
Subheuristic Search and Scalability in a
Hyperheuristic

Robert E Keller, Riccardo Poli
Dept. of Computing and Electronic Systems, University of Essex, Colchester, United Kingdom

robert.e.keller@gmx.net, rpoli@essex.ac.uk

ABSTRACT
Our previous work has introduced a hyperheuristic (HH) approach
based on Genetic Programming (GP). There, GP employs user-
given languages where domain-specific local heuristics are used
as primitives for producing specialised metaheuristics (MH). Here,
we show that the GP-HH works well with simple generic languages
over subheuristic primitives, dealing with increases of problem size
and reduction of resources. The system produces effective and effi-
cient MHs that deliver best results known in a chosen test domain.
We also demonstrate that user-given, modest domain information
allows the HH to produce an improvement over a previous best re-
sult from the literature.
Categories and Subject Descriptors Artificial Intelligence [Problem Solving, Con-
trol Methods, and Search]: Heuristic methods General Terms Algorithms Experi-
mentation Languages

1. INTRODUCTION
A hyperheuristic is a heuristic that builds MHs that solve a given

problem. In [2] we proposed a GP-HH that allows its user to de-
fine different domain-specific target languages in which the HH ex-
presses its evolved MHs, making it a more generic solver. Here,
we suggest that the GP-HH may further improve its search be-
haviour, by using elementary components of local heuristics, so
that it evolves its MHs by also employing these basic, subheuristic
primitives, and by using user-provided knowledge.

The GP-HH accepts the definition of a language in which it ex-
presses MHs for D, an arbitrary domain of problems. To give such
a description, one may represent search methods for D, e.g., low-
level heuristics or proven MHs, as components of a grammar, G,
that produces its language, L(G). In this manner, s ∈ L(G) defines
a MH for D. Then, any form of grammar-based GP over L(G) is a
HH for D. An individual MH is represented as g ∈ L(G). T shall
designate the set of terminals of G. L(G)⊂T∗, the set of all strings
over T . We call a terminal t ∈ T a primitive. Primitives may repre-
sent manually created MHs, local heuristics, or subheuristics, i.e.,
parts of local heuristics.

Starting a run of the GP-HH, initialisation produces random se-
quences from T ∗ that have the same length. Until some termination
criterion is met, selection, reproduction, and mutation of a MH take
place in an iterative fashion. If a sequence s 6∈ L(G), EDITING [2]
will turn it into a string from L(G). A MH, M, holds an individual
repetition value, i, that determines how often an iterative primitive
of M is repeated at most. The GP-HH co-evolves the population
and its ivalues. To that end, the used flavour of tournament selec-
tion favours higher fitness, as usual, as well as lower ivalues.

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

metaheuristic ::= NATURAL
| NATURAL search

search ::= heuristic
| heuristic search

heuristic ::= 2-CHANGE
| loop IF_2-CHANGE
| loop IF_3-CHANGE

loop ::= REPEAT_UNTIL_IMPROVEMENT
| /* empty */

Figure 1: Description of language Complete.

heuristic ::= 2-CHANGE
| loop IF_2-CHANGE
| loop IF_3-CHANGE
| SWAP_NODE

Figure 2: Language Swap. Other rules as given in Figure 1.

2. RESULTS
The set of travelling salesperson problems (TSP) is an appropri-

ate domain for experiments. With n nodes of a problem given, one
describes a cycle (tour) as a permutation of nodes, p =(v0, ...,vn−1),
over {0, ...,n− 1}. We call permutation (0,1, ...,n− 1) the natu-
ral cycle of the problem. The primitive NATURAL creates this cycle.
For a tour, the low-level heuristic 2-CHANGE, when given two edges
(a,b),(c,d) : a 6= d, b 6= c, replaces them with (a,c),(b,d). There-
fore, when a produced MH M is about to call 2-CHANGE, it ran-
domly selects two appropriate edges as arguments for 2-CHANGE.
Another primitive, IF_2-CHANGE, executes 2-CHANGE only if this
will improve the tour under construction. In analogy, we also sup-
ply a heuristic that we call IF_3-CHANGE. Eventually, we give the
primitive REPEAT_UNTIL_IMPROVEMENT p that executes the primi-
tive p until this leads to a better result or until p has been executed
iM times. A grammar, Complete, using primitives described above,
is shown in Figure 1.

For a permutation (tour), the simplest subheuristic randomly se-
lects a node and swaps it with one of its direct neighbours, here,
its right one. We call this operator SWAP_NODE. Figure 2 shows the
rule resulting from the addition of SWAP_NODE. We call the associ-
ated language Swap.

We consider problem eil51 from TSPLIB. Its dimension is n =
51 nodes, and its best high-precision solution known has a length of
428.871765 as discovered by a MH evolved by the GP-HH [2]. We
summarise experimental parameters in the caption of Table 1. Dur-
ing the execution of a MH, we count each of its calls to a primitive
and call the sum g. We give performance results in Table 1. Search
effectiveness (col. “mean best”) and reliability (“S.D.”) of the GP-
HH under language Swap are slightly worse than under Complete.
We explain this by the random nature of SWAP_NODE. However, top-

609



Table 1: Effectiveness over Complete and Swap, 100 runs each, max. iteration
value imax = 1,000. Parameters: Popul. size 100, Genotype size 500, Offspring
100,000, Mut. prob. 0.5. P.%: Mean best or natural length in % of best low-
precision result known from literature [1], a = 428.87. Best: shortest length over
all runs.

eil51 Mean best S.D. Best P.%
Nat. length 1,313.74 n.a. n.a. 206.26
Complete 428.9 0.17 428.872 0.006

Swap 429.98 1.29 428.872 0.26

Table 2: Effectiveness over Swap. Parameters: Popul. size 100; Offspring
1,000,000; Mut. prob. 0.5; imax 2,000. P.%: Mean best or natural length N76

in % of best high-precision results known from literature: a76 = 544.36908 [2];
eil101: a101 = 640.975 [1]. r runs. g: genotype size

eil Mean S.D. Best P.% g r
N76 1,974.71 n.a. n.a. 262.75 n.a. n.a.
76 545.38 1.001 a76 0.19 900 100
101 645.12 1.2 641.697 0.65 1,800 32

Table 3: Efficiency regarding Table 2. iand g: means over iand gvalues.
Swap P.% i S.D. g S.D.
eil76 0.19 1,371.3 491.3 43,879.3 20,570.4
eil101 0.65 1,973 0 107,429 0

Table 4: Effectiveness and efficiency over Swap. Parameters: Table 2, genotype
size 800. P.%: Mean best in % of a76. iand g: means over iand gvalues of those
metaheuristics that find best result known.

eil76 Mean best S.D. Best P.% Runs
Swap 545.83 1.09 a 0.27 68

P.% i S.D. g S.D.
0.27 1,354.7 485.99 39,146 18,052.2

quality MHs (“Best”) are still easily found, and effectiveness is well
within 1/3% of the best result known.

Next, we consider eil76, a 76-node problem, and eil101. Pa-
rameter values and results are given in Table 2. For eil76, with
genotype size g = 900, one sees that the best solution known and
other, very good solutions are found with high reliability, so that
the average best is within 1/5% of the best solution known. For
eil101, we double the genotype size, while the search-space size
increases by about factor 1048. Still, the best solution is around
0.1% of a101, the best high-precision result known, and the mean
best is within 2/3% of the best solution known. We conclude that,
with a comparatively modest increase of resources, effectiveness
scales up favourably and stays very high. Table 3 gives results as to
efficiency: the use of non-greedy SWAP_NODE does not come with
unfavourable scaling of the search effort. For eil101, compared to
eil76, the best evolved MH compensates for the much larger space
with an effort (“g”) that is but 2.4 times higher.

The GP-HH can maintain its good performance with fewer re-
sources, as follows. We shorten the maximal genotype size from
900 to 800. Table 2 gives the other parameter values. Table 4 shows
results. One sees from a comparison with Table 2 that overall effec-
tiveness and peak effectiveness practically have not changed. Also,
the constant effectiveness does not come with a loss in efficiency.
This follows from a comparison of Table 4 and Table 3 that displays
the efficiency under genotype size 900.

To gain another subheuristic, we break up IF_2-CHANGE. Its con-
ditional component is generic regarding domains and some problem-
specific primitive, p: if p improves a solution, execute p. We call
this primitive IF_improve and use it for describing a language, Ifi

heuristic ::= 2-CHANGE
| ifi SWAP_NODE
| loop IF_2-CHANGE
| loop IF_3-CHANGE

ifi ::= IF_improve
| /* empty */

Figure 3: Language Ifi. Other rules as given in Figure 1.

Table 5: Effectiveness over Ifi and NN. Parameters: Table 2. P.%: Mean best
over all runs in % of best high-precision result known for eil76: a76 = 544.36908
[2]; eil101: a101 = 640.975, d198: a198 = 15,876.38 [1]. g: genotype size.

Problems Mean S.D. Best P.% g r
76 546.85 1.14 a76 0.46 900 100
101 659.68 3.70 651.250 2.9 900 100
101d 648.33 2.16 641.302 1.15 1,800 100
101dNN 640.95 0.28 640.212 -0.004 1,800 24
d198dNN 15,910.2 12.66 15,883.72 0.21 1,800 64

(see Figure 3). We perform experiments over this language, apply-
ing the parameter values from Table 2, using genotype size 900. Ta-
ble 5 gives results. For eil76, one sees that the best solution known
and other, very good solutions are found, so that the average best is
within 1/2% of the best solution known. Thus, language Ifi, allow-
ing for more flexibility in balancing greedy vs randomised search,
still supports effectiveness of the metaheuristic search. For eil101,
the mean best is within 3% of the best solution known. This is re-
markable because no GP-HH parameter was changed, while the
search space is significantly larger. For eil101d , i.e., eil101 ap-
proached with doubled genotype size (g = 1,800), the mean best
is well within 4/3% of the best solution known. The best solution
is around 0.05% of the best solution known. So, here, the GP-HH,
given comparatively few additional resources, produces MHs that
deal very effectively with a much larger problem.

Next, we provide a randomised nearest-neighbour flavour R that
the HH calls instead of NATURAL: randomly add a node n as first
node of a permutation p under construction, add a non-added node
m that is nearest to n, repeat adding step for m, and so forth, until
completion of p. We call the corresponding language NN and the
according experiment eil101d NN (Table 5). Overall effectiveness
and reliability strongly improve compared to eil101d (language
Ifi). In particular, one of the best evolved MHs, µaNN , improves
over a101, delivered by a hand-crafted specialised algorithm, by
about 0.12%. We give this new benchmark value with high preci-
sion: a101NN = 640.211609.

For d198 (TSPLIB), a much larger problem, with unchanged GP-
HH parameter values, effectiveness is also very good. In particular,
the best found solution is within 0.05% of the best result known.
Thus, the provided modest domain knowledge has supported effi-
ciency. Furthermore, on average, a MH is produced and executed
in a practical amount of time.

Eventually, when the GP-HH produces competitive, real-valued
solutions on a TSP problem, it may easily keep hitting the prova-
bly global, integer optimum, as we have observed. Naturally, this
happens because different real solutions may represent the same
integer solution.

The authors acknowledge support from EPSRC (EP/C523377/1, EP/C523385/1)
and thank the anonymous reviewers.

3. REFERENCES
[1] G. Jayalakshmi and S. Sathiamoorthy, et. al. An hybrid genetic algorithm.

International Journal of Computational Engineering Science, 2001.
[2] R. E. Keller and R. Poli. Linear genetic programming of parsimonious

metaheuristics. In D. Srinivasan et al., eds., 2007 IEEE CEC, 2007.

610


