Distributed Problem Solving by Memetic Networks

[Extended Abstraci]

Ricardo M. Araujo
Institute of Informatics
Federal University of Rio Grande do Sul
Porto Alegre RS, 91501-970 Brazil

ricardo.araujo@gmail.com

ABSTRACT

This paper illustrates the use of a novel class of population-
based optimization algorithms namely Memetic Networks.
These algorithms make use of an underlying network to
structure information flow between multiple individuals rep-
resenting points in the search space. Memetic Networks have
as a fundamental characteristic the possibility to aggregate
several solutions in order to compose new ones. Network
properties allow to control how information is spread among
the population. We apply these algorithms to several real-
valued benchmark optimization problems and the TSP and
report results from extensive simulations. We show how
some network properties can influence the algorithm’s per-
formance and illustrate the effectiveness of this new class of
algorithms.

Categories and Subject Descriptors: 1.2.8 Problem Solv-
ing, Control Methods, and Search: Heuristic methods;1.2.11
Artificial Intelligence: Multiagent systems

General Terms: Algorithms,Experimentation

Keywords: Meme, Network, Multi-parent recombination

1. INTRODUCTION

Many evolutionary-based algorithms have as a central idea
the concept of recombination between individuals in a pop-
ulation [4]. Recombination allows for parallel searches for
solutions to communicate with each other, effectively trans-
ferring information between them that may help guide fur-
ther searches. Most evolutionary algorithms that use some
form of recombination implement it between two individ-
uals (parents) selected from the population, which mimics
the natural processes. It is not clear that recombination
between pairs is the best approach and several models for
multi-parent recombination have been proposed (e.g. [3]).
As far as our knowledge goes, all previous approaches con-
sider the number of parents as a parameter of the algorithm
or fixed for all individuals of any generation.

We present a novel class of population-based optimization
algorithms that extends the concept of mating to include a
variable number of parents. We do so by constraining the
exchange of information by an underlying network, whose
nodes represent individuals and edges represent interaction
possibilities. Individuals act as autonomous agents and are
able to connect to other nodes following a specified rule
and then exchange local information. This way, each next-
generation “offspring” can be the result of the recombination

Copyright is held by the author/owner(s).
GECCO’08, July 12-16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

599

Luis C. Lamb
Institute of Informatics
Federal University of Rio Grande do Sul
Porto Alegre RS, 91501-970 Brazil

LuisLamb@acm.org

of a different number of individuals at each step of the algo-
rithm. Since our class of algorithms resembles the process of
memetic evolution [1] in social networks more closely than
genetic evolution, we name it Memetic Networks.

2. ON MEMETIC NETWORKS

A Memetic Network Algorithm (MNA) is a population-
based stochastic optimization algorithm. It is composed of
an ordered set of N individuals (ni,n2,...,nn), each en-
coding a complete solution for the optimization problem, a
binary N x N matrix representing possible connections be-
tween individuals and a set of rules specifying how the ma-
trix is formed and how interaction between individuals take
place. Thus an MNA’s structure is a directed unlabeled
graph whose nodes represent solutions to an optimization
problem (individuals) and edges represent connections be-
tween these solutions. The rules are described as follows:

Connection rule: Specifies how individuals will connect to
and disconnect from each other. This rule guides the con-
struction of the network structure. The connection rule is
executed at every step of the algorithm, thus the network
is dynamic and connections may change at each step. It
defines the dynamics of the network.

Aggregation rule: Given a connection, this rule specifies how
information is to flow through it. It guides how the solution
contained in each node is to be modified as a function of the
connected nodes. It defines the dynamics on the network.

Appropriation rule: After information has been transmit-
ted, this rule specifies any local changes to the information
contained in a node.

Therefore, the algorithm makes use of a dynamic network
during the optimization process to explicitly represent the
exchange of information between several parallel searches.
By defining the above rules, several types of networks can be
created. This setup allows for a single node to be connected
to several other nodes, thus a possible solution can influence
and be influenced by several other solutions during a search.
In an MNA, an unspecified and dynamic number of solutions
may contribute to create a new solution, as defined by the
number of connections (degree) of a node. By doing so, a
more explicit and wider use of the multiple parallel searches
is carried out - not only the number of “parents” is variable
across generations, but it is also across offsprings.

3. PROBLEM SOLVING WITH MNA

In order to assess the performance and instantiate the
proposed class, we define two simple instances of MNAs.
For both versions we use the same Connection Rule:



Connection rule: node ni connects to node ns if and only if
f(£1) < f(@2); the connection is unidirectional - information
may flow from n2 to n1 but not conversely.

An algorithm based on this connection rule will often in-
duce hubs - agents that have a higher than average number
of connections. This is likely to happen because all agents
will connect to a few best evaluated ones, while many badly
evaluated agents will have a few (if any) incoming connec-
tions, but many outgoing connections. The first instance
(henceforth Continuous MNA) is designed to optimize real-
valued continuous functions. Each individual is composed of
a vector of real-values that specify a complete solution for a
function. We specify the following additional rules:

Aggregation rule: let x; ;j be the ith component of the vector
contained in node j and C(j) be the set of all nodes node j
connects to. Then, z; ; is modified to represent the average
of components in position ¢ for nodes in C(j).

Appropriation rule: noise is added with probability p, to
every component of the solution in the form of a gaussian
distribution with mean zero.

The second instance (henceforth Discrete MNA) is tai-
lored to optimize a discrete problem, namely the Travelling
Salesman Problem (TSP). For this instance, we specify the
following additional rules:

Aggregation rule: the next city to compose the local path is
chosen from among connected nodes to be the most frequent
city that follows the previous selected city and that is not
already present in the partially formed path. For example,
if the first city to be visited is 1, then we query all connected
nodes and count which city follows 1 most frequently in these
nodes. This city will follow 1 in the new solution and the
procedure is repeated until a full path has been formed.

Appropriation rule: each city in the path is swapped with
a random position with probability p,. This is akin to a
simple mutation operator applied to TSP in GAs.

4. PERFORMANCE TESTS AND ANALYSIS

In order to validate the Continuous MNA, we have tested
it over some functions typically used as benchmarks [2]. The
chosen functions cover combinations of features regarding
modality and separability. Function f; is the Sphere func-
tion, which is unimodal and separable; f2 is the Rosenbrock
function, which is unimodal and non-separable; f3 is the
Rastrigin function, which is multimodal and separable and
fa is the Ackley function, which is multimodal and non-
separable. All functions are 10-dimensional.

We compared our algorithm to a fairly-standard real-valued
GA [5]. Each algorithm was run for a maximum of 10000
runs and we compared the average over 50 independent runs.
Except for fi, the MNA showed faster convergence rates
and a better ability to escape local optima. For the uni-
modal functions, the MNA required about half the number
of rounds to find the global optimum. For f3, the MNA was
able to find the global optimum in almost all runs, while the
GA became often trapped in local optima. For f4, however,
both algorithms became trapped in local optima, but the
GA found (on average) better solutions.

The Discrete MNA was applied to the bays29 dataset
taken from TSPLib. Even though the presented algorithm
is unsophisticated, it displayed a good ability to find good
solutions. Over an average of 10 independent runs and after
400 rounds, the best found tour was only 8% worse than
the best possible tour. While this is not competitive with

600

3600
3400%
3200 %
3000

2800

2600

average best route after 100 rounds

2400 1 ES Zb 2I5 3I0 35 40

Figure 1: Best solution found after 100 rounds for dif-
ferent values of o averaged over all values of 3 (dashed
line) and different values of 3 averaged over all values of

a (solid line).

the best known techniques applied to TSP, the results shows
that this general setup can be successfully applied to discrete
scenarios.

S. ANALYSING THE EFFECTS OF HUBS

Two questions arise from analyzing the aggregation of in-
formation of multiple individuals through a network. First,
is it always good to aggregate as much information as pos-
sible? Second, is it good to distribute good information as
much as possible? These two questions are easily trans-
lated to a network context: they ask whether it is advanta-
geous to have nodes with a high in-degree and out-degree,
respectively. In order to address these issues, we experi-
mented with Discrete MNA over the TSP problem. We have
changed our algorithm slightly by imposing limits on the in
and out-degree of each node. We let a to be the maximum
number of connections a node can receive (in-degree) and
B as the maximum number of nodes a node can connect to
(out-degree).

Our results (Fig. 1) indicate that allowing agents to re-
ceive connections from many agents (high «) is always ben-
eficial. When severely limiting «, the ability to find good
solutions degrades. However, after some value, no further
improvements result from increases in this parameter. A
different picture is presented when modifying the out-degree
of nodes. We observe that small 3 values are associated to
poor performance, but so are high values. The best case
happens for some intermediate value (in this particular sce-
nario, 8 = 3). This shows that allowing too large hubs in
the system can influence negatively general performance.
Acknowledgments: This work was partly supported by
CNPq-Brazil.

6. REFERENCES

[1] R. Dawkins. The Selfish Gene. Oxford U. P., 1976.

[2] K. De Jong. An analysis of the behavior of a class of genetic
adaptive systems. PhD thesis, U. of Michigan, 1975.

A. E. Eiben, P.-E. Raué, and Z. Ruttkay. Genetic algorithms
with multi-parent recombination. In Y. Davidor, H.-P.
Schwefel, and R. Ménner, ed., PPSN III, 1994. Springer.

D. Fogel. Evolutionary Computation: Toward a New
Philosophy of Machine Intelligence. IEEE, 2000.

Z. Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs. Springer, 1996.

(3]

(4]
(5]



