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ABSTRACT nism for such strategy parameters can provide an ability to

adapt the ES’s behavior to the features of particular objec-
tive function, thus, improving its overall performance aim-
ing at a faster and more reliable approach to the optimizer
state. As for ES in real-valued search spaces, the mutation
strength o is the most important strategy parameter that
must be adapted continuously. It basically determines the
ES’s step length. Different adaptation techniques have been
developed with the aim of obtaining optimal performance,
including the 1/5-rule [14], self-adaptation [14, 15] and cu-
mulative step length adaptation [13].

The mutation strength self-adaptation mechanism con-
trols the mutation strength by means of evolution. Each
ES individual contains, in addition to the parameter vector,
its own mutation strength, which is mutated by multiplica-

This paper proposes the o-self-adaptive weighted multire-
combination evolution strategy (ES) and presents a perfor-
mance analysis of this newly engineered ES. The steady state
behavior of this strategy is investigated on the sphere model
and a formula for the optimal choice of the learning param-
eter is derived allowing the ES to reach maximal perfor-
mance. A comparison between weighted multirecombination
ES with o-self-adaptation (¢SA) and with cumulative step
size adaptation (CSA) shows that the o-self-adaptive ES can
exhibit the same performance and can even outperform its
CSA counterpart for a range of learning parameters.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning—parameter learning; tion with certain random numbers (often log-normally dis-
G.1.6 [Numerical Analysis]: Optimization tributed). As the resulting mutation strength determines

the standard deviation of the mutation vector, the algo-
General Terms rithm performs the adaptation of the mutation strength in-

directly due to selection. Selection itself is based on the
objective function values calculated from the offspring pa-
rameter vectors. Since no external mechanisms are required
Keywords for the adaptation of the mutation strength, this version
of the adaptation is referred to as o-self-adaptation (0SA).
A quantitative analysis of 0SA can be found in [12].

As an alternative, the cumulative step length adaptation
(CSA) has been proposed [13]. The CSA is based on the as-

sumption that uncorrelated consecutive search steps of the
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Weighted multirecombination, evolution strategy, mutation
strength self-adaptation, cumulative step length adaptation

1. INTRODUCTION

Evolution strategies (ES) are a sub-class of nature-inspired ES correspond to optimally chosen mutation strength. CSA
direct search (and optimization) methods which use muta- maintains a fading memory of search path and continously
tion, recombination, and selection applied to a population of compares its length with the expected length of an “ideal”
individuals containing candidate solutions in order to evolve path consisting of random steps. The mutation strength
iteratively better and better solutions [6]. For each offspring is changed in accordance with the result of this compari-
individual, the canonical (u/p T A)-ES performs mutation son. A discussion considering the optimality of the basic
of strategy parameters and uses these to control the muta- assumption in CSA was presented in [7].
tion of the offspring parameter vector. A control mecha- Recently, a modified CSA version has been proposed by

Arnold [1] as a mutation strength adaptation procedure for
weighted multirecombination evolution strategies which per-
form a weighted multirecombination of all A offspring indi-
viduals in a population. As has been shown for the sphere
model, CSA allows for a fixed choice of weights, which guar-
antees a nearly optimal performance (up to a factor of v/2 — 1
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model in a robust fashion, the alternative standard oSA ex-
hibits a sensitive dependency of performance on the learning
parameter [8].

In this paper, it will be shown that one can design a
self-adaptive ES that performs comparably well when us-
ing weighted multirecombination on the object parameters.
We will analyze this new ES and compare its performance
with the weighted multirecombination ES with CSA.

The remaining part of this paper is organized as follows.
Section 2 describes the (u/ur, A)-0SA-ES, the weighted mul-
tirecombination ES with CSA and a newly engineered o-self-
adaptive weighted multirecombination ES. Section 3 intro-
duces ES progress measures and steady state formulas which
lead to an optimal self-adaptation rate formula. In Section
4, comparison with experiments in finite-dimensional search
spaces is presented. Section 5 contains a brief summary of
the results obtained and outlines future research steps.

2. ENGINEERING THE NEW
(Morr-o-SELF-ADAPTATION ES

This section describes the (u/ur, A)-0SA-ES, the weighted
multirecombination ES with CSA and the o-self-adaptive
weighted multirecombination ES, each of which is working
with populations of \ offspring individuals. Each individual
can be defined as [6]

ES individual a:= (y,s, f(y)), (1)

where y is the parameter vector, s is a set of strategy pa-
rameters and f(y) is the individual’s value of the objective
function to be optimized.

2.1 The (u/pu1, ))-o-self-adaptation-ES

This ES uses all y parental individuals for creation of an
offspring. The subscript I denotes the intermediate recom-
bination, which calculates a recombinant individual as the
centroid of all u parental individuals, e.g., as average values
of the parental parameters vectors and strategy parameters,
respectively.

The (p/pr, A)-o-self-adaptation-ES is given below:

1. Initialize parent state

Op < Oinit

Yp

<~  Yinit

2. Generate A offspring according to

&l - a_peT./\/L(O,l)7

z, — N(0,1),
Yi — yp + 6z,
fi — f(3).

where NV;(0,1) is a (0,1) normally distributed random
scalar, N;(0,1) is a (0, 1) normally distributed random
vector, G; is the mutation strength, and 5;2; is the so-
called mutation vector.

Vi=1,...

3. Order the X offspring according to its objective func-
tion values.
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4. Perform recombination of mutation strengths and pa-
rameter vectors according to

1 123
(o) — ; Tmix (2)
m=1
1 122
(y) < — Ymixs (3)
'U/mfl

where subscript “m; \” denotes the mth best offspring
individual generated during step 2, e.g., the individual
with the mth-smallest value of the objective function
f(y) for minimization.

5. Create new parent state
Op

Yp

«—

)

6. Goto 2. until termination criterion fulfilled.

(4)

The change of the mutation strength is implemented in the
algorithm using the so-called log-normal operator ™M1
The learning parameter 7 in the log-normal operator con-
trols the self-adaptation rate. Theoretical and empirical in-
vestigations have shown that in order to get optimal linear
stochastic convergence on the sphere model 7 must be cho-
sen proportional to 1/\/N, i.e.

«a
—_—. 5
VN ®)
As for the sphere model without noise, N — oo, and large
populations, a good choice of « is given by [11]

1
—. 6
= (©
After the termination criterion is fulfilled, the current par-

ent state is considered as an approximation of the optimizer
of the objective function f(y).

2.2 The (), -ES

A known disadvantage of all (u/p T A)-ES is that they
are not using all information about the offspring individuals
generated during each ES generation [1]. In order to over-
come this weak point, a weighted multirecombination can
be used [1] which takes into account information about the
ranking of all offspring individuals. That is, it does not dis-
card the worst (A—p) individuals like the (1/p T A)-ES does.
The influence of each individual is determined by its ranking
order which is based on the objective function values.

The weighted multirecombination ES can be described in
the following way. It creates A new offspring according to

Vi=1,...\: (7)

where o; is determined by a mutation strength adaptation
mechanism. In CSA, 0; = 0, i.e., this adaptation mechanism
needs only one mutation strength per generation.

After offspring procreation, the weighted multirecombi-
nation ES calculates the corresponding objective function
values f(y). Thereafter, the ES ranks the individuals w.r.t.
their fitnesses (objective function values) and computes the
weighted sum

T =

o=

yi — yp +aNi(0,1),

A
<Z>w «— Zwly,\z(l;)‘) (8)
=1



of the vectors z. The superscript (I;A) refers to the lth-
best of the A offspring (the lth-smallest for minimization).
Weights w;,» are dependent on the rank of the individual in
the set of all offspring individuals [1].

A new parent state is obtained as

Yo < Yo +{0)(Z)w, (9)

where (o) = o for the CSA adaptation mechanism."

In order to derive a condition for optimal choice of weights
wy,n for the sphere model, it is necessary to define a per-
formance measure for the weighted multirecombination ES.
One option is to use the expected change of the objective
function value f(y) from one generation to the next, which
is referred to as quality gain A. Thus, optimality of weights
wy,n can be defined as those weights which maximize the
quality gain of the ES.

In this work, we will refer to the weighted multirecombi-
nation evolution strategy with optimally chosen weights w

as (A)opt-ES.

2.3 Building the ()\)...-o-Self-Adaptation-ES

In this section we design the new weighted ES with 0SA. It
is the result of the combination of the 0SA mechanism with
the (A)opt-ES. In order to use in this case theoretical results
derived in [12] for the (u/pr, A\)-0SA-ES, we construct the
algorithm of the ()),,-0SA-ES in such a manner, that it
incorporates the weighted multirecombination with minimal
changes of the original (u/pr, A)-0SA-ES algorithm.

The algorithm of the (), ,-0SA-ES reads:

1. Initialize the parent state
Op < Oinit

Yp

“—  Yinit

2. Generate ) offspring according to
& HO'peTNl(O’l),
z; — N(0,1),

Y — Yp + 017,

fr = F&).

Vi=1,...,\:

3. Rank ) offspring according to their f-values.

4. Perform recombination of mutation strengths

(o) — imzz;am (10)

5. Compute the weighted sum (z)., of mutation vectors

A
(Z)w — Zwl;/\il;X (11)
=1

6. Create new parent state
—

(o)
— Yo+ (0)(2)e

Op
Yp

7. Goto 2. until termination criterion fulfilled.

!Note, in Eq. (9) already a generalization has been intro-
duced in that we used (o) instead of o which is used in
CSA.
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Comparing this algorithm with the (u/pr, A)-0SA-ES, one
notes a difference in the way how parameter recombination is
performed in Step 5 involving the calculation of the weighted
sum (z).,. The weighted sum (2z)., is used to determine the
direction to the new parental state. This is in contrast to the
centroid value (y) calculation in the conventional (u/ur, A)-
ES algorithm. At the same time, no changes of the oSA
mechanism are introduced. This circumstance allows us to
apply theoretical formulas, derived for the (u/pr, A)-cSA-ES
in [12], for the analysis of the (), ,-0SA-ES. The analysis
will be presented in Section 3.1. We will use y as the number
of individuals participating in the calculation of the muta-
tion strength recombinant (o) when describing the actual

(N opi~0SA-ES.

3. PERFORMANCE ANALYSIS
OF THE ()\)OPT'USA'ES

In this work, the analysis of the ES is performed on the
sphere model. Without loss of generality, the quadratic
sphere is considered. It is one of the commonly used test
functions for unconstrained optimization [4]. This function
maps candidate solution y to the square of its Euclidean
distance r = ||§ — y|| from the optimizer § € R, where N
is the search space dimensionality. It reads

) =1y -yl

where the task is minimization. The sphere serves as a model
for objective functions in the vicinity of well-behaved local
optima. Using the sphere environment, we can derive im-
portant theoretical predictions, which — sometimes — can
be extended to other types of objective functions. Fur-
thermore, ES with covariance matrix adaptation (CMA-ES)
have been found to effectively transform a wide range of con-
vex quadratic functions into the sphere [9].

In the next two sections, we will shortly review the re-
sults of theoretical analyses obtained for the (1/pr, A)-0SA-
ES and the (A\)opt-ES. Furthermore, we provide preparatory
steps which will finally be used in Section 3.3 to derive our
main theoretical result on the optimal choice of the learning
parameter.

3.1 Analysis of (i/u1, \)-cSA-ES

Let 7(9 denote the distance of the centroid in the gth
generation (y)(? to the optimum ¥, ie., r¥ = |[r@| =
[l(y)@ -9 and s'9 = (¢(9)) the mean value of the parental
o-values. The central quantities describing the behavior of
the ES are the progress rate ¢ and the self-adaptation re-
sponse.

The expected change of the distance r from one generation
to the next defines the progress rate

o(s9 1) = E [T@ _ p(o+D) ‘ 5<g)7T<g>] .2

Considering the mutation strength, the expected relative

change is called the self-adaptation response (SAR)

9+1) _ ¢(9)

w7 =g [ (13)

(9) ,.(9)
<@ s r }

SAR provides information on the self-adaptation mechanism
feedback resulting in the change of the mutation strength
in generation g + 1. This feedback is determined solely by



the internal state of the ES at generation g. The learn-
ing parameter 7 controls the magnitude of the SAR feed-
back: increasing 7 allows to obtain larger mutation strength
changes for a given ES state since the exponent parame-
ter 7AV;(0,1) in the log-normal operator grows and newly
created offspring get mutation strengths which differ from
59 by larger values. Ideally, the SAR function should be
positive for mutation strength smaller than the optimal one
and negative otherwise driving in that way the mutation
strength to an optimal value. In order to obtain such an
ideal behavior, it is necessary to choose the learning param-
eter T appropriately taking the search space dimensionality
into account. This also requires a certain knowledge about
the fitness landscape which is usually unknown in practice.
Approximate formulas for optimal 7 depending on the ES’
exogenous strategy parameters can be used in this case.

In order to obtain state variables that are independent of
the position in the search space, one uses the normalizations

« N
Y =P (14)
and
“(a) _ (0 IV
T =Ty (15)

Using several simplifications (consideration of the limit
case 7 — 0, the asymptotic behavior for N — oo, and
Taylor series expansions), an approximate formula for the
self-adaptation response can be derived [12]

* 1 *
R GRS BT
The so-called generalized progress coefficients eZ’yl; used in
(16) are given by
A—p
/Tﬂ_a-&-l

a,b __
Cur =

"
(17)

where ®(¢) is the cumulative distribution function of the
standard normal variate. The progress coefficient ¢,/ is
a special case of the generalized progress coefficients

Cp/p,A

3.2 Analysis of the (\).,.-ES

While we need the SAR results from the (u/pr, A)-ES, the
progress of the new (A)opt-0SA-ES in the object parameter
space must be taken from the analysis of the (A)opt-ES. The
expected difference of two consecutive parental fitness values
is referred to as quality gain. It is defined as

A=E [0 - 7))
We now make plausible that the normalized quality gain
X N
— A 5
2 (7”(9))

formally agrees with the formula of the normalized progress

rate (14) for the quadratic sphere environment in the limit
N — oo [3].

For finite normalized mutation strength, the normalized

fitness gain is finite. Therefore, with increasing N, the ex-
pected value of the difference between the distance r(@) of

_ .10
=€,

(18)

(19)

<A> / e T (1 — (1)t
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the parental centroid from the location of the optimum and
the distance r9t1 of the selected offspring to the location
of the optimum goes to zero. Since

N

A* Nz E[ @y _ <g+1>}

- B N ((T(g))Q _ (r(g+1))2)

2 (r(9))?
(9) (9+1) (9) (9+1)
r —-r r +7r
=B |:N r(9) 2r(9) :| ’ (20)
and as % tends to one, it follows
™
s(gx(o)y Nzoo g | NV ( 9 _ <g+1)) 1l = (@
A" (™) T = E{r(g) r r 1| =" (s™).

(21)
This equation will be needed below to derive the steady state
behavior.

In order to use (21), the quality gain A* using optimally
chosen weights wy;» is needed. Using several simplifications
(consideration of the asymptotic behavior for N — oo, as-
sumption that the normalized mutation strength o* is of
O(1), Taylor series expansion), an asymptotically exact for-
mula for the normalized quality gain of the ()\)opt-ES for
optimal weights

wx=FEpxfork=1,...,) (22)

has been derived in [1]

*(9))2
A*(o*9) = Wy (a*@) _ ) 5 ) ) . (23)
The W is defined as
A
W)\ = ZElz,)\v (24)
k=1

where Ej, » denotes the expectation of the (A+1—k)th order
statistic of the standard normal variate. This is another
special case of the generalized progress coefficients (17)

Exx = 62’,11,A- (25)

It is important to note that Eq. (23) was derived consid-
ering a single normalized mutation strength o9 for each
generation g. From the algorithmic point of view, this does
not hold for the ()\)Opt-USA—ES since each offspring individ-
ual has its own mutation strength ;. However, from the
theoretical point of view, considering the asymptotical limit
case N — oo, we will show that one can assume that the
mean value 59 can be used in Eq. (23) instead of ¢(%). Since

lig(g) _ 1

(9) _ /,(9)y _
s = (") = -
um:l * ,LL

"

3 oo DN 01
14

m=1

and taking (5) into account

it follows that

N
s Nz ,ZUF()H Di1=g¢ (26)

"

m=1



The mean value s9 of mutation strengths generated us-
ing the log-normal operator in Step 2 of the (\), ,-0SA-ES
is asymptotically equal to the parental mutation strength
Uf)g ~Y in the limit N — oco. This transfers also to the nor-
malized quantities. Thus, we can use s*9 in Eq. (23) in-

stead of o*(9),

3.3 Analyzing the Steady State of the
()\)opt'O'SA'ES
In the case of a correctly working 0SA, the expected value
of the normalized mutation strength reaches a stationary
state over time with limg_.o s*(9) = g*. Using the deter-
ministic equilibrium condition [12]

(1) _ grlo) LHY(T, N)

] g Er@N) (27)
- N
one obtains the steady state condition
* ( o*(9)
¥ (Ss *
2l _ (1) (28)

which will be used to derive the stationary mutation strength.

Due to the asymptotic equality (21) ¢*(s*©@) = A*(s*(9)),
which is correct for the quadratic sphere environment in the
limit of the infinite parameter space dimensionality N — oo,
one can use (23) instead of ¢*(s*(9) in (28). Inserting (16)
and (23) into (28) leads to

* \2

Wi (S:t - (S;) ) = —a’ {%
where the learning parameter 7 in Eq. (16) has been chosen
according to (5). Thus, Eq. (16) becomes independent of
the search space dimensionality N.

As one can see, the steady state depends on «. Provided
that « is given, s can be calculated analytically. Solving
the quadratic equation (29) for sj; yields

+ 6;:& - s:tcu/M,A ; (29)

2
s;‘tzl—%JrK, (30)
A
where
2 c? at
K =4/1 (1—2 . 21*1)0‘— WeAT (3
\/ + CH/})\—'_ e,u,/\ W/\ + W/% ( )

Let us discuss the extreme choices of the N-independent
factor o used in the learning parameter formula (5). As
we will see, the resulting steady state mutation strengths
correspond to the characteristic zeros of the SAR function
and the quality gain, respectively. Dividing (29) by —a? and
taking the limit @ — oo (provided that sf; < o0), one gets
1 . (S*t)2

— Wi s — — =0.
oz ( ¢ 2
Therefore, the bracket on the right hand side of (29) must
vanish in the limit o« — oco. Thus, the steady state muta-

tion strength sj; is determined by the zero of the SAR, i.e.,
5&% = 8,,- In order to obtain sy, , one has to solve

lim —

a— 00

(32)

1 1,1 *
3 +e,)\ = SuoCu/ur =0

for sy, resulting in

1 1,1
= +e ’

Sup = 2 e (33)
SV
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The other extreme case is given by a — 0. Using Eq. (31)
and (30), the limit value becomes

. *
lim s = 2,
a—0

Comparing with (29), one sees that this is the second zero
of the quality gain (23)

Sh, = 2. (34)

Considering the two extreme choices of « resulting in the
characteristic zeros sy, (33) and sA, = 2 (34), one can con-
jecture that for non-extreme choices of «

S;t € (5:/1078*&0) (35)

(provided that sj, < si,). This is indeed the case and can
easily be shown then looking at Fig. 3: The steady state
St is determined by the intersection of the (linear) SAR
function (multiplied by —N) and the quadratic ¢* function.
The angle of inclination of the SAR function depends on «a.
If & = 0 then slope of SAR is zero resulting in sJ, = sj,.
Increasing o gradually, the point of intersection shifts to
smaller sj;-values, i.e., s («) is a monotonously decreasing
function of . Finally, the SAR ends up as a vertical line
yielding the zero of the SAR sy, .

Now, let us consider the steady state progress rate as a
function of ov. If we take into account the equality * (s*(9 )) =
A*(5*9) and insert the stationary mutation strength (30)
into the quality gain (23), we obtain the stationary progress

rate
2
Wi 1- Cu/MAO‘Q _K
2 W ’

Considering (23), one easily sees that the quality gain reaches
its maximal value A% .. = Wx/2 at sA_, = 1. Provided
that sA__ is in the interval (35), one can tune the ES for
maximal performance using «. As for maximal progress in
the stationary state, one would like to have s = sx ., = 1.
Using (30), this leads to

pi(a) = (36)

2
Cu/u,2AYopt

1—
Wi
2 2 4
1,1 %opt Cli/ux%opt
+\/1+(1—2cH/H,A+2eM) e =
Solving for aopt, one finally obtains
* W
S <1t opt = A T . (37)
200 — 26,5 — 1

Note, if s},, > 1 (cf. Eq. 33), then the denominator in (37)
gets negative and the ES cannot be tuned to the theoretical
quality gain maximum Wy /2. This is the reason why trun-
cation ratios p1/A > 0.3 should be chosen. Truncation ratios
w/XA =1[0.3,0.4] may be regarded as reasonable choices.

A list of aopt values using Eq. (37) can be found in Ta-
ble 1. As a rule of thumb, using large A > 50, the following
approximations may be used for aqpt

w/A=0.3: Qopt R 3V,
p/A=04: Qopt R g\f)\



Table 1: Optimal parameter o values

(1w, \) | (3,10) | (15,50) | (30, 100) | (300, 1000)
Copt | 8.6 21 31 99
(1, \) | (4,10) | (20,50) | (40, 100) | (400, 1000)
Copt | 4.6 11 15 48

4. COMPARISON WITH EXPERIMENTS

The derivation of the stationary state formulas was car-
ried out in the limit of infinite search space dimensionality.
These formulas have been derived using the simplifications
described in Section 3. For finite IV, it is necessary to verify
the derivations presented above. Numerical experiments are
used in this section in order to verify the derived formulas
in finite-dimensional search spaces.

4.1 Performance of the ()),,.-cSA-ES
in Finite-Dimensional Search Spaces

The predictions of (36) are compared with the results of
experiments in Fig. 1. A start vector y(¥© = 1000 and an
initial mutation strength 0(®) = 1 were used for the (N opt™
oSA-ES with A = 10 offspring. The strategy parameter
recombination was performed with u = 4 parents.

The sampling process was started from generation go and
executed until generation g. In order to calculate the sta-
tionary progress rate, the following formula [5] was used:

T(go)
A N

N

Por = —— 38
. (38)

The simulations show that the normalized stationary progress

[
4 //—\
g
DLiniiiT*‘r
3 )
;5 = TR EEa N=1000
Téii iii
| Ty
2 s iii
Ik ¢ * ., *x . N=100
*
l/§§ ““t
1 * . _
; N=30
e
=T
e ‘ ‘ ‘ ‘ " a
2 4 6 8 10

Figure 1: The stationary progress rate of the (/\)opt‘USA‘
ES (=4, A = 10) as a function of the parameter . The
solid curve represent the result of (36). The points indicate
the results of experiments averaged over 30 runs. Shown are
from bottom to top the results of experiments for N = 30,

N = 100, and N = 1000.

rate approaches the theoretical curve (N — o) for smaller
values of the parameter o. For larger o one can observe a
degradation of the experimentally obtained normalized sta-
tionary progress rate due to the increase of the learning pa-
rameter 7, Eq. (5). Using a large learning parameter has
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advantages and disadvantages: A Larger learning param-
eter can reduce the transient time for the self-adaptation
process, since it gives rise to larger SAR values for a given
s*. On the other hand, an increase in the learning parameter
does also decrease the maximal attainable progress rate [5].
That is why, a should be chosen a certain percentage smaller
than aopt obtained for the infinite limit case N — oo.

4.2 Comparison with (;/pr, \)-0-ES,
(Nopt=CSA-ES and Discussion
In order to compare the different strategies including the
CSA-ES, we first recall results found in literature. The sta-
tionary progress rate formula for the self-adaptive (u/pur, A)-
ES can be found in [12]. It reads
1,1
i)

(39)

* 1
Pi(@) =a® (Nci/;m(l - o)+ Cu/urK — 5=

where

1
K= \/“26;%/#,% (1—a?)? + 2ua? (5 + 6;1/\)

As to the CSA-ES, we first present the cumulation rule.
According to [1], the CSA is implemented in the (A),,-ES in
the following way. Weighted sums (z). are cumulated dur-
ing the run of the ES in order to track steps in the search
space using an N-dimensional vector 1. This vector is ini-
tialized according to 1 = 0 and updated according to

1o+ — (1— c)l(g) + /C(?/V: c) <z>£,g),

where ¢ is the cumulation parameter, ¢ = 1/v' N [1]. The
mutation strength is adapted using Arnold’s update rule

(40)

gt — 0(9)6%7 (41)
where D is the damping parameter, D = 1/c [1]. Given
these update rules, the steady state average quality gain of
the (A),,-ES can be determined [1]
Ay, = (\/5 - 1) Wih. (42)

Due to the asymptotic equality ¢* (s*(g)) = A*(s*(g)), one
can use the formula (42) for the comparison with the exper-
imental results concerning the weighted multirecombination
evolution strategies with oSA.

The outcome of (36), (39), and (42) are compared in Fig. 2
with results of experiments for the weighted multirecombi-
nation ES with 0SA and CSA. Also depicted are the results
of experiments for the weighted multirecombination ES with
oSA using the particular choice of weights

1/p if1SkSp,
= = = 43
WA { 0 otherwise (43)

In this case, the weighted multirecombination ES is simply
the (p/pr, A)-cSA-ES. That is, the parental state y;, is the
centroid of the population that consists of the u best of the
A offspring candidate solutions generated (cf Section 2.1).
The comparison of the (A)opt-0SA-ES with the (A)opt-
CSA-ES shows that the weighted multirecombination ES
with 0SA can exhibit the same performance as the weighted
multirecombination ES with CSA if the value of parameter
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Figure 2: The stationary progress rate as a function of a.
The solid horizontal line represents the theoretical result of
(42) for the (10)opt-CSA-ES, whereas the dashed depicts the
results of respective experiments of the same (10)opt-CSA-
ES averaged over 30 runs (the standard deviation of the
results of experiments is less than 0.05). The solid curves
represent the results of (39) for the self-adaptive (4/4r, 10)-
ES and (36) for the (A),,,-0SA-ES. The points indicate the
result of experiments for N = 1000 for the (A)opt-ocSA-ES
averaged over 30 runs. Shown are the results for the partic-
ular choice of weights (43), denoted by (4/4, 10)-ES, and for
the optimal weights (22) wi,x = Ek,x, denoted by (10)opt-
oSA.

« is sufficiently large. Actually, it can even outperform the
CSA version for a certain range of « values.

The comparison of the (A)opt-0SA-ES with the (u/pr, A)-
ES shows that the (M\)opt-0SA-ES outperform the simple
multirecombination ES if the value of parameter « is suf-
ficiently large. The reason is that (A)opt-0SA-ES uses the
information about the ordering of all A mutation vectors,
while the (p/p1, A)-ES takes only the best p offspring into
account.

At the same time, the (u/pr, A)-ES performs better for
small values of . In order to find an explanation for this
phenomenon, one can inspect the steady state condition
(28) for the (11/p1, A)-ES and the (\)opt-0SA-ES graphically
(Fig. 3). Intersections of the progress rate curves and the
SAR lines in Fig. 3 correspond to the solutions of Eq. (28)
for different values of a. For small a values (o = 1 in Fig. 3),
the steady state condition of the (u/ur, A)-ES holds true for
the larger value of mutation strength compared to the (A)opt-
0SA-ES. The steady state progress rate of the (u/ur, A)-ES
is also larger for these values of the mutation strength. For
larger « values (o = 2 in Fig. 3), the steady state mutation
strengths of the two ES versions are closer to each other,
but the (A)opt-0SA-ES has a higher progress rate than the
(1/pr, A)-ES.

The performances of the different ES versions are com-
pared for different search space dimensionalities NV in Fig. 4.
The number of generations G was counted from first gener-
ation until the condition f(y) < 107'* was satisfied. The
initial conditions were y(®’ = 1000 and ¢(®) = 1. For the
(A)opt-0SA-ES with © = 4 and A = 10, the weights have
been chosen according to Eq. (22). The optimal « value
aopt = 4.6, given by Eq. (37), was used. As to the (u/pr, A)-
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Figure 3: Graphical interpretation of the steady state con-
ditions (28) for (u/pr,A)-ES and (A)opt-0SA-ES. Straight
lines represent the SAR function ¢ (16) with 7 = a/vVN
multiplied with —N for @ = 1 and « 2, respectively.
Two parabolas are the normalized progress rates ¢ of the
(u/pr, A)-ES and the (A)opt-ES. An intersection of ¢* curves
and ® lines represent the steady state point (stationary
mutation strength s}; and stationary progress rate ¢j;) at
which the respective ES combinations works.

ES, « has been chosen according to Eq. (6), a = 0.7.

G

% (10)op—CSA-ES (4/4,10)-ES
\
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Figure 4: Number of generations G required to reach an
objective function value of f(y) = 107'° as a function of
search space dimensionality IN. Presented are the results of
experiments averaged over 300 runs.

Comparing (A)opt-0SA-ES and (u/ur, A)-ES, it becomes
immediately obvious that the new (\)opt-0SA-ES outper-
forms the old standard oSA-ES for almost all search space
dimensionalities considered.

Somewhat surprisingly, the (A)opt-CSA-ES exhibits diver-
gent behavior for N < 5, therefore no data are available for
this strategy in Fig. 4 for low search space dimensionalities.
A closer look at the ES dynamics reveals that the CSA is not
able to perform mutation strength adaptation under these
conditions. Instead, the mutation strength permanently de-
creases to zero. The deeper reason for the failure of the
(N)opt-CSA-ES for small N is still an open question.

The (A)opt-0SA-ES is free from such divergence deficiency.



Furthermore, it demonstrates at the same time better per-
formance for all N. As can be inferred from the plots in
Fig. 4, this is not merely a theoretical result from the asymp-
totic theory, but a real observable behavior of the newly
designed (A)opt-0SA-ES.

S. SUMMARY AND OUTLOOK

In this paper, the (A)opt-0SA-ES has been proposed as
a new ES combining the strengths of Arnold’s weighted re-
combination and of the mutative self-adaptive o learning
rule. The performance of this new strategy has been inves-
tigated on the sphere model. The theoretical analysis was
carried out in the limit of infinite search space dimensional-
ity. Real ES experiments were used in order to verify the pre-
dictive quality of the derived formulas in finite-dimensional
search spaces. The experiments showed satisfactory agree-
ment between the theoretical and experimental results which
improves with increasing search space dimensionality. An
experimental comparison of the performance showed that
the (A)opt-0SA-ES outperforms the (A)opt-CSA-ES — which
was regarded as the most efficient ES with isotropic muta-
tions so far. Theoretical formulas derived in the limit of
infinite search space dimensionality predicted the results of
this comparison. This is also a strong argument for the use-
fulness of the dynamical systems approach in the field of
evolutionary algorithm engineering. While we have shown
that the newly designed (A)opt-0SA-ES works well on the
sphere model, further investigations are necessary to evalu-
ate its behavior on more complex test functions.

The choice of weights (22) discussed in this paper is not
the only possible one. Alternatively, one can consider w; x =
E;»/k where k > 1. Using scaled weights, larger optimal
s*(9) values can be obtained in the course of the mutation
strength adaptation. While this does not increase the maxi-
mal possible quality gain in the non-noisy fitness case, it can
be beneficial in noisy fitness environments and multimodal
fitness landscapes as the strategy will work with larger mu-
tations [5]. The question how the choice of scaled weights
influences the performance in non-noisy and noisy fitness en-
vironments remains to be investigated in future research. To
this end, empirical and theoretical investigations are to be
conducted considering more complex test functions such as
PDQFs [10, 2] and general quadratic models including noise.
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