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ABSTRACT

This paper addresses selection as a source of overfitting
in Bayesian estimation of distribution algorithms (EDAs).
The purpose of the paper is twofold. First, it shows how
the selection operator can lead to model overfitting in the
Bayesian optimization algorithm (BOA). Second, the metric
score that guides the search for an adequate model structure
is modified to take into account the non-uniform distribution
of the mating pool generated by tournament selection.
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1. INTRODUCTION

Estimation of distribution algorithms (EDAs) [11, 15] can
be classified according to the complexity of their probabilis-
tic models. Simpler EDAs use a model of simple and fixed
structure and only learn the corresponding parameters. At
the other side of the spectrum, are the Bayesian EDAs which
use Bayesian networks (BNs) [14] to model complex multi-
variate interactions. While Bayesian EDAs are able to solve
a broad class of nearly decomposable and hierarchical prob-
lems in a reliable and scalable manner, their probabilistic
models oftentimes do not exactly reflect the problem struc-
ture. Because these models are learned from a sample of
limited size (population of individuals), particular features
of the specific sample are also encoded, which act as noise
when seeking for generalization. This is a well-known prob-
lem in machine learning, known as model overfitting.
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In many situations, the knowledge of the problem struc-
ture can be as valuable as a high-quality solution to the prob-
lem. This is the case for several model-based efficiency en-
hancement techniques developed for EDAs that yield super-
multiplicative speedups [9]. Another important situation is
the offline interpretation of the probabilistic models to help
develop fixed but structure-based operators for specific in-
stances or classes of problems that have similar structure.

This paper investigates the influence of the selection pro-
cedure on model quality for the Bayesian optimization al-
gorithm (BOA) [16, 15]. Selection is analyzed as the mat-
ing pool distribution generator, which turns out to have a
great impact on Bayesian network learning. Particularly,
it is shown that tournament selection generates the mating
pool according to a power distribution that leads to model
overfitting. However, if the metric that scores networks takes
into account the resampling performed by tournament, the
model quality can be highly improved and comparable to
that of truncation selection which generates a uniform dis-
tribution, more suitable for BN learning.

The next section introduces relevant background to under-
stand the purpose of the paper. Section 3 analyzes selection
as the mating pool generator, while Section 4 models the
metric gain when overfitting with tournament selection. Fi-
nally, a correction to the complexity penalty is proposed to
avoid overfitting, and conclusions are presented.

2. PRELIMINARIES

2.1 Bayesian Optimization Algorithm

The Bayesian optimization algorithm (BOA) [16, 15]
uses Bayesian networks (BNs) [14] to capture the
(in)dependencies between the decision variables of the op-
timization problem. In BOA, the traditional crossover and
mutation operators of genetic algorithms are replaced by
(1) building a BN which model promising solutions and
(2) sampling from the corresponding probability distribu-
tion to generate new solutions.

A BN is defined by its structure and corresponding pa-
rameters. The structure is represented by a directed acyclic
graph where the nodes correspond to the variables of the
problem and the edges correspond to conditional dependen-
cies. The parameters are represented by the conditional
probabilities for each variable given any instance of the
variables that this variable depends on. More formally, a
Bayesian network encodes the following joint probability dis-
tribution,
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where X = (X1, Xa,...,X/¢) is a vector with all variables of
the problem, II; is the set of parents of X; (nodes from which
there exists an edge to X;), and p(X;|II;) is the conditional
probability of X; given its parents II;.

The parameters of a Bayesian network can be represented
by a set of conditional probability tables (CPTs) or local
structures. Using local structures such as decision trees al-
lows a more efficient and flexible representation of local con-
ditional distributions, improving the expressiveness of BNs.
In this work we focus on BNs with decision trees.

The quality of a given network structure is quantified by
a scoring metric. Here, we consider two popular metrics for
BNs: the K2 metric [5, 10] and the Bayesian information
criterion (BIC) [18]. It has been shown that the behavior
of these metrics is asymptotically equivalent; however, the
results obtained with each metric can differ for particular
domains, particularly in terms of sensitivity to noise. In the
context of EDAs, when using CPTs to store the parameters,
the BIC metric outperforms the K2 metric, but when using
decision trees or graphs, the K2 metric has shown to be
more robust [15]. We will confirm this observation later in
Section 2.3.

To learn the most adequate structure for the BN a greedy
algorithm is usually used for a good compromise between
search efficiency and model quality. We consider a simple
learning algorithm that starts with an empty network and at
each step performs the operation that improves the metric
the most, until no further improvement is possible. The
operator considered is the split, which splits a leaf on some
variable and creates two new children on the leaf. Each time
a split on X; takes place at tree T3, an edge from X; to X;
is added to the network. For more details on BNs with local
structures the reader is referred elsewhere [4, 7, 15].

2.2 Structural Accuracy of Probabilistic
Models in Bayesian EDAs

Definition 1. The model structural accuracy (MSA) is de-
fined as the ratio of correct edges over the total number of
edges in the Bayesian network.

Definition 2. An edge is correct if it connects two vari-
ables that are linked according to the objective function
definition.

Definition 3. Model overfitting is defined as the inclusion
of incorrect (or unnecessary) edges to the Bayesian network.

To investigate the MSA in BOA, we focus on solving a
problem of known structure, where it is clear which de-
pendencies must be discovered (for successful tractability)
and which dependencies are unnecessary (reducing the in-
terpretability of the models).

The test problem considered is the m — k trap function,
where m is the number of concatenated k-bit trap functions.
Trap functions [1, 6] are relevant to test problem design be-
cause they bound an important class of nearly decomposable
problems [9]. The trap function used [6] is defined as follows

k,
k—1—u,

ifu==%k
otherwise
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where v is the number of ones in the string, k is the size of
the trap function. Note that for k& > 3 the trap function is
fully deceptive [6] which means that any lower than k-order
statistics will mislead the search away from the optimum. In
this problem the accurate identification and exchange of the
building-blocks (BBs) is critical to achieve success, because
processing substructures of lower order leads to exponential
scalability [19]. Note that no information about the problem
is given to the algorithm; therefore, it is equally difficult
for BOA if the variables correlated are closely or randomly
distributed along the chromosome string. A trap function
with size k = 5 is used in our experiments.

To focus on the influence of selection in model quality, the
replacement strategy is kept as simple as possible, where the
offspring fully replace the parent population.

For all experiments, we use the minimal population size
required to solve the problem in 10 out of 10 independent
runs. The population size is obtained by performing 10 in-
dependent bisection runs [17]. Therefore, the total number
of function evaluations is averaged over 100 (10 x 10) runs.

2.3 Influence of Selection Strategy on MSA

The influence of the selection strategy in BOA has been
discussed before [12]. Here, we review essential findings to
the purpose of studying model overfitting and extend the
experiments to the BIC metric. In particular, we consider
two widely used selection schemes in EDAs: Tournament
and truncation selection.

In tournament selection [8, 3], s individuals are randomly
picked from the population and the best one is selected for
the mating pool. This process is repeated n times, where n
is the population size. There are two popular variations of
tournament selection, with and without replacement. With
replacement, the individuals are drawn from the population
following a discrete uniform distribution. Without replace-
ment, individuals are also drawn randomly from the popu-
lation but there’s the guarantee that every individual par-
ticipates in exactly s tournaments. While the expected out-
come for both alternatives is the same, the latter is a less
noisy process. Therefore, in this study we use tournament
selection without replacement.

In truncation selection [13] the best 7% individuals in the
population are selected for the mating pool. This method
is equivalent to the standard (u, A)-selection procedure used
in evolution strategies (ESs), where 7 = £ x 100.

Note that when increasing the size of the tournament s,
or decreasing the threshold 7, the selection intensity is in-
creased, which means an increase in the selection strength.
In order to compare the two selection operators on a fair ba-
sis, different configurations for both methods with equivalent
selection intensity are considered. The relation between se-
lection intensity I, tournament size s, and truncation thresh-
old 7 is taken from [2] and is shown in Table 1.

Table 1: Equivalent tournament size (s) and trun-
cation threshold (7) for the same selection inten-
sity (I).

056 | 0.84 [ 1.03 | 1.16 | 1.35 | 1.54 | 1.87
P 2 3 1 5 7 | 10 | 20
(%) | 66 | 47 | 36 | 30 | 22 | 15 | 8
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Figure 1: Model structural accuracy and number of function evaluations for different selection-metric com-
binations when solving the 5-bit trap problem of size ¢ = 50.

Figure 1 shows the model quality and number of function
evaluations for different combinations of selection methods
and scoring metrics. From a model quality perspective, it is
clear that (1) truncation selection performs better than tour-
nament selection and (2) K2 metric performs better than
BIC metric. Note that with tournament selection, while for
small values of s the number of evaluations decreases, after
some value of s, the number of evaluations starts to increase
again. Curiously, this happens when the MSA approaches
0.1.

3. SELECTION AS THE MATING POOL

DISTRIBUTION GENERATOR

Like in traditional genetics, the selection mechanism is re-
sponsible for ensuring the survival of the fittest in the pop-
ulation. In the context of EDAs, this is one of the most im-
portant components inherited from the evolutionary compu-
tation framework. However, in EDAs, which have a strong
connection with data mining and classification, the selec-
tion operator can also be viewed as the generator of the
data set used to learn the probabilistic model at each gen-
eration. Since in EDAs we are interested in modeling the
set of promising solutions, the selection operator indicates
which individuals have relevant features to be modeled and
propagated in the solution set (population of individuals).
Before moving to the study of the selection strategy as the
data set generator for learning the BNs, we make a simple
analysis of the selection operators considered.

In terms of creating duplicate individuals in the popula-
tion there are two responsible mechanisms. The selection
operator explicitly assigns several copies of the same indi-
vidual to the mating pool, where the number of copies is
somewhat proportional to their fitness rank. This is the
case for tournament, ranking, and proportional selection.
Additionally, the model sampling procedure generates with
a certain probability duplicates of the same individual, al-
though selection implicitly controls how often this happens.
Note that this probability will increase in time as the EDA
starts focusing on more concrete regions of the search space.
Clearly, the selection operator has some influence on this
phenomenon as it explicitly regulates the convergence speed
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of the algorithm. Without loss of generality, consider that
the replication of individuals done explicitly by the selection
operator is the main source of duplicates in the population.

For the sake of simplicity, let us assume that all individuals
have different fitness. Ordering the population by fitness,
where the worst individual has rank 1 and the best has rank
n, the probability that an individual with rank ¢ wins a given
tournament of size s is, for i > s, given by

() G o
pi*(Z:;)i(Z—s)!(n—U[*jl:[ln_j, for s > 2.

(3)
Note that the worst s — 1 individuals will never win a tour-
nament, therefore for i < s, p; = 0.

Given that in tournament selection without replacement
each individual participates in exactly s tournaments, the
expected number of copies (¢;) in the mating pool for an
individual of rank 7 is simply

(4)
For i > s, and consequently n > s, the distribution of

the expected number of copies ¢; can be approximated by a
power distribution with p.d.f.,

Ci = S Dj.

fx)y=ax*"! 0<z<l,a=s.

()
In this way, the distribution of ¢; can be expressed for any
population size, where the relative rank is given by = = i/n.
Note that as the relative rank slightly decreases from 1 the
corresponding number of expected copies rapidly decreases.
This is particularly true for higher tournament sizes, when
increasing the exponent of the power factor.

On the other hand, in truncation selection the expected
number of copies for the selected individuals is one, which
follows a uniform distribution with p.d.f.,

o = { (6)

Figure 2 shows the distributions of expected number of
copies for each individual with rank expressed in percentile.

0,
L,

if i <n(1—(7/100))
otherwise.
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Figure 2: Distribution of the expected number of copies in the mating pool for (a) tournament and (b)
truncation selection with different selection intensity values. Note that s and 7 values generate the same

selection intensity. Rank is expressed in percentile.

The difference between the two selection methods is notori-
ous. While tournament selection assigns increasing relevance
to top-ranked individuals according to a power distribution,
truncation selection gives no particular preference to any of
the selected individuals, all having the same frequency in
the learning data set.

The differences between tournament and truncation distri-
butions stress out two relevant features of any given selection
method: (1) window size, which determines the proportion
of unique individuals that are included in the mating pool,
and (2) distribution shape, which determines the relevance of
each selected individual in the mating pool, in terms of the
number of copies. These features in a certain way control
the tradeoff between exploration and exploitation in model
structural learning in EDAs.

Clearly, tournament and truncation selection differ in
both features. While the window size is deterministically de-
fined in truncation selection—solutions above the threshold
are included in the selected set and solutions below are not—
in tournament selection, the choice of which individuals to
include in the mating pool is a stochastic process (except for
the best solution and the worst s — 1), but also guided by
fitness rank. The probability of inclusion rapidly decreases
with rank, particularly for larger tournament sizes, as can
be seen in Figure 2 (a). In terms of distribution shape, the
two selection methods also differ significantly. Tournament
selection gives higher emphasis to top-ranked solutions ac-
cording to a power distribution with @ = s. This means that
best solutions get approximately s copies in the mating pool,
which forces the learned models to focus on particular fea-
tures of these individuals, which contain good substructures,
but also undesirable components due to stochastic noise.

Another way to look at tournament selection in compari-
son with truncation selection as the mating pool generator
is recognizing that this selection procedure acts as a biased
data resampling on an uniform data set. The uniform data
set is the set of unique selected solutions (solutions that
will win at least one tournament), similar to what happens
in truncation, while the resampling is performed when top-
ranked individuals participate in more than one tournament.
This sort of resampling is clearly biased by fitness.

4. MODELING METRIC GAIN WHEN
OVERFITTING

To analyze the effect of tournament size on resampling
bias we must look at the cumulative distribution function
(c.d.f.) of the power distribution, which is given by

Fx)=2z°, 0<z<l1,s>1. (7)

Note that for s = 1 we have a uniform distribution and
there’s no resampling, as the mating pool becomes a com-
plete copy of the population. For s > 2, we can obtain the
proportion of individuals in the mating pool with rank equal
or less than z by simply calculating F'(z), or alternatively,
the market share of the (1 — z) top-ranked individuals given
by 1 — F(x) (right-side area of the c.d.f.).

The overfitting due to noise coming from top-ranked in-
dividuals is certainly more likely to happen if we think in
a fairly small percentage of the population. Said differ-
ently, the smaller this proportion is, the more likely these
individuals will contain the same misleading features that
are induced by noise. On the other hand, this proportion
should be significant enough in terms of relative frequencies
so that it can influence the metric component that scores
the likelihood of the model with respect to the data. How
large or small should this proportion be depends obviously
on the tournament size. For larger tournament sizes, this
proportion is expected to be inferior to the case of smaller
tournament sizes because the number of copies assigned to
top individuals increases considerably. Therefore, we rec-
ognize that this proportion should be small, but the exact
proportion will differ from situation to situation.

To better ilustraste our argument, Figure 3 shows the
power c.d.f. for several proportions of top-ranked individu-
als. It can be seen that for small proportions (< 1%) of top-
ranked individuals, the expected proportion in the mating
pool after selection grows approximately linearly with the
tournament size. Note that as the proportion considered is
more elitist, the slope of the linear relationship approaches
the proportion itself. For example, when considering the
best 0.1%, the market share after selection with s = 50 is
4.88% =~ 0.1% x 50.
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Figure 3: Expected market share of top-ranked in-
dividuals included in the mating pool after selection
for infinite population size. For small proportions
(< 1%) of top-ranked individuals the relation be-
tween tournament size and the expected proportion
in the mating pool after selection is approximately
linear.

The bottom line of this rationale is to verify that, in the
worst case, the noise in terms of counts or relative frequen-
cies coming from the replication of top-ranked individuals
grows linearly with the tournament size.

Consider now the possibility of adding an edge from a
variable X5 to another variable X; due to nonlinearities in-
troduced by tournament selection, knowing that these two
variables are in fact independent from each other. To in-
vestigate the influence of the resampling done by successive
tournaments, we must derive the score metric for the net-
work where an edge is added from X2 to X;. Given that
both MDL and Bayesian metrics are decomposable, it is
sufficient to look at the term corresponding to the node X;.
The metric gain obtained by splitting a leaf on X2 in the
tree encoding the parameters of X; and adding the corre-
sponding edge to the network is given by

ScoreAfter — ScoreBefore
— ComplexityPenalty,

Gmetm’c -

(8)

where ScoreAfter is the metric score obtained after split-
ting the leaf into two new ones, ScoreBefore is the score ob-
tained before the split (keeping X; independent from X3),
and ComplexityPenalty is the penalty associated with the in-
creased complexity of adding one leaf to the tree. In BOA,
if this gain is positive the split is accepted and the corre-
sponding edge is inserted in the Bayesian network.

Considering the BIC metric, the metric gain correspond-
ing to adding an edge from Xs to X is

X1 X2 =00
GB]C = m(Xng = 00) 10g2 <%

+m(X1X2 = 10) log, <%2:0§0)> ©)
+m(X1X2 = 01) log, <%2:1(;1))
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X1 X, =11
—+ m(X1X2 = 11) 10g2 (%

— (X1 = 0) log, <@)

m(X;l: 1)>

)

—m(X1 =1)log, <

1
- 5 10g2 (TL) 5

where m(X1X2 = z1x2) is the number of individuals in the
population with X1 Xs = x122 and n is the population size.
Note that the first four terms correspond to ScoreAfter, the
fifth and sixth terms express ScoreBefore, and the final term
penalizes the score because of the complexity added to the
BN. Denoting m(X1Xs = z1x2) by maz, 2, and recognizing
that m(X1 = z1) = m(X1 X2 = 210) + m(X1 X2 = x11), as
well as n = moo + mo1 +mio + mi1, the previous expression
can be expressed as

L)
Mmoo + Mio

m
) -+ mio log, <7m00 -:Omw

mii

Ggrc = moolog, (

mo1
+mo1logy | ———
mo1 + mMi1
™Moo + Mo1

Mmoo + Mo1 + Mmio + Mi1

)
)

(10)

— (Mmoo + mo1) log, <

mio + M1
moo + mMo1 + Mio + M1

— (m1o + m11) log, <

1
) log, (Mmoo + mo1 + mio +mi1).

Expressing in terms of relative frequencies, the gain can be
expressed as

, 1
Gpic =n Ggrc — 3 log, (1),

where

Poo
Ppoo + p1o

(11)

P1o

+ lo _—
) P10 7082 <p00 + pio

Po1 P11

— ) + lo e —
Po1 +p11) P11 2082 <p01 + p11

— (poo + po1) logy (poo + po1)
— (p10 + p11) log, (10 + p11) -

Gprc = poolog, (

)

(12)

+ po1 log, (

Next, we want to model the deviation from the actual fre-
quencies in a uniformly distributed mating pool (in terms of
copies) to biased frequencies towards the noise induced by
the replication of top-ranked individuals (power distribu-
tion). First, consider the frequencies on the uniform mating
pool to be poo = po1 = pio = p11 = 0.25, which reveals
independence between X; and X>. Then, and without loss
of generality, we will assume that the these frequencies are
deviated towards equally increasing poo, p11 and equally de-
creasing po1, p1o- This assumption relies on the fact that the
decrease in entropy (corresponding to an increase in score)
will be achieved faster than for other possible configurations
of pairwise frequency deviation. In this way, we analyze the
case that can upper bound other possible deviations.

> +mu log, <m01 + mn

)



Assuming that the deviation of the “true” frequencies is
linear with respect to the tournament size, as argued before,
the frequency deviation can be expressed as

poo =~ 0.25 + A(s — 1),
po1 ~ 0.25 — A(s — 1
P10~ 0.25 — A(s — 1
P11~ 0.25 + As — 1),

- ; (13)

I

where A is the slope of the linear relationship plotted in
Figure 3, therefore the exact value will depend on the pro-
portion considered. Replacing (13) into (12) and denoting
(s —1) by s,

/
Gsre =~ (0.25 4+ As’) log, (%)
0.25 — As’
0.5

0.25 — As')

+(0.25 — As') log, (

(14)
0.5
0.25 + As’
0.5 )
—0.5log, (0.5) — 0.5log, (0.5) .

+(0.25 — As') log, (

+(0.25 + As) log, (

Simplifying the previous equation, we have
25 + As’

Gsrc =~ (0.5+2As")log, <050%)

‘ (15)

+ (0.5 — 2A8") log, <%> +1.

Using the logarithm property log(a/b) = log(a) —log(b) and
simplifying again, we get

Gic = (0.54+2As")10g,(0.25 + As') (16)
+ (0.5 — 2As") log,(0.25 — As’) + 2.
Dividing both terms by 2,
1 / ’ /
=Gsic~ (0.25+ As')log,(0.25 + A
5BIC ( s') log,( s) (17)

+(0.25 — As') log, (0.25 — As’) + 1.

Looking at the function z log,(z) for the interval [0, 0.5],
one can see that the first term in Equation 17 is relatively
constant around -0.5. Therefore,

1

§G§3m ~ (0.25 — As")log,(0.25 — As’) + 0.5, (18)
or alternatively,

Gpre ~2(0.25 — As") log, (0.25 — As") + 1. (19)

The approximate expression for the metric gain G’z due
to overfitting of top-ranked individuals in tournament selec-
tion is plotted in Figure 4. A value of A = 0.001 is used
(best 0.1%). Since the schema proportions considered will
vary from 0.25 to 0 or 0.5, the A value will basically define
the increment /decrement step of that same proportions. For
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Figure 4: Approximated metric gain G5;- due to
overfitting of top-ranked individuals in tournament
selection. A value of A = 0.001 is used (best 0.1%).
The metric growth is somewhere between linear and
quadratic, but closer to linear.

example, for a higher A = 0.005 the approximate expression
would be defined only for s = [1,50], instead of the plotted
s = [1,250].

As can be seen, the metric gain grows close to linear in
log-log scale, with the exception made for lower and higher
values of s. This means a polynomial growth in linear scale,
somewhere between linear and quadratic, which can be con-
firmed by comparison with reference curves. While the met-
ric gain G’z;¢ does not account for the factor n (population
size) and the complexity penalty term 0.5log,(n), it does
tell us about the way the gain grows with respect to the
tournament size s.

5. ADAPTING COMPLEXITY PENALTY

In this section we change the complexity penalty of the
metric score in order to account for the power distribution
nature of tournament selection. While the metrics consid-
ered have different backgrounds, the penalty associated with
each leaf addition is exactly the same: 0.5log,(n) [15]. This
becomes clear if we compare the logarithm of the K2 met-
ric with the BIC metric. Here, we aggravate this penalty
by a factor that depends on the tournament size, using
0.5¢s log,(n), where c¢s is tournament size dependent. In
this way, the greater the number of copies of top-ranked in-
dividuals in the mating pool, the more demanding we are in
accepting an edge/leaf addition. From the previous section
we know that the metric gain due to overfitting grows ap-
proximately as s, therefore we try different c¢s values around
s to investigate the corresponding response in terms of MSA
and the number of function evaluations. We perform exper-
iments for ¢; = /s, s, slog,(s) and compare them with the
original penalty correction (cs = 1).

Experiments for both BIC and K2 metrics were per-
formed; however, due to lack of space we only show the
results for the K2 metric. Figure 5 shows the model quality
and corresponding evaluations for BOA with tournament
selection using different complexity penalties. Already for
¢s = 4/8, the model quality improves with respect to the
standard case ¢s = 1, but when considering ¢s = s and
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Figure 5: Model quality and number of function evaluations for different penalty correction values ¢, =

1,4/s, s, slog,(s) with the K2 metric.

slog,(s) the improvement is much better. Increasing the
penalty by a factor of s or higher takes model quality very
close to 100%. However looking at the number of evaluations
spent by each penalty, it is clear that ¢ = slog,(s) is too
strong as a penalty because for larger s values it takes too
many evaluations and the situation gets worse with increas-
ing s. On the other hand, the s—penalty (c; = s) shows to
be an adequate penalty because while obtaining high-quality
models the number of evaluations is kept constant after some
tournament size. This point us out to another advantage of
the s—penalty, because it allows to have a wider range of s
values for which BOA performs well and at a relatively low
cost. Similar results are obtained for the BIC metric, where
the s—penalty is also the most adequate.

We now look at the behavior of tournament selection with
the s—penalty for different problem sizes and compare it to
truncation selection with the standard penalty. Figures 6
and 7 show BOA with tournament and truncation selec-
tion, respectively. Clearly, tournament selection with the
s—penalty obtains better model quality than truncation se-
lection with the standard penalty. Notice, however, that
model quality is now plotted between 90% and 100%, be-
cause both methods obtain models of much better quality
than tournament selection with the standard penalty. In
terms of number of evaluations, tournament selection is still
less expensive than truncation selection, but as selection in-
tensity increases their costs become comparable. These re-
sults demonstrate that tournament selection is a good se-
lection method for EDAs, like it is for GAs, as long as the
scoring metric counterbalances the power distribution in the
mating pool. The greater the tournament size is, the more
demanding the metric score has to be in accepting edge/leaf
additions.

6. CONCLUSIONS

This paper has addressed model overfitting in the context
of the Bayesian optimization algorithm. The influence of
selection methods in Bayesian network learning has been
demonstrated by looking at the corresponding distributions
in the set of selected solutions. The metric gain obtained
when overfitting has been derived so that the complexity
penalty of the scoring metric could be compensated in
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the same order of magnitude. By doing so, the model
quality in BOA when using tournament selection has been
considerably improved. While we did not consider other se-
lection operators such as ranking or proportionate selection,
the methodology developed in the paper should provide
guidelines to account for the non-uniform distributions
generated by these operators.
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