
A Tabu History driven Crossover Operator Design for
Memetic Algorithm applied to Max-2SAT-Problems

M. Borschbach and A. Exeler
Institute for Computer Science

Einsteinstr. 62, University of Münster, D-48149 Germany
Markus.Borschbach@uni-muenster.de

ABSTRACT
The solution for the Max-2SAT is the starting point for a
selection of these strategies by a brief review. Moreover, a
memetic algorithm for Max-2SAT problems based on a spe-
cific crossover operator and an improved tabu search stage
is presented. Simulation performed on several instances of
Max-2SAT reference problems are used to evaluate the dif-
ferent memetic algorithm strategies applied in our approach
and to compare it to the computational complexity of exist-
ing local search solutions.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods
General Terms: Design, Verification.
Keywords: Max-2SAT, Memetic Algorithms, Tabu Search

1. INTRODUCTION
The satisfiability problem (SAT) is one of the most studied

problems in computer science and since SAT is NP -complete
[6], it doesn’t seem to be promising to find a complete algo-
rithm that performs well on all sizes of problem instances,
e.g. scheduling [13], graph theory, automated reasoning [1]
and other domains like VLSI [3]. Its optimization variant
Max-SAT consists of identifying a variable assignment which
maximizes the number of satisfied clauses. Among the best
exact algorithms is MaxSatz, which won most of the bench-
marks for unweighted propositional formula in conjunctive
normal form at the Max-SAT evaluation competition 2006.
Max-2SAT, where the number of literals in each clause is
limited by two, is NP-hard [9]. In contrast to this, 2SAT can
be solved in linear time [2]. The Memetic Algorithm with
Tabu History driven Crossover (MATHiC) proposed in this
paper, consists of the following six evolutionary phases. The
initial population is modified by initial distribution heuris-
tics, added assignments of solutions with the highest number
of satisfied clauses known in advance, selection constraints
and a local search applied to each individual (phase one).
Moreover, a tabu history local search (THLS) is applied in
phase three to each individual generated by the recombina-
tion operator and in phase five by each individual generated
by the mutation operator. In phase two each recombina-
tion (Tabu History Crossover (THC)) is driven by a specific
problem constraint operator setup and in phase four each

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

mutation also. Each generation is completed by an addi-
tional selection mechanism (six).

2. OUTLINE & EVALUATION
The efficiency and operation of phases two and four (re-

fer to section 1) of the proposed approach MATHiC (see
[4] for algorithm details) are outlined in the following. The
crossover operator used is very similar to the operators pre-
sented in [11] and in [5] and a simplified version will be
used for empirical comparison. The advances made here for
THC1 are as follows. Each individual got its own tabu his-
tory. At the start of the crossover operator the successor
randomly inherits one of its predecessor tabu histories and
every flip1 made during the execution of the crossover opera-
tor is recorded in this inherited tabu history. Also a refined
version of the selection strategy for the variable to flip is
used. If a clause is unsatisfied in both predecessors simulta-
neously, it is only flipped if the improvement is maximized
and it is the least recently flipped variable of the clause. If
it maximizes the improvement but is not the least recently
flipped variable, it is only flipped with a probability p and
the least recently flipped variable is flipped with the proba-
bility 1−p. In all simulation onsets in the following p is set to
0.5. The advanced crossover (THC2) uses an improved local
search operator based on the flip history to guide the search
on each individual. The last tl elements of the history list are
declared tabu during the local search phase. The algorithm
selects an allowed2 variable which offers the best improve-
ment. If there is more than one variable allowed, which offer
a maximum improvement, the least recently flipped one is
chosen. If there is a tabu variable that offers an improve-
ment over the best solution so far, it is flipped instead (aspi-
ration). If no improving variable was found, a variable that
offers zero improvement is flipped (side step). The crossover
operator repeats until n side steps3 were done consecutively.
In table 1 the THLS, the THC1 and THC2 are compared on
instances from the spin glass problem (row 1 to 5, number
of clauses increased from 120 to 231, number of literals from
224 to 440) and the break minimization problem (row 6 to
10, number of clauses increased from 27 to 343, number of
literals from 162 to 2058) taken from the Max-Sat compe-
tition 2006. The necessary population size was set to 10,
the generation termination condition to overall 100.000 flips
and each simulation repeated at least 100 times. The THLS

1Inverted Binary Assignment of a variable.
2Each variable that is not tabu.
3Number of overall necessary variable assignments.

605



alone wasn’t able to find an optimal solution for half of the
instances in every run (denoted by SR, the precentage of
satisfied runs). In combination with THC1, the success rate
increases and except for one instance the algorithm finds
an optimal solution in every run. But not only the success
rate, also the average number of flips (denoted by AFS, av-
erage number of flips to solution) is increased, which leads
to an extended runtime. When combined with the advanced
crossover operator THC2, the success rate is also increased
for every instance. Besides one instance, the AFDS is infe-
rior to the results of the combination with THC1. Therefore,
THC2 is a more efficient combination for THLS for these in-
stances.

THLS THLS&THC1 THLS&THC2
SR AFS SR AFS SR AFS

1.00 2694 1.00 2933 1.00 1581
1.00 3714 1.00 3954 1.00 2374
1.00 4990 1.00 5185 1.00 2755
0.94 5901 1.00 6170 1.00 3584
1.00 420 1.00 595 1.00 366
0.98 1148 1.00 1584 1.00 1048
0.98 2314 1.00 3194 1.00 1918
0.74 4998 1.00 7823 1.00 8018
0.06 5724 0.46 40818 0.30 39463

Table 1: Recombination Efficiency

Beside the Memetic Algorithm proposed here, other popu-
lation based evolutionary approaches like GRASP [12], Ge-
netic Algorithms [8] and other Memetic Algorithms exist.
Some of the latter are [7], [5] and [11], which present spe-
cialized crossover operators for the Max-SAT problem. In
contrast to the population based approaches, many local
search methods based on evolving a single solution have
been proposed. Based on random instances (140 variables
and clauses scaled from 200 (first row) to 1000 (last row))
our algorithm (THLS&THC2, referred as MATHiC) is com-
pared (see table 2) to two local search algorithms, that use
similar local search heuristics. HSAT [10] is based on a flip

HSAT IRoTS MATHiC
suite SR AFS SR AFS SR AFS
random2 0,46 4837 1,00 1643 1,00 492
random4 0,54 1750 1,00 1031 1,00 591
random6 0,52 1658 1,00 772 1,00 482
random8 0,42 507 1,00 310 1,00 415
random10 0,29 505 1,00 476 1,00 490

Table 2: Comparison with Local Search Algorithms

history and IRoTS uses a tabu list to guide the search. The
overall winner of this test is IRoTS, that found an optimal
solution in every run on each instance. Also the number of
flips IRoTS needed to find a solution is quite small. The re-
sults for HSAT show, that it isn’t a reliable solver for these
instances, because it found an optimal solution seldom, but
if it finds one, it needs only a few flips to do so. Our ap-
proach found an optimal solution in all of the runs, but needs
much less flips to find a solution for 200 up to 600 clauses.
Because of the global and local nature of the crossover op-
erator and the local search procedure, the overall impact

is complementary and ensures a good compromise between
exploration and exploitation of the search space. Our al-
gorithm has been empirical verified on random and struc-
tured test set instances (see [4] for additional results) and
has been compared to local search algorithms that make use
of similar heuristics as our approach. The simulation results
justifies the competitiveness of our approach. Although our
algorithm needs marginally more time (same order of com-
putational complexity) to find a solution on two bigger in-
stances, the small variation of overall computational effort
is very promising. As a work in progress, all at the end of
section 1 mentioned phases are evaluated and an improved
recombination design (THC3) is under consideration.

3. REFERENCES
[1] A. Armando, C. Castellini, E. Giunchiglia,

F. Giunchiglia, and A. Tacchella. SAT-based decision
procedures for automated reasoning: a unifying
perspective, 2002.

[2] B. Aspvall, M. F. Plass, and R. E. Tarjan. A
linear-time algorithm for testing the truth of certain
quantified boolean formulas. Inf. Process. Lett.,
8(3):121–123, 1979.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. Lecture Notes in
Computer Science, 1579:193–207, 1999.

[4] M. Borschbach and A. Exeler. A search agent for a
Max-2SAT memetic algorithm approach. In
Proceedings of Advances of Computer Application and
COmputational Science (ACACOS), In: Selected
Paper from the Conference in Hangzhou, 2008.

[5] D. Boughaci, B. Benhamou, and H. Drias. Iga: An
improved genetic algorithm for Max-SAT problems. In
Indian International Conference on Artificial
Intelligence (IICAI)-07, 2007.

[6] S. A. Cook. The complexity of theorem-proving
procedures. In STOC, pages 151–158, 1971.

[7] C. Fleurent and J. Ferland. Object-oriented
implementation of heuristic search methods for graph
coloring, maximum clique, and satisfiability. DIMACS
Series in Discrete Mathematics and Theoretical
Computer Science, 26:619–652, 1996.

[8] J. Frank. A study of genetic algorithms to find
approximate solutions to hard 3cnf problems, 1994.

[9] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[10] I. P. Gent and T. Walsh. Towards an understanding of
hill-climbing procedures for SAT. In National
Conference on Artificial Intelligence, pages 28–33,
1993.

[11] F. Lardeux, F. Saubion, and J.-K. Hao. Gasat: A
genetic local search algorithm for the satisfiability
problem. Evolutionary Computation, 14(2):223–253,
2006.

[12] P. Pardalos, L. Pitsoulis, and M. Resende. A parallel
grasp for Max-SAT problems, 1996.

[13] H. Zhang, D. Li, and H. Shen. A sat based scheduler
for tournament schedules. In SAT, 2004.

606


