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Abstract

The use of evolutionary approaches to create dynamical
“nervous systems” for autonomous agents is becoming
increasingly widespread. In previous work, we have
successfully applied this approach to chemotaxis, walk-
ing, learning, and such minimally cognitive behavior as
visually-guided orientation, object discrimination and
pointing. In this paper, we extend this approach to the
integration of visually-guided orientation and walking
and to an object orientation task that requires short-term
memory. In addition, we examine the neural dynamics
underlying the operation of some of these evolved
agents.

1 INTRODUCTION

The potential of evolutionary approaches for autonomous
agents is widely recognized (Beer & Gallagher, 1992;
Brooks, 1992; Cliff et al., 1993; Nolfi et al., 1994). While
much of this work has emphasized relatively low-level mo-
tor behavior, there is a growing interest in applying
evolutionary approaches to more sophisticated kinds of be-
havior, such as predator/prey interactions, visually-guided
behavior, and simple forms of language, and memory
(Werner & Dyer, 1991; Harvey et al., 1994; Cliff & Miller,
1996; Parisi, 1997; Nakahara & Doya, 1997).

Our own early work on the evolution of dynamical nervous
systems for autonomous agents initially focused on chemo-
taxis and legged locomotion (Beer & Gallagher, 1992).
However, more recently we have turned to tasks involving
learning (Yamauchi & Beer, 1994) and what we have called
minimally cognitive behavior, such as visually-guided orien-
tation, object discrimination, and pointing (Beer, 1996). By
“minimally cognitive behavior”, we mean the simplest be-
havior that raises cognitively interesting questions. This
work has been motivated both by our desire to evolve neural
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controllers for autonomous robots (Gallagher et al., 1996)
and by our interest in analyzing the operation of evolved
neural circuits in order to uncover general principles in the
dynamics of adaptive behavior (Beer, 1997).

In this paper, we extend this work in two ways. First, we
explore the integration of a nontrivial perceptual task with a
nontrivial motor task by evolving and analyzing dynamical
neural networks for visually-guided walking. Second, we
evolve dynamical neural networks for a sensorimotor task
that requires short-term memory.

2 METHODS

In both of the experiments described in this paper, the agent
moves along a horizontal line through a 500 x 500 world
while square objects of size 10 fall at a constant velocity of
1 from above (Figure 1). An array of 15 proximity sensors
of maximum length 450 with an angular spacing of /80
allow the agent to perceive the falling objects. If the object
intersects any given proximity sensor, the output of that
sensor is inversely proportional to the separation between
the object and the agent, with values ranging from O (no
intersection) to 10 (no separation).

The agent’s behavior is controlled by a continuous-time
recurrent neural network (CTRNN; Beer, 1995) with the
following state equation:
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where y is the state of each neuron, T is its time constant,
w; is the strength of the connection from the j™ to the i*"
neuron, 0 is a bias term, o(x) = 1/(1+e”") is the stan-
dard logistic activation function, and [ represents a
weighted sensory input with strength s. States were initial-
ized to uniform random numbers in the range =0.1 and
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Experimental setup for visually-guided walking

Figure 1:
experiments.

circuits were integrated using the forward Euler method with
an integration step size of 0.1.

We used the public domain genetic algorithm package
GAucsd' (version 1.4) to evolve CTRNNs. Each circuit
parameter was encoded in four bits, with time constants € [-
0.5,10], and biases, connection weights and sensor weights
in the range +16. Note that GAucsd employs a technique
known as dynamic parameter encoding (DPE) that zooms the
mapping between a fixed set of bits and a real parameter
based on statistics gathered during a run (Schraudolph &
Belew, 1992). GAucsd parameters were set as follows: Total
Trials = 220,000; Population Size = 100; Crossover Rate =
0.0; Mutation Rate = 0.01; Generation Gap = 1; Scaling
Window = -1; Structures Saved = 9; Max Gens w/o Eval =
2; Options = Aclue; Maximum Bias = 0.99; Max Conver-
gence = 376; Conv Threshold = 0.91; DPE Time Constant =
50; Sigma Scaling = 2.

3 VISUALLY-GUIDED WALKING
EXPERIMENTS

An important step in the evolution of more sophisticated
agents is the integration of multiple behaviors. In previous
work, we have successfully evolved CTRNNs for legged
locomotion (Beer & Gallagher, 1992) and visually-guided
orientation to novel objects using pure force effectors (Beer,
1996). In the first set of experiments to be described here,
we sought to evolve agents that could integrate visually-

" URL: ftp:/ftp.aic.nrl.navy.mil/galist/src/GAucsd14.sh.Z

Figure 2: Circuit architecture for visually-guided walking
experiments.

guided orientation with legged locomotion to catch objects
appearing in their field of view. Unlike in our previous
work on walking, which focused on optimal forward loco-
motion, this agent must be able to walk in either direction
with movements directed toward the goal object. Unlike in
our previous work on orientation, this agent must control
the movements of a rhythmic leg in order to catch an object
rather than simply apply a force in the correct direction.

This agent has a single leg that allows it to move horizon-
tally while objects fall from above (Figure 1). The torques
produced by left and right swing effectors are summed.
When the foot is up, this net torque causes the leg to swing
relative to the body. When the foot is down, this net torque
produces a force on the body that causes it to translate hori-
zontally according to Newtonian dynamics. A supporting
leg may stretch outside its normal range of operation (xm/6),
but provides no translational force if it does. Whenever the
foot is lifted or the leg stretches outside its maximum range
(+0.99), the agent’s velocity immediately drops to zero.
Two leg angle sensors provide feedback of the leg position.
The leg angle was randomized at the start of each trial.

The CTRNN architecture used in these experiments is
shown in Figure 2. It is bilaterally symmetric and contains
22 neurons total. Fifteen sensory neurons receive inputs
from the agent’s proximity sensors. These connect to 4
interneurons, which in turn connect to 3 motor neurons con-
trolling the leg. The A interneurons connect to the
proximity sensors on the same side of the body, while the B
interneurons connect to the proximity sensors on the oppo-
site side of the body. Only the central proximity sensor SC
connects directly to the leg motor neurons. The M; and My
motor neurons control the torque with which the leg swings
to the left or right, respectively, while the FT motor neuron



4000

3500

3000
2500

Error

2000

L

1500

1000

500

0 T T Y
0 20 40 60 80

Generation

100 120 140

Figure 3: Plots of error of the best individual in each genera-
tion for two typical experiments.

controls the state of the foot. The motor neurons also re-
ceive weighted inputs from two leg angle sensors. Except
for the angle sensor inputs, all connections shown are bi-
directional, giving a total of 94 parameters encoded in 376
bits.

During evolution, fitness was evaluated by dropping objects
with fixed velocities from different horizontal positions.
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Figure 5: Plots of agent (black lines) and object (gray lines)
position vs. time for two different initial horizontal object
positions.

The error measure to be minimized was:

NumTrials

Average Error = E d’ / NumTrials

i=1

where d; is the horizontal distance between the object and the
agent when the object reaches the agent on the i trial, and
NumTrials is the total number of trials. Thus, a perfect
agent would have an error of zero because the horizontal
positions of the objects and the agent would always coincide
when the object reached the agent. We used six trials with
objects dropped at horizontal distances of 10, 30, 50, 70, 90
and 110 to the left of the agent (due to the bilateral symme-
try of the body and CTRNN architecture, only trials on one
side of the agent are necessary).

Five experiments were run. Each experiment was terminated
after 143 generations because each run required approxi-
mately five days on an unloaded Sun Ultra 1. Two typical
runs are shown in Figure 3. All runs exhibited a very simi-
lar progression. Initially, agents evolve that can only catch
objects falling near the agent’s initial position (i.e., for
which very little movement is necessary). However, as the
evolution progresses, the agents begin to catch objects in-
creasingly more peripheral to the their initial position. In
addition, as the evolution progresses, the accuracy with
which any given object is caught improves. By the end of
the search, the best agents can reliably catch objects falling
from all six initial positions.

The top three agents achieved final errors of 1.40, 1.65 and

Figure 4: Plots of actual vs. desired final position for the top
three walking agents. Note how closely the performance of these
agents approximates a diagonal line over the field of view.

12.73, respectively on the six evaluation trials, and errors of
9.19, 33.42 and 6.87, respectively on 2000 random trials.
All three best agents generalized quite well to initial object
positions other than the six they were evolved on, catching
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Figure 6: Neural activity of the key neurons in the best evolved visually-guided walker while it catches an object (corresponding to

the lower agent position trace in Figure 5). Before 1, the agent waits in place swinging its leg. At 1, the object intersects the left-

most proximity sensor S1; and the agent begins walking to the left. At 2, the object intersects the central proximity sensor SC and

the agent once again swings its leg in place. See text for a more detailed explanation of the neural interactions underlying the

switches between these different phases of behavior.

objects with good accuracy anywhere within the range over
which they evolved (Figure 4).

The behavior of the best agent on two trials is shown in
Figure 5. The best agent uses the following strategy. When
no object is visible, the agent remains in place with its foot
raised and its leg swinging back and forth. When an object
appears, the agent begins to alternate stance phases (where
the foot is down and the swinging leg moves the agent to-
ward the object) and swing phases (when the foot is up and
swinging back to prepare for the next stance) to walk toward
the object. Note that, for some initial conditions, the agent
waits longer to respond to the object than for others. Also
note that the pauses between steps vary in duration. As the
agent nears the object, the durations of the stance phases
decrease until the foot once again is held up while the leg
swings back and forth. The agent then waits in place with
the foot raised and the leg swinging back and forth until the
object reaches it.

Four of the five best agents evolved in these experiments
utilize a very similar strategy. However the worst of them
exhibits slightly different behavior. Instead of swinging its
leg back and forth while waiting for an object, this fifth
agent paces back and forth a small distance until it observes
a falling object.

4 ANALYSIS OF A VISUALLY-GUIDED
WALKER

How do the evolved visually-guided walkers work? Analyses
of evolved dynamical nervous systems for model agents can
give us both insights into general principles of evolved bio-
logical neural circuits and insights into the design and
evolution of more sophisticated artificial agents (Beer,
1997). Although space does not permit a rigorous mathe-
matical analysis (for examples of such analyses, see
(Gallagher & Beer, 1993; Beer, 1995; Chiel et al., in
press)), we will give a qualitative explanation for the opera-



tion of the best evolved visually-guided walker (Figure 6).
There are three questions that we would like to answer:
How is the basic leg oscillation generated? How do the
proximity sensors control the stance phase of this cycle so
as to position the agent under a falling object? How is
walking terminated once the agent is accurately positioned?

By selectively eliminating neurons from the circuit, it can
be shown that the basic leg oscillation is primarily generated
by the M, and My motor neurons and the leg angle sensors.
This subcircuit operates like other evolved sensory-driven
walking circuits that we have previously analyzed (Gallagher
& Beer, 1993; Gallagher, 1998), with feedback from the leg
angle sensor switching the M,;/My circuit through a
multistable regime separating two different fixed point at-
tractors. Note that this oscillation is symmetric. When the
agent is actually walking, this circuit exhibits an asymmetry
between stance and swing phase duration due to the different
inertias of the body and the leg (Beer et al., in press).

How is the M,;/M; subcircuit switched between swinging
the leg in place and walking when an object appears? In this
circuit, only SC and the left/right pairs of the S1 and S6
proximity sensors are sensitive to objects. When any of the
S1 pairs or S6 pairs intersects an object, its output goes to
nearly 1 (Figure 6, marker 1). This strongly inhibits the A
interneuron on the same side of the body, turning it off.
Normally, the foot motor neuron exhibits small oscillations
during swinging behavior which are below the threshold for
putting the foot down. A lack of inhibition from A allows
the foot motor neuron FT to turn on, putting the foot down
and generating a stance phase that moves the agent. Interest-
ingly, because the A interneuron is phase-locked to the
oscillations in M; /Mg, S1 can only shut it off (and hence
force the foot down) when the leg is swinging toward the
same side, generating a step in the correct direction. With
the foot motor neuron on, excitation to interneuron A causes
A to turn back on, re-establishing the swinging behavior
until the object once again intersects one of the active prox-
imity sensors and the stepping cycle repeats.

Note that the fact that only SC and the left/right pairs of S1
and S6 proximity sensors are sensitive to objects explains
the earlier observation that the agent begins to respond to
objects at differing distances for different initial positions
(Figure 5). If an object falls between S1 and S6, it won’t
be detected by the agent until it falls far enough to intersect
S1. This also explains the fact that the agent sometimes
pauses between steps (Figure 5). Because the other proxim-
ity sensors are not sensitive to objects, a step that places the
object between S1 and S6 will produce a pause until the S1
proximity sensor is activated as the object continues to fall.
These episodes of swinging behavior can easily be seen be-
tween the two steps shown in Figure 6 (between markers 1
and 2).

130

Actual
o

-130 0 130

Desired

Figure 7: Plots of actual vs. desired final position for two
short-term memory agents. Note that one approximates a di-
agonal line for a wide range (thin black trace) and the other
appears to have memorized a set of positions (thin gray trace)

How is walking terminated once the agent is accurately posi-
tioned beneath an object? When the center proximity sensor
SC jumps to 1 due to an object intersection, it strongly
inhibits the M, and My motor neurons (Figure 6, marker 2).
In addition, when A; comes back on, it further inhibits the
M, /M, oscillator. These combined effects shift the M, /My
oscillator and its interaction with A, and, through A, S1,
into a new mode in which the foot motor neuron can never
get above threshold. Therefore, the foot no longer goes
down and the agent simply waits in place, swinging its leg.

Qualitatively, the best agents evolved in the other four ex-
periments work in a similar fashion. FEach of them also
exhibits a sensory-driven swing oscillator that is switched
into a stepping mode by the interneurons. The main differ-
ence is that, in the agent that paces back and forth while
waiting for an object, the activity of FT sometimes go
above threshold even when no object is present. Of course,
the details of which proximity sensors are sensitive to ob-
jects and how the interneurons switch the swing oscillator
into walking mode vary greatly from agent to agent.

S SHORT-TERM MEMORY
EXPERIMENTS

Most nontrivial behavior requires the integration of experi-
ences across time and the ability to initiate actions
independent of an agent’s immediate circumstances. In other
words, they require some sort of internal state or memory.
Of course, because any CTRNN is a dynamical system, its
response to a given input will automatically be dependent on
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Figure 8: Neural activity of the key neurons in the best evolved short-term memory agent while it catches an object. All traces are
labeled with the names of associated neurons as defined in Figure 2 except that FT has been renamed to reflect the fact that, for short-
term memory agents, that neuron is merely an interneuron with no pre-designated function. The gray vertical bar denotes the time at

which the agent begins to move and loses its sight.

its state and thus its previous history of interactions. In this
sense, even the visually-guided walkers depend on a form of
short-term memory for their operation. Some have argued
that only tasks that require an agent to coordinate its behav-
ior with environmental features that are not immediately
present are sufficiently “representation hungry” to be of cog-
nitive interest (Clark, 1997). As a first step in this
direction, we sought to evolve agents that could catch ob-
jects after only briefly observing their initial position and
then moving to the correct location while blind to the ob-
ject’s subsequent motion.

The experimental setup for the short term memory experi-
ments was nearly identical to that for the visually-guided
walking experiments (Figure 1). However, Newtonian dy-
namics were replaced by first-order dynamics (F = mVv) and
the leg was replaced by a pair of pure velocity effectors. The
circuit architecture was also identical to that used in the
visually-guided walking experiments (Figure 2), except for
the following changes. First, the outputs of M; and My
now control the left and right effectors which sum to pro-
duce a net velocity. Second, FT is now an interneuron with
no pre-specified function. Third, the angle sensors were
removed along with the leg. The proximity sensors operated
as before except that once the agent exceeds a velocity
threshold of 0.01 the outputs of all sensors are permanently
set to zero. This requires the agent to anticipate when it has

reached an object’s position even though it cannot directly
observe the object.

Three experiments were run using the same error measure
described earlier. Each experiment was terminated after ap-
proximately 200 generations, requiring approximately one
week on an unloaded Sun Ultra 1. Two of the three experi-
ments evolved agents that could perform the task fairly well,
with final errors of 164.86 and 222.53 on the six evaluation
trials and 237.58 and 138.59 respectively on 2000 random
trials. While not as good as the visually-guided walkers
(Figure 4), the accuracy of these two agents is still reasona-
bly good over much of the range over which they were
evolved (Figure 7), especially given the fact that they have
no perception of the falling object as they move.

Each of the best agents evolved in the two successful ex-
periments adopted slightly different strategies. Both agents
wait at their initial position and watch the falling object for
some period of time. They then move to their final position
with a one time activation of the appropriate effector that
decays to zero at the right position. One of the two agents
seems to have memorized a number of stereotyped positions
to which it can move and is incapable of interpolating be-
tween them (gray trace in Figure 7). This agent had the
smaller error on the six evaluation trials, but the higher error
on the random trials. The other agent seems to be able to



catch objects reasonably accurately across most of the range,
erring only on objects that are near the center or the periph-
ery of its field of view (black trace in Figure 7). Because
this agent did not overspecialize on the six evaluation trials,
it scored worse on them but better on the 2000 random tri-
als. The neural activity of the key neurons in this agent as
it catches an object is shown in Figure 8.

6 CONCLUSIONS

In this paper, we have extended our previous work on the
evolution of dynamical “nervous systems” for minimally
cognitive behavior in two ways. First, we have examined a
visually-guided walking task which integrates an object ori-
entation problem with a nontrivial motor control problem.
Second, we have examined a task requiring short-term mem-
ory, in which an agent’s behavior in the present must be
coordinated with an object it has observed in the past. These
results demonstrate the potential of this approach and sug-
gest that it may be possible to incrementally extend it to
more sophisticated behaviors. Current work is focused on
evolving dynamical neural networks for such capabilities as
focus of attention, object manipulation, and self/nonself
discrimination.

We have also examined the operation of some of the neural
circuits that we have evolved. Previously, the mathematical
tools of dynamical systems theory have been successfully
employed in the analysis of a variety of CTRNNs (Gallagher
& Beer, 1993; Beer, 1995; Chiel et al., in press; Beer et al.,
in press). Work is currently underway to extend these analy-
ses to more sophisticated evolved agents, such as those
capable of visually-guided object discrimination, which fo-
veate and actively scan objects before deciding whether to
catch or avoid them (Beer, 1996). One thing that is clear
from these analyses is that the dynamics of evolved circuits
is usually subtle and counter-intuitive. The memory agents
would be especially interesting to analyze. How do these
agents “remember” the location of an object that they can no
longer see? Is this location represented in the activation of
an individual neuron or a group of neurons? If so, how does
the agent’s initial perception of the object store its location
and how is this stored location updated as the agent moves?
If not, then how are we to explain the dynamical basis of
these agents’ anticipatory behavior? How might this expla-
nation change if the objects fell diagonally rather than
vertically, requiring a more sophisticated form of prediction?
These are the kinds of questions that we hope to answer as
this research progresses.
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