique for Automatic Paralleli-
sation, in \Parallel Programming Environments
for High Performance Computing", Proceedings of
the 2nd European School of Parallel Processing
Environments (ESPPE-96), IMAG-INRIA, L'Alpe
d'Huez, France, April 1-5, pgs 27-30, (1996).

[9] Williams, K.P., Evolutionary Algorithms for Auto-
matic Parallelization, Ph.D Thesis, Department of
Computer Science, University of Reading, Read-
ing, UK, Dec. (1998).
http://www.cs.reading.ac.uk/cs/research/Pu

blications/theses.html

[10] Wolfe, M.J., High Performance Compilers for
Parallel Computing, Addison-Wesley, (1996).

