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ABSTRACT
The fitness landscape of a problem is the relation between
the solution candidates and their reproduction probability.
In order to understand optimization problems, it is essential
to also understand the features of fitness landscapes and
their interaction. In this paper we introduce a model prob-
lem that allows us to investigate many characteristics of fit-
ness landscapes. Specifically noise, affinity for overfitting,
neutrality, epistasis, multi-objectivity, and ruggedness can
be independently added, removed, and fine-tuned. With this
model, we contribute a useful tool for assessing optimization
algorithms and parameter settings.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Com-

plexity]: Numerical Algorithms and Problems; G.1.6
[Numerical Analysis]: Optimization; H.1.1 [Models

and Principles]: Systems and Information Theory; I.2.0
[Artificial Intelligence]: General

General Terms
Experimentation, Measurement, Theory

Keywords
Genetic Algorithm, Fitness Landscape, Multi-Objective,
Epistasis, Ruggedness, Neutrality, Model, Benchmark

1. INTRODUCTION
Many real-world problems can be solved very efficiently by

probabilistic optimization methods like evolutionary algo-
rithms. However, some frequently occurring characteristics
cause difficulties for optimization techniques. Some of the
most important features that influence the problem hard-
ness for probabilistic optimizers are the problem size, affin-
ity for overfitting and oversimplification, neutrality, epista-
sis, multi-objectivity, ruggedness, and deceptiveness. Often,
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the influence of these features on the progress of optimiza-
tion and their interactions with each other are unclear and
complicated in real-world applications. Hence, our goal is
to find a common approach for studying them and to define
simple model problems where they become tangible. We are
confident that the analysis of these features will lead to the
development of more robust and more efficient optimization
methods.

The main contribution of this paper is a new model prob-
lem that exhibits all of the aforementioned features in a
controllable manner. Each of them is introduced as a dis-
tinct filter component in the problem which can separately
be activated, deactivated, and fine-tuned. The model prob-
lem is comprehensive, yet simple. It allows for extensive
experiments being conducted in a small timeframe, making
it an ideal tool to assess different optimization algorithms
or parameter settings. Additionally, it is also well suited for
theoretical analysis because of its simplicity.

The paper is organized as follows. In Section 2, we will
present several features which are well known to influence
the quality and efficiency of optimization techniques. Some
inspiring related work is outlined in Section 3. In Section 4,
we propose our new model problem. We substantiate the
considerations that were used for defining our model with
some first experimental results provided in Section 5. We
finally conclude and give pointers to future work in Section 6.

2. FITNESS LANDSCAPES
In biology, a fitness landscape is the visualization of the

relationship of the genotypes to their corresponding repro-
duction probability [44, 18, 13, 5]. In global optimization
algorithms, it displays the relation of the reproduction op-
erations, the solution candidates, and their fitness or objec-
tive values [23, 21, 9]. In genetic algorithms, we distin-
guish between genotypes and phenotypes. The genotypes,
the elements of the search space G, are bit strings of fixed
or variable length [15]. They are translated to phenotypes
in the problem space X with a genotype-phenotype map-
ping (GPM) as illustrated in Figure 1. The problem space
can virtually be anything, from the real numbers, the possi-
ble combinations of different accessories for a car, to, as in
case of the example, the points in a two-dimensional plane.
m ≥ 1 objective functions represent the criteria subject to
optimization. They rate the qualities of the features of the
phenotypes and, by doing so, map them to points in the ob-
jective space (usually R

m). Especially if multiple criteria are
to be optimized (m > 1), the objective values are mapped to
fitness values in R

+. The genetic algorithm uses this infor-
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Figure 1: The relation of search space, problem space, and
objective space.

mation to determine which solution candidates are worthy
of further exploration. New points in the search space are
generated by applying reproduction operators on the geno-
types. In general, this flow is the same for all optimization
algorithms although they differ in the way they conduct the
search [35].

The shape of the fitness landscape has a major impact
on the quality of the solutions found by the optimization
process. In this section, we discuss some of the basic features
of fitness landscapes and how they influence each other.

2.1 Ruggedness and Causality
It is a general rule for genotype design that it should ex-

hibit causality [29, 28]. The principle of strong causality (lo-
cality) states that small changes in an object lead to small
changes in its behavior [32, 33]. In rugged fitness landscapes,
this is not the case: small changes in an individual’s geno-
type often cause large changes in its fitness. This hinders an
optimization algorithm in finding and climbing a gradient in
objective space. A region of the fitness landscape is decep-
tive if performing a gradient descend does not lead towards
a solution but instead away from it. Ruggedness and de-

ceptiveness are closely related. Matter of fact, in the model
proposed in this work, there is a smooth transition between
the two phenomena.

2.2 Epistasis
In biology, epistasis is defined as a form of interaction

between different genes. It was coined by Bateson [2] in or-
der to describe how one gene can suppress the phenotypical
expression of another gene. According to Lush [22, 1], the
interaction between genes is epistatic if the effect on the fit-
ness from altering one gene depends on the allelic1 state of
other genes.

Epistasis in evolutionary algorithms means that a change
in one property of a solution candidate, induced by a repro-
duction operator, also leads to a change in some of its other
properties [4, 27]. We speak of minimal epistasis when ev-
ery gene is independent of every other gene and of maximal
epistasis if every genes is dependent on every other gene [31,
26].

Epistasis violates the locality principle previously dis-
cussed, since a modification in a genotype will alter multiple
properties of a phenotype, probably leading to ruggedness
in the fitness landscape.

2.3 Neutrality
We call the application of a reproduction operator to a

solution candidate neutral if it yields no relevant change in
objective space. Redundancy in the genome (multiple geno-
types that translate to the same phenotype) always leads to
neutrality. Neutrality and redundancy exist both in natu-
ral as well as in artificial evolution [40, 39]. Neutrality may
have positive [38, 37] as well as negative [34, 36] effects on
the optimization process.

2.4 Overfitting and Oversimplification
Overfitting and oversimplification are very common phe-

nomena in all applications where the objective functions are
evaluated using sample data as is the case in many appli-
cations of Genetic Programming like function fitting and
symbolic regression, for instance. Both, overfitting and over-
simplification, lead to solutions that work correctly with the
data samples used during training but fail to deliver accept-
able results for inputs not occurring in the training set.

If training sets only represent a fraction of the input space,
the resulting incomplete coverage may fail to represent some
of the dependencies and characteristics of the data, leading
to oversimplified solutions. Noise in the training data can
lead to wrong assumptions. The optimizer may for example
try to find a “model” for the noise [25] and thus overfits the
sample data. It should be noted that an overfitted individual
can even have better a fitness than the correct solution itself
when evaluated using the training data [25].

2.5 Multi-Objectivity
Many optimization problems are multi-objective, i. e., in-

volve multiple, possible conflicting criteria [6, 3, 10]. In
Genetic Programming, for instance, we want to evolve algo-
rithms which are not only correct but also small and resource
friendly.

1A gene in the context of evolutionary algorithms is a part
of a genotype which encodes a distinguishable part of a phe-
notype and an allele is its value.
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3. MODELING AND BENCHMARKING
The computational effort to solve optimization problems

depends on their fitness landscapes. It is thus beneficial to
understand the features previously discussed. We can obtain
such knowledge by artificially creating problems that exhibit
some of them in a tunable manner. Using these problems,
we can run practical experiments as well as derive hardness
measures mathematically.

3.1 Kauffman’s NK Fitness Landscapes
In the late 1980s, Kauffman defined the NK fitness land-

scape [19, 17, 20], a family of fitness functions with tunable
epistasis, in an effort to investigate the links between epis-
tasis and ruggedness.

The phenotypes of this problem are bit strings of the
length N (X = {0, 1}N ). In terms of the NK landscape, only
one single objective function is used: FN,K : {0, 1}N 7→ R

+

and each bit contributes one value to this objective. The
“fitness” fi of a bit x[i] is determined by its value and
the values of K other bits x[i1], x[i2], . . . , x[iK ] with i1...K ∈
[0, N − 1] \ {i}, called its neighbors.

FN,K(x) =
1

N

N−1
∑

i=0

fi(x[i], x[i1], x[i2], . . . , x[iK ]) (1)

Whenever the value of a bit changes, the fitness values
of all the bits to whose neighbor set it belongs will change
uncorrelated to their previous state. If K = 0, there is no
epistasis at all. For K = N − 1 the epistasis is maximized
and the fitness contribution of each gene depends on all other
genes.

We can consider the fi as single objective functions that
are combined to a fitness value FN,K by averaging. Then,
NK Fitness landscapes can lead to another well known as-
pect of multi-objective optimization: conflicting criteria. An
improvement in one objective may very well lead to degen-
eration in another one.

The properties of the NK landscapes have intensely been
studied in the past, most notably by Kauffman [18], Wein-
berger [41], and Fontana et al. [11].

3.2 The Royal Road
The Royal Road Functions [16, 24, 12] are a set of special

fitness landscapes for genetic algorithms with fixed-length
bit string genomes. In genetic algorithms, schemas are
blueprints of binary strings that may contain don’t care-
symbols (*) at different loci [15]. The Royal Road Functions
define a set S of such schemas s1, s2, . . . , sn and an objective
function, subject to maximization, as

f(x) =
∑

∀s∈S

c(s)σ(s, x) (2)

where x is the solution candidate, c(s) is a value assigned
to the schema s (usually its order), and σ(s, x) is one if x

is an instance of s and zero otherwise. Listing 1 outlines an
example for the Royal Roads.

s1 = 11******; c(s1 ) = 2
s2 = **11****; c(s2 ) = 2
s3 = ****11**; c(s3 ) = 2
s4 = ******11; c(s4 ) = 2
s5 = 1111****; c(s5 ) = 4
s6 = ****1111; c(s6 ) = 4

s7 = 11111111; c(s7 ) = 8

Listing 1: An example Royal Road Function.

The original Royal Road problems can be defined for bi-
nary string genomes of any given length n, as long as n is
fixed. A Royal Road benchmark for variable-length genomes
has been defined by Defoin Platel et al. [7]. In [8], the
same authors combine their previous work on the Royal
Road with Kauffman’s NK landscapes and introduced the
Epistatic Road.

An analogue of the Royal Road for Genetic Programming
has been specified by Punch et al. [30]. This Royal Tree
problem specifies a series of functions A, B, C, . . . with
increasing arity, i. e., A has one argument, B has two ar-
guments, C has three, and so on. Additionally, a set of
terminal nodes x, y, z is defined. A perfect tree has a cer-
tain predefined depth. Its root is a A node, which has B

nodes as children which, in turn, have C nodes attached to
them and so on.

4. MODEL DEFINITION
The goal of our research presented in this paper was to

define a model problem with tunable ruggedness, epistasis,
neutrality, multi-objectivity, overfitting, and oversimplifica-
tion features. The distinct layers of this problem, each in-
troducing one of these aspects independently, are outlined
using an example in Figure 2 and are specified in the follow-
ing sections.

The basic problem is to find a binary string x⋆ of a prede-
fined length n consisting of alternating zeros and ones. The
tuning parameter for the problem size is n ∈ N.

x
⋆ = 0101010101010 . . . 01, |x⋆| = n (3)

4.1 Overfitting and Oversimplification
Searching this optimal string could be done by comparing

each genotype g with x⋆. Therefore we would use the Ham-
ming distance [14], which defines the difference between two
binary strings a and b of equal length as:

h(a, b) = |{∀i : a[i] 6= b[i] ∧ 0 ≤ i < |a|}| (4)

Instead of doing this directly, we test the solution can-
didate against t data samples. These samples are modified
versions of the perfect string x⋆.

As outlined in Section 2.4, we can distinguish between
overfitting and oversimplification. The latter is caused by
incompleteness of the tests and the former can originate from
noise in the test cases. Both forms can be expressed in
terms of our model by the objective function fε,o,t (based
on a slightly extended version of the Hamming distance h∗)
which is subject to minimization.

h∗(a, b) = |{∀i : a[i] 6= b[i] ∧ b[i] 6= ∗ ∧ 0 ≤ i < |a|}| (5)

fε,o,t(x) =
t

∑

i=1

h∗(x, testi), fε,o,t ∈ [0, (n − o)t] (6)

In the case of oversimplification, the perfect solution x⋆

will always reach a perfect score in all tests. There may
be incorrect solutions reaching this value in some cases too,
because some of the facets of the problem are hidden. We

797



010001100000111010000gÎG

Genotype

t 5, 1, o 1= e= =

Introduction of Overfitting

* 010 01
0101*0
0 01 1* 1
01 011*

100110 011010

test1

test2

test3

test4

h 4*=
h 2=*

h 5=*

h 3=*
h 2=*

h 2=*

h 2=* h 3=*

f (x ) 161,1,5 1 =* f (x ) 141,1,5 2 =*

1 *1 101test5 h 3=* h 4=*

Introduction of Neutrality

u (g)2 ÎG

m=2 01 00 01 10 00 00 11 10 10 00

1 0 1 1 0 0 1 1 1 0

0

h=4

Introduction of Epistasis

1011 0011 10

1001 0110 11

e4 e4 e2

insuffient bits,
at the end, use

2 instead of

4

h=

h=

m 2, n 6= =

Multi-Objectivity and Phenotype

100110 011010

1 0 0 1 0 1 1 0 1 1

x1 x2

x«[5] 0=

padding:

(x ,x )1 2 ÎX

g=57, q 25=

Introduction of Ruggedness

f (x ) 161,1,5 1 =*

r f (x ) 1757 1,1,5 1[ ]=*

f (x ) 141,1,5 2 =*

r f (x )) 1557 1,1,5 2 =[ ]*
(D = )(r ) 82g=57

g =` 34

Figure 2: An example for the fitness landscape model.

take this into consideration by placing o don’t care symbols
(∗) uniformly distributed into the test cases. The values of
the solution candidates at their loci have no influence on the
fitness.

When overfitting is enabled, the perfect solution will not
reach the optimal score in any test case because of the noise
present. Incorrect solutions may score better in some tests
and even outperform the real solution if the noise level is
high. Noise is introduced in the test cases by toggling ε of the
remaining n−o bits, again following a uniform distribution.
An optimization algorithm can find a correct solution only if
there are more training samples with correctly defined values
for each locus than with wrong or don’t care values.

4.2 Neutrality
We can create a well-defined amount of neutrality during

the genotype-phenotype mapping by applying a transforma-

tion uµ that shortens the solution candidates by a factor µ.
The ith bit in uµ(g) is defined as 0 if and only if the majority
of the µ bits starting at locus i ∗ µ in g is also 0, and as 1
otherwise. The default value 1 set in draw situations has (in
average) no effect on the fitness since the target solution x⋆

is defined as a sequence of alternating zeros and ones. If the
length of a genotype g is not a multiple of µ, the remaining
|g| mod µ bits are ignored. The tunable parameter for the
neutrality in our model is µ. If µ is set to 1, no additional
neutrality is modeled.

4.3 Epistasis
Epistasis in general means that a slight change in one gene

of a genotype influences some other genes. We can introduce
epistasis in our model as part of the genotype mapping and
apply it after the neutrality transformation. We therefore
define a bijective function eη that translates a binary string
z of length η to a binary string eη(z) of the same length.
Assume we have two binary strings z1 and z2 which differ
only in one single locus, i. e., their Hamming distance is one.
eη introduces epistasis by exhibiting the following property:

h(z1, z2) = 1 ⇒ h(eη(z1), eη(z2)) ≥ η − 1 ∀z1,z2∈{0,1}η (7)

The meaning of Equation 7 is that a change of one bit in
a genotype g leads to the change of at least η− 1 bits in the
corresponding mapping eη(g). This, as well as the demand
for bijectivity, is provided if we define eη as follows:

eη(z) =











eη(z)[i] =
⊗

z[j]

∀j:0≤j<η∧

j 6=(i−1) mod η

∀z:0≤z<2η−1

eη(z − 2η−1) otherwise

(8)

In other words, for all strings z ∈ {0, 1}η which have the
most significant bit (MSB) not set, the eη transformation is
performed bitwise. The ith bit in eη(z) equals the exclusive
or combination of all but one bit in z. Hence, each bit
in z influences the value of η − 1 bits in eη(z). For all z

with 1 in the MSB, eη(z) is simply set to the negated eη

transformation of z with the MSB cleared (the value of the
MSB is 2η−1). This division in e is needed in order to ensure
its bijectiveness. This and the compliance with Equation 7
can be shown with a rather lengthy proof omitted here.

In order to introduce this model of epistasis in genotypes
of arbitrary length, we divide them into blocks of the length
η and transform each of them separately with eη. If the
length of a given genotype g is no multiple of η, the remain-
ing |g| mod η bits at the end will be transformed with the
function e|g| mod η instead of eη, as outlined in Figure 2.

It may be an interesting fact that the eη transformations
are a special case of the NK landscape discussed in Sec-
tion 3.1 with N = η and K ≈ η − 2.
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Figure 3: An example for the epistasis mapping z → e4(z).
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The tunable parameter η for the epistasis ranges from 2
to n ∗m, the product of the basic problem length n and the
number of objectives m (see next section). If it is set to a
value smaller than 3, no additional epistasis is introduced.
Figure 3 outlines the mapping for η = 4.

4.4 Multi-Objectivity
A multi-objective problem with m criteria can easily be

created by interleaving m instances of the benchmark prob-
lem with each other and introducing separate objective func-
tions for each of them. Instead of just dividing the genotype
g in m blocks, each standing for one objective, we scatter the
objectives as illustrated in Figure 2. The bits for the first
objective comprise x1 = (g[0], g[m], g[2m], . . . ), those used by
the second objective x2 = (g[1], g[m+1], g[2m+1], . . . ). Notice
that no bit in g is used by more than one objective. Super-
fluous bits (beyond index nm − 1) are ignored. If g is too
short, the missing bits in the phenotypes are replaced with
the complement from x⋆, i.e., if one objective misses the last
bit (index n − 1), it is padded by x⋆[n−1] which will worsen
the objective by 1 on average.

Because of the interleaving, the objectives will begin to
conflict if epistasis (η > 2) is applied, similar to NK land-
scapes. Changing one bit in the genotype will change the
outcome of at most min{η, m} objectives. Some of them
may improve while others may worsen.

A non-functional objective function minimizing the length
of the genotypes is added if variable-length genomes are used
during the evolution. If fixed-length genomes are used, they
can be designed in a way that the blocks for the single ob-
jectives have always the right length.

4.5 Ruggedness
In an optimization problem, there can be at least two

(possibly interacting) sources of ruggedness of the fitness
landscape. The first one, epistasis, has already been mod-
eled and discussed. The other source concerns the objective
functions themselves, the nature of the problem. We will
introduce this type of ruggedness a posteriori as a permu-
tation r : [0, q] 7→ [0, q] of the objective values (where q is a
convenient abbreviation for the maximum possible objective
value (n − o)t).

Before we do that, let us shortly outline what makes a
function rugged. Ruggedness is obviously the opposite of
smoothness and causality. In a smooth objective function,
the objective values of the solution candidates neighboring in
problem space are also neighboring. In our original problem
with o = 0, ε = 0, and t = 1 for instance, two individuals
differing in one bit will also differ by one in their objective
values. We can write down the list of objective values the
solution candidates will take on when they are stepwise im-
proved from the worst to the best possible configuration as
(q, q − 1, .., 2, 1, 0). If we exchange two of the values in this
list, we will create some artificial ruggedness. A measure for
the ruggedness of such a permutation r is ∆(r):

∆(r) =

q−1
∑

i=0

|ri − ri+1| (9)

The original sequence of objective values has the minimum
value ∆min = q and the maximum possible value is ∆max =
q(q+1)

2
. There exists at least one permutation for each ∆

value in ∆min..∆max.

We can hence define the permutation rγ which is applied
after the objective values are computed and which has the
following features:

1. It is bijective (since it is a permutation).

2. It must preserve the optimal value, i. e., rγ [0] = 0.

3. ∆(rγ) = ∆min + γ.

With γ ∈ [0, ∆max − ∆min], we can fine-tune the rugged-
ness. For γ = 0, no ruggedness is introduced. For a given
q, we can compute the permutations rγ with the procedure
buildRPermutation(γ, q) defined in Algorithm 1.

Algorithm 1: rγ = buildRPermutation(γ, q)

Input: γ the γ value
Input: q the maximum objective value
Result: rγ the permutation rγ

permutate(γ, r, q, start)1

begin2

if γ > 0 then3

if γ ≤ (q − 1) then4

permutate(γ − 1, r, q, start)5

exchangeElementsAtIndex(r, q, q − γ)6

else7

i←−
⌊

start+1
2

⌋

8

if (start mod 2) = 0 then9

i←− q + 1− i10

d←− −111

else d←− 112

j ←− start13

while j ≤ q do14

r[j]←− i15

i←− i + d16

j ←− j + 117

permutate(γ − q + start, r, q, start + 1)18

end19

begin20

r ←− (0, 1, 2, .., q − 1, q)21

return permutate(γ, r, q, 1)22

end23

fDr0=5 fDr =61 fDr =72 fDr =83

r0[f] r1[f] r2[f] r3[f]

f

r4[f]

Dr =94 fDr =116fDr =105 fDr =127

r6r5 r7

fDr =1510fDr =149

r10r9

fDr =138

r8

Figure 4: An example for rγ with γ = 0..10 and q = 5.
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Figure 4 outlines all ruggedness permutations rγ for an
objective function which can range from 0 to q = 5. As
can be seen, the permutations scramble the objective func-
tion more and more with rising γ and reduce its gradient
information.

5. FIRST EXPERIMENTAL RESULTS
In this section, we will provide a selection of the first ex-

perimental results which have been obtained with our model.
For the tests, we have used a standard genetic algorithm
with population size 1000, single-point crossover, single-bit
mutation, and a variable-length bit string genome with a
maximum string length of 8000 bits. In each test, we ap-
plied a non-functional objective minimizing the length of the
strings. We suggest using these settings as default setup for
all experiments involving our model in order to keep the re-
sults comparable. Furthermore, we have used tournament
selection with tournament size 5 and Pareto ranking for fit-
ness assignment. For each experimental setting, at least 50
runs have been performed.

5.1 Basic Complexity
In the experiments, we distinguish between success and

perfection. Success means finding individuals x of optimal
functional fitness, i. e., fε,o,t(x) = 0. Multiple such success-
ful strings may exist, since superfluous bits at the end of
genotypes do not influence their functional objective. The
perfect string x⋆ has no such useless bits, it is the shortest
possible solution with fε,o,t = 0 and, hence, also optimal
in the non-functional length criterion. We will refer to the
number of generations needed to find a successful individual
as success generations.
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Figure 5: The basic problem hardness.

In Figure 5, we have computed the minimum, average, and
maximum number of the success generations for values of n

ranging from 8 to 800. As illustrated, the problem hardness
increases smoothly with rising string length n. Trimming
down the solution strings to the perfect length becomes more
and more complicated with growing n. This is likely because
the fraction at the end of the strings where the trimming is
to be performed will shrinks in comparison with its overall
length.

5.2 Ruggedness

Figure 6: Experimental results for the ruggedness.

In Figure 6, we plotted the average success generations
with n = 80 and different ruggedness settings γ. Interest-
ingly, the gray original curve behaves very strange. It is
divided into alternating solvable and unsolvable2 problems.
The unsolvable ranges of γ correspond to gaps in the curve.
With rising γ, the solvable problems require more and more
generations until they are solved. After a certain γ threshold
value, the unsolvable sections become solvable. From there
on, they become simpler with rising γ. At some point, the
two parts of the curve meet.

Algorithm 2: γ = translate(γ′, q)

begin1

l←−
q(q−1)

22

i←−
⌊ q

2

⌋

∗

⌊

q+1
2

⌋

3

if γ ≤ i then4

j ←−

⌊

q+2
2
−

√

q2

4
+ 1− γ

⌋

5

k ←− γ − j (q + 2) + j2 + q6

return k + 2
(

j (q + 2)− j2 − q
)

− j7

else8

j ←−

⌊

(q mod 2)+1
2

+
√

1−(q mod 2)
4

+ γ − 1− i

⌋

9

k ←− γ − (j − (q mod 2)) (j − 1)− 1− i10

return l− k − 2j2 + j − (q mod 2) (−2j + 1)11

end12

The reason for this behavior is rooted in the way that we
construct the ruggedness mapping r and illustrates the close
relation between ruggedness and deceptiveness. Algorithm 1
alternates between creating groups of mappings that are
mainly rugged and such that are mainly deceptive. In
Figure 4, for instance, from γ = 5 to γ = 7, the permutations
also exhibit a high degree of deceptiveness while before and
after that range they are just rugged. The black curve in
Figure 6 depicts the results of rearranging the γ-values with
Algorithm 2. This algorithm maps deceptive gaps to higher
γ-values and ensures continuity of the resulting curve. Now

2We call a problem unsolvable if it has not been solved
within 1000 generations.
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the mappings feature a stepwise transition from normal to
rugged to deceptive from the left to the right.3
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Figure 7: Experiments with the rearranged ruggedness.

Figure 7 sketches the average success generations for the
rearranged ruggedness problem for multiple values of n and
γ′. Depending on the basic problem size n, the problem
hardness increases steeply with rising values of γ′.

5.3 Epistasis
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Figure 8: Experimental results for different epistasis values.

Figure 8 illustrates the relation between problem size n,
the epistasis factor η, and the average success generations.
Although rising epistasis makes the problems harder, the
complexity does not rise as smoothly as in the previous
experiments. The cause for this is likely the presence of
crossover – if mutation was allowed only, the impact of epis-
tasis would most likely be more intense. Another interesting
fact is that experimental settings with odd values of η tend
to be much more complex than those with even ones. We
are currently investigating the reason for this phenomenon.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a model problem provid-

ing tunable overfitting and oversimplification affinity, epista-
sis, neutrality, ruggedness, and multi-objectivity. Up until

3This is a deviation from our original idea, but this idea did
not consider deceptiveness.

now, only models incorporating a subset of these features
of the fitness landscape were available. Additionally, the
effects of the parameter settings of these models on the fea-
tures were often not obvious and only indirectly tangible.

In our model on the other hand, we can not only study
all the mentioned features but also have parameters to tune
them in a simple and plain manner. Of course, some of the
features of the fitness landscape interact with each other as
we have mentioned before (see Section 2.2 and Section 3.1).
Our model, however, comes very close to separating them
and allows deactivating certain aspects as far as possible for
some experiments.

One part of our future work is to learn more about the
impact of the model settings on the optimization process.
We will therefore perform many more experiments. This
will provide us with more empiric data on how the features
of the fitness landscape influence the success probability of
optimization. We also aim at establishing our model as
a benchmark that can help to evaluate optimization algo-
rithms in different situations in an unbiased manner.

Our other work [43, 42] focuses on an area of Genetic Pro-
gramming which is very prone to high epistasis. We hope
that the settings for evolutionary algorithms that perform
well with the epistasis in our model will also prove to be use-
ful for GP. For finding such settings, this benchmark has the
advantage that experiments run very fast with it, while GP
is rather time consuming if it involves complex simulations.
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