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ABSTRACT 
In this paper, we compare two neuroevolutionary algorithms, 
namely standard NeuroEvolution (NE) and NeuroEvolution of 
Augmenting Topologies (NEAT), with three neurocoevolutionary 
algorithms, namely Symbiotic Adaptive Neuro-Evolution 
(SANE), Enforced Sub-Populations (ESP) and Evolving Efficient 
Connections (EEC).  EEC is a novel neurocoevolutionary 
algorithm that we propose in this work, where the connection 
weights and the connection paths of networks are evolved 
separately. All these methods are applied to evolve players of two 
different board games. The results of this study indicate that 
neurocoevolutionary algorithms outperform neuroevolutionary 
algorithms for both domains. Our new method, especially, 
demonstrates that fully connected networks could generate noise 
which results in inefficient learning. The performance of standard 
NE model has been improved significantly through evolving 
connection weights and efficient connection paths in parallel in 
our method.   

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial 
Intelligence]: Problem Solving, Control Methods, and Search 

General Terms 
Algorithms, Measurement, Performance, Design, 
Experimentation. 

Keywords 
Neuroevolution, Neurocoevolution, NE, NEAT, ESP, SANE, 
EEC, TTT, Gobang. 

1. INTRODUCTION 
As summarized by Yao [10], the design of artificial neural 
networks (ANNs) using evolutionary techniques can be roughly 
classified into three levels: evolving connection weights; evolving 

architectures and evolving learning rules. In the past decade, more 
and more approaches have focused on simultaneously evolving 
connection weights and architectures of ANNs.  Both standard 
evolutionary techniques and coevolutionary techniques have been 
introduced into ANNs design. The resultant techniques are so-
called neuroevolutionary or neurocoevolutionary algorithms. 

Neuroevolutionary algorithms evolve ANNs using standard 
evolutionary techniques. Conventionally, each individual in the 
population represents a complete network. The fitness of each 
individual is evaluated independently of other individuals.  

Citing techniques of cooperative coevolution, 
neurocoevolutionary algorithms evolve solutions by decomposing 
complete networks. Each individual of a population represents a 
partial network. A complete network is composed through 
building cooperative relationships among individuals.   

Symbiotic Adaptive Neuro-Evolution (SANE) [3], Enforced Sub-
Populations (ESP) [1] and NeuroEvolution of Augmenting 
Topologies (NEAT) [9] are three popular methods for evolving 
ANNs. NEAT is a neuroevolutionary algorithm in which every 
individual presents a complete network, while SANE and ESP are 
neurocoevolutionary algorithms where every individual represents 
a neuron instead of a complete solution. In addition, a new 
neurocoevolutionary algorithm, called Evolving Efficient 
Connections (EEC), has been developed in this work. EEC 
cooperatively evolves connection weights and connection paths 
that are respectively represented in their own populations. 

The objective of this paper is to empirically compare two 
neuroevolutionary algorithms, namely standard NeuroEvolution 
(NE) and NEAT, versus three neurocoevolutionary algorithms, 
namely SANE, ESP and EEC, for evolving board game players.  

A few similar comparisons were previously performed. Moriarty 
and Miikkulainen [3] compared SANE with standard NE in the 
Khepera robot simulator. In their analysis, SANE performed more 
efficiently and maintained a higher level of diversity than 
standard NE. In [9] Stanley and Mikkulainen compared NEAT 
with published results of standard NE, SANE and ESP on the 
double pole balancing with velocity problem. Their results 
showed that NEAT performed as well as ESP while finding more 
minimal solutions and using fewer evaluations.  

The contributions of our work are twofold: 1) we propose a novel 
neurocoevolutionary algorithm, EEC, based on standard NE 
model, borrowing ideas from SANE and ESP; 2) an empirical 
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study is facilitated to compare different methods under as fair as 
possible conditions, in which each method evolves networks 
within the same number of generations and in each generation the 
same number of evaluations are performed. Two board games, 
Tic-Tac-Toe (TTT) and Gobang, are chosen as our benchmark 
tasks. The performance of these methods is measured according to 
their players’ strength against hand-coded opponents, learning 
speed, network complexity and time consumption of evolution.  

The body of this paper is organized as follows. Section 2 and 
Section 3 briefly introduce two neuroevolutionary algorithms and 
three neurocoevolutionary algorithms. Our experimental setup is 
presented in section 4. Section 5 illustrates the empirical 
evaluations for comparing different methods. Our observations 
and future work are given at the end.  

2. NEUROEVOLUTION 

2.1 Standard NE 
Standard Neuro-Evolution (NE) evolves connection weights of 
complete neural networks, where each individual in the 
population represents a vector with all connection weights of a 
network, and each gene of an individual specifies a weight value 
between two neurons.  

The fact that standard Evolutionary Algorithms (EAs) continually 
select and breed the best individuals in one population, therefore, 
losing diversity and eventually converging around a single “type” 
of individual is a major limitation. In standard EAs, the 
approaches of maintaining diversity are mainly to decrease 
selection pressure or increase mutation rate. Therefore, similar 
problems are also encountered in standard NE, especially when a 
standard NE is applied to solve complex and dynamic problems 
[3].  

2.2 NEAT 
NeuroEvolution of Augmenting Topologies (NEAT) [9] is a new 
neuroevolutionary technique that evolves both the connection 
weights and connection topologies of ANNs simultaneously. 
However, since NEAT does not represent connection weights and 
topologies in separate populations, an individual of the population 
still represents a complete network.  

A NEAT individual consists of a series of connection status 
genes. Each gene represents the connection status of two neurons. 
It contains five elements: 1) in-node neuron; 2) out-node neuron; 
3) connection weight; 4) connection status; and 5) innovation 
number. The length of an individual is flexible and expandable so 
that evolution is able to both complexify and simplify network 
topologies.   

The first NEAT model was proposed by Stanley and Miikulainen 
[9], where networks were evolved from no hidden layer structure 
and complexified by using mutation operators. NEAT overcomes 
diversity loss by using unstandard NE mutation operators. In 
NEAT, the mutation operator plays two roles: (1) changing 
connection weights; and (2) complexifying network topologies. 
Changing weights via mutation is the same as in standard NE 
algorithms, where a weight of a network is randomly selected to 
change. Topological mutation complexifies network structure in 
two ways, either inserting a new node between an existing 
connection or creating a connection between two unconnected 

nodes. The connection status could be therefore changed due to 
mutation operation. Innovation numbers are used when 
recombining networks with differing topologies.   

James and Tucker added a new topological mutation operator into 
this model [2]. A delete connection mutation operator was used to 
remove an existing connection between two nodes. The blended 
mutations have been shown to perform better than either 
complexifying or simplifying networks alone [2]. The new 
approach is therefore used in the NEAT experiments of this work.  

3. NEUROCOEVOLUTION 

3.1 SANE 
Symbiotic Adaptive Neuro-Evolution (SANE) [3] evolves three-
layer networks, where the number of hidden nodes of the network 
is predefined and fixed, but the network connection topology is 
not. There are two populations evolved in SANE, a population of 
neurons and a population of network blueprints.  

Each individual in the neuron population represents the 
connection paths and weights of a hidden neuron from the input 
layer and to the output layer. Each gene of an individual contains 
two parts: one part specifies the connection path (that is which 
neuron to connect to) and the other specifies the weight of that 
connection. All the hidden neurons have the same number of 
connections, but could have different connection paths from the 
input layer and to the output layer. 

Networks are constructed by combining selected individuals from 
the neuron population. The information of combination is saved in 
the blueprint population. Each individual of the blueprint 
population represents a combination of selected individuals from 
the neuron population. At the beginning of blueprint evolution, 
combinations are created randomly. Effective combinations can 
be maintained and new combination forms can be explored by 
evolving the blueprint population. A well-contributing neuron 
does not always cooperate well with any other neurons. Therefore, 
through maintaining a blueprint population, well-contributing 
neurons are protected from being eliminated due to ineffective 
cooperation with some other neurons.   

SANE is an intra-population neurocoevolutionary algorithm, that 
is all the cooperative neurons come from the same population. 
Each individual of neuron population represents a partial solution 
instead of a complete network. A complete network is formed by 
a collection of cooperative neuron individuals. The fitness of a 
neuron individual is not evaluated independently of other 
individuals in the neuron populations, but is based on its 
cooperation. After evaluating all the networks built by blueprints, 
besides assigning the fitness to each blueprint, each neuron also 
obtains a fitness value that equals the fitness sum of the best five 
networks in which the neuron participates. Cooperation only 
happens when we evaluate individuals, while two populations 
perform recombination and mutation process independently.  

3.2 ESP 
Enforced Sub-Populations (ESP) [1] is also a neurocoevolutionary 
algorithm, where complete networks are evolved by decomposing 
them into sub-populations of neurons. Different from SANE, ESP 
is an inter-population neurocoevolutionary algorithm, because all 
the cooperative individuals come from different populations.  
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ESP evolves three-layer fully connected networks; it creates a 
sub-population for each hidden neuron. Each individual of the 
sub-population represents a weight vector of a hidden neuron that 
is fully connected with input neurons and output neurons. A 
complete network is constructed through randomly selecting an 
individual from each sub-population. A number of networks are 
created during each generation; each one is evaluated in turn. 
Each individual of the sub-population obtains average fitness of 
the networks that it participated in. Neurons are evolved in their 
own sub-populations, but cooperatively adapt to the problem 
domain.  

At the beginning, the evolution of ESP runs mainly to search the 
weight space of the network. However, the topology of the 
network will change when stagnation happens (that is the best 
fitness of networks have not improved after predefined 
generations). A hidden neuron will be removed if the neuron does 
not make enough contribution to the whole solution. Or a new 
hidden neuron will be added if no neuron can be removed.   A 
delta-coding technique will be applied if no new neuron is added. 
It selects the best network evolved so far and uses each neuron of 
the network as a seed of each sub-population. New sub-
populations will be generated by perturbation operations of the 
selected seeds. In this way, both optimal weights and network 
topologies can be explored simultaneously. 

ESP decomposes a network search space into several neuron sub-
spaces, which is especially helpful in complex problem domains.   

3.3 EEC 
Borrowing many ideas from both SANE and ESP, we have 
developed a novel neurocoevolutionary algorithm, called 
Evolving Efficient Connections (EEC). EEC separates the search 
space of a network into two sub-spaces: connection weights space 
and connection paths space. Thus, it contains two populations. 

The population of connection weights evolves weights vectors for 
fully connected networks as does standard NE. Each individual 
represents connection weights of a network, in which each neuron 
hypothetically connects with all neurons in the next layer. While 
the population of connection paths evolves switches of these 
connections; each individual represents a series of binary bits to 
specify the status of the connections, where “0” indicates 
disconnection between two nodes and “1” indicates connection 
between two nodes. Figure 1 shows how the connection-weights, 
individuals, and the connection-paths individuals are related.  

Below we provide a brief description of the EEC algorithm. 

1. Initialization. The number of hidden neurons of the networks 
has to be specified at the beginning. Each chromosome of 
connection weights encodes fully-connected weights vectors with 
random real numbers. The chromosome of connection paths 
encodes connection status with a random string of binary bits, 
corresponding to the connection weights.  

2. Evaluation. A complete network is formed through respectively 
sampling an individual from both the connection-weights 
population and the connection-paths population. To achieve the 
best performance of our method, we suggest evaluating every 
individual of both populations. The top n individuals are regarded 
as elite based on their previous evaluation. An elite-rate percent 
of the cooperative individuals are selected from the elite to 

cooperate with the current evaluated individuals, while the rest 
are selected randomly from the cooperative population. The 
resulting network is evaluated on the task and assigned a fitness 
score. Each individual is awarded an average of the cumulative 
fitness of the networks in which it participated during one 
generation. 

3. Recombination. The same recombination process of ESP is 
employed in our algorithm. All the individuals will be ranked 
according to their fitness within each population. The top 1/4 
individuals are breeding members. The lowest ranking half of the 
individuals will be replaced by offspring of the breeding pairs. 
One-point crossover and one-point mutation are employed. 

4. Iteration. During the generation process, the stagnation-
handling strategy of ESP is also used in our method. A similar 
delta-coding technique of ESP will be employed when the best 
fitness of networks has not improved after a specified number of 
generations. In our delta-coding process, the connection-weights 
individual and the connection-paths individual from the current 
best network are regarded as seeds of each population. We replace 
all the individuals of each population with new individuals 
generated by perturbations of the selected seed. The generation is 
iterated until an optimal solution is found or the maximum 
generation is reached.  

1.2

-0.3

0

1

-0.3

 
Figure 1. In EEC, connection-weights individual represent 
weights vectors of fully connected networks, complete 
networks cut a partial connections specified by connection-
paths individuals. 
 

Besides evolving weights, EEC evolves efficient connection 
topologies of networks. Although we evolve a three-layer 
feedforward network using EEC in our experiments, this 
neurocoevolutionary algorithm is able to be applied to other types 
of networks, such as recurrent networks, multi-hidden layer 
networks and so on. 
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4. EXPERIMENTAL SETUP 
All of our experiments carried out in this work were implemented 
in Java1.  

Two domains used to compare the neuroevolutionary algorithms 
and neurocoevolutionary algorithms described above are Tic-Tac-
Toe (TTT) and Gobang. The reasons that these two games are 
chosen as our test domains are twofold. First, games are widely 
used for evaluating neuroevolutionary methods, especially board 
games, and are easily implemented. Second, TTT can be regarded 
as an abbreviated version of Gobang since the two games have 
similar game rules but different board sizes. Although we have 
divided each problem into several increasingly difficult levels, we 
may be able to analyze how these methods keep their robustness 
to solve higher level problems though expanding the problem 
search space. 

For the comparison purpose, networks were evolved to play with 
hand-coded strategies in both games in our experiments. 

4.1 Tic-Tac-Toe 
TTT is a classic game that is commonly used to evaluate 
neuroevolutionary algorithms [2, 6]. In TTT two players mark 
their symbols on a 33×  board in turn. The one who first obtains 
three in a row horizontally, vertically, or diagonally wins. The 
game ties if all grids are filled with symbols and no one wins. The 
objective of two players is to win or tie the games, and block their 
opponent’s winning moves as well. 

James and Tucker [2] evolved networks with three NEAT 
dynamics, simplification, complexification and blended, to play 
with five hand-coded strategies of TTT, called BEST, 
FORKABLE, CENTER, RANDOM and BAD. The same five 
strategies were employed in our TTT experiments2. 

4.2 Gobang 
Gobang is also known as GoMoku, or 5-in-a-row, which was 
originated in ancient China. This game has some similar game 
rules to TTT, but plays on a bigger size board, normally 1414× . 
Similar to TTT, the two players of Gobang take turns to mark 
their symbols, black and white stones, on the board. The one who 
achieves five in a row wins. Gobang is as easy to learn as TTT but 
much more difficult to master even by humans, because the size 
of the board is bigger than the goal number of symbols in a row.   

To both reduce the time consumption for evolving networks and 
simplify the structure of networks, we chose to do the 
experiments of Gobang on a 77 ×  size board. Even though the 
board size has been reduced quite a bit, however, it is still 

                                                                 
1 SANE, ESP and NEAT (ANJI) experiments of our work were 

implemented based on the relative software developed by 
Neural Networks Research Group at the University of Texas, 
see http://nn.cs.utexas.edu/.  

2 The TTT with five hand-coded strategies is included in ANJI 
package that is an implementation of NEAT developed by 
James and Tucker, see http://anji.sourceforge.net/. The 
behaviors of the five hand-coded TTT strategies were described 
in [2]. 

difficult to force a win, especially when one plays with 
sophisticated hand-coded computer strategies.  

The hand-coded strategy of Gobang used in our experiments was 
developed by Vladimir Shashin3. 106 patterns composed of four 
symbols, “*”, “-”, “o” and “x”, with a length of five each (such as 
"-*ooo", "-x*x-") were created in his program. These patterns 
were used to make a decision of the best move for each next step 
after scanning the board state. We divided the hand-coded 
strategy into three increasingly difficult levels through disabling 
partial patterns: 

1) BEST strategy employed all the 106 patterns.  

2) MIDDLE strategy disabled six patterns that include four same 
symbols, such as “o*ooo” and “*xxxx”. It contained 100 patterns. 

3) BAD strategy disabled 30 patterns that included four or three 
same symbols. It employed 76 patterns. 

4.3 Networks Representation and Evaluation 
All the different neuroevolutionary and neurocoevolutionary 
algorithms represent the problem domains and were evaluated in 
the same way. 

In both games, the board states are represented to the networks 
through mapping each grid to both an input neuron and an output 
neuron. An input neuron is: 1) 1 if play-1 marks its symbol in the 
corresponding grid of the board, 2) -1 if the corresponding grid is 
occupied by player-2, and 3) 0 denoting a blank grid that is one of 
legal moves for both players. After performing the activation 
computation, a move decision is made by the output neurons. The 
one with the highest output value corresponding to a legal move is 
chosen as the move decision of the network player.  

To evaluate the performances of a network, 100 matches are 
played between the network player and a predefined hand-coded 
player. Each player takes turns going first. The network player is 
awarded 5 points for a win, 2 points for a tie and 0 for a loss. The 
fitness of the network, of course, is the cumulation of the points 
from the 100 matches. 

The fitness evaluation described above is used to evaluate 
networks playing against all types of hand-coded players of TTT 
and MIDDLE and BAD hand-coded players of Gobang. The 
BEST hand-coded strategy of Gobang, however, is too strong. No 
one network is able to evolve the ability to force a win or even a 
tie using the above fitness evaluation. So a bonus is awarded 
additionally to the network player in each play when the network 
plays against the BEST hand-coded player of Gobang. Instead of 
forcing a win or a tie first, the network player at least attempts to 
play with its opponents as long as possible. The bonus is, 
therefore, awarded with the number of filled board grids divided 
by the total number of the board grids. 

4.4 Parameter Setting 
The system parameters used in our experiments were not set 
arbitrarily. Besides using some related work [2, 4, 5] in the same 

                                                                 
3 The Java game of Gobang developed by Vladimir Shashin can 

be download at http://down1.tech.sina.com.cn/download/down 
Content/2004-03-16/9313.shtml. 

382



or similar problem domains, a number of experiments were 
carried out at the beginning to search effective parameters as well. 
A comprehensive evaluation for all the parameters of different 
methods is impractical, because each method has at least a dozen 
adjustable parameters. Our preliminary experiments mainly 
focused on the population size, the number of hidden neurons, 
elite rate, and mutation rate. Table 1 summarizes the parameters 
chosen for both TTT and Gobang experiments.  

Table 1. Parameter settings for TTT and Gobang experiments 

Methods Parameters Value 
All Number of generations  200 

 Number of evaluation per generation 200 
NE Population size 200 

 Hidden neurons 10 
 Mutation rate of population 0.2 
 Breeding rate of population 0.25 

NEAT Population size 200 
 Initialized hidden neurons 0 
 Weight mutation rate 0.75 
 Survival rate 0.2 
 Excess gene compatibility coefficient 1.0 
 Disjoint gene compatibility coefficient 1.0 

 Common weight compatibility 
coefficient 0.4 

 Speciation threshold 0.9 
 Add connection mutation rate 0.2 
 Add neuron mutation rate 0.2 
 Delete connection mutation rate 0.02 

SANE Population size of neurons 1000 
 Population size of blueprints 200 
 Number of connections for TTT 36 
 Number of connections for Gobang  196 
 Hidden neurons 10 
 Breeding neurons 250 
 Elite neurons 250 
 Mutation rate 0.02 
 Number of top network 100 
 Number of top network breedings 20 

ESP Sub-population size 100 
 Number of trial networks 200 
 Initialized hidden neurons 10 
 Mutation rate 0.2 
 Generation of stagnation 20 
 Breeding rate 0.25 

EEC Connection-weights population size 200 
 Connection-paths population size 200 
 Number of evaluated networks 200 
 Hidden neurons 10 
 Mutation rate 0.2 
 Generation of stagnation  20 
 Breeding rate 0.25 
 Elite of connection weights 10 

 Elite rate of connection weights 
selection  0.2 

 Elite of connection paths 10 
 Elite rate of connection paths selection  0.2 

 

It’s impossible to compare these different methods under 
completely fair conditions, because each method has its own way 
to represent networks and evolve the network structures. Thus, in 
order to perform the comparisons as fairly as possible, we evolved 
the solutions with the same number of generations and built the 
same number of networks in each generation for all the methods. 
The activation function of all experiments was sigmoid.  

Recommended by some related work using NEAT, the initialized 
hidden neuron was set to 0 in our experiments, because NEAT has 
been demonstrated to be a powerful neuroevolutionary algorithm 
that has the capacity of evolving solutions of minimal complexity 
[2, 7, 9]. In their work, the adding-connection mutation rate and 
adding-neuron mutation rate were quite small, generally, smaller 
than 0.03.  In our experiments of NEAT, however, both mutation 
rates were set with a slightly large value (that is 0.2), because we 
found that NEAT tended to evolve minimal topologies of 
networks when very small mutation rates were used, but the final 
solutions might not be as optimal as those evolved by other 
methods. Therefore, a slightly high mutation rate was used in our 
experiments of NEAT to allow the evolution of more robust 
players through sacrificing the minimal complexity of networks in 
some way.  

As we have presented, EEC performs full-evaluation on all the 
individuals. For the comparison purpose, however, only 200 
evaluations were carried out in each generation. So a half-
evaluated ECC was performed in our experiment, in which only 
every individual in the connection-weights population was 
evaluated actively. The individuals of connection-paths 
population were evaluated passively only if they were selected to 
participate in the cooperation. Using the half-evaluation, thus, 
some very good connection paths could be lost due to a failure to 
participate in the cooperation. 

NE, SANE, ESP and EEC worked with the same breeding rate 
and started searching with the same number of hidden neurons. 
Except in SANE, the same mutation rate, 0.2, was used in NE, 
ESP and EEC experiments, because big mutation rates normally 
result in worse performances in SANE. Despite having the 
capacity of evolving connection paths, SANE was run to evolve 
fully connected feedforward networks in our experiments. 

5. Results 
We carried out 20 runs for each type of evaluation. These 
methods were compared based on the average results of our 
experiments. 

5.1 Tic-Tac-Toe 
At first, we evaluated the performance of the different algorithms 
to evolve network players for the TTT domain.  

Table 2 lists the average results of wins, ties, losses and fitness for 
the 20 best solutions from each type of performance. From these 
results we can see that, after 200 generations the average final 
results came out from NEAT, SANE, ESP and half-evaluated 
EEC were quite close to each other and appreciably better than 
standard NE for the FORKABLE strategy of TTT and the BEST 
strategy of TTT. TTT is somewhat simple domain. The difference 
was not statistically significant among these methods. 

383



Table 2. Average Results of the network players play with five 
hand-coded players of TTT (20 runs each) 

  NE NEAT SANE ESP EEC 
BA W 

T 
L 
F 

100 
0 
0 

500 

100 
0 
0 

500 

100 
0 
0 

500 

100 
0 
0 

500 

100 
0 
0 

500 
RA W 

T 
L 
F 

94.35 
2 

3.65 
475.75 

95.8 
1.05 
3.15 
481.1 

93.45 
1.85 
4.7 

470.95 

95.95 
1.8 

2.25 
483.35 

95.65 
1.2 

3.15 
480.65 

CE W 
T 
L 
F 

95.3 
2.3 
2.4 

481.1 

96.95 
1.65 
1.4 

488.05 

96.55 
1.7 

1.75 
486.15 

97.6 
1.15 
1.25 
490.3 

96.55 
1.75 
1.7 

490.45 
FO W 

T 
L 
F 

39.6 
38.95 
21.45 
275.9 

56.15 
25.65 
18.2 

332.05 

54.7 
28.15 
17.15 
329.8 

47.6 
38.3 
14.1 
314.6 

50.45 
30.3 
19.25 

312.85 
BE W 

T 
L 
F 

0 
91.05 
8.95 

182.1 

0 
98.1 
1.9 

196.2 

0 
97.7 
2.3 

195.4 

0 
97.7 
2.3 

195.4 

0 
96.9 
3.1 

193.8 
BA: BAD strategy, RA: RANDOM strategy, CE: CENTER strategy, FO: 
FORKABLE strategy, BE: BEST strategy. 
W: win times, T: tie times, L: loss times, F: fitness 
 

 
Figure 2. Comparison of average learning speeds of different 
methods for the BEST strategy of TTT. EEC1 is half-
evaluated EEC, EEC2 is full-evaluated EEC. (20 runs each) 
To facilitate a more explicit comparison, figure 2 shows the 
average learning curve for the BEST strategy of TTT from 20 
runs. As a whole, ESP learned faster than all of the others. The 
half-evaluated EEC (line EEC1) performed as well as SANE; the 
two curves of SANE and half-evaluated EEC almost overlapped 
each other. There was a big leap at the beginning of the learning 
curve of standard NE, but soon the premature convergence was 
encountered after around 60 generations. It’s not surprising that 
the learning speed of NEAT was slower than all of other methods, 
since NEAT started its search from null hidden neurons. 
Noticeably, the final results of NEAT exceeded all other methods 
in the end for the TTT domain. 

A significant advantage of NEAT could be in evolving minimal 
complexity of networks rather than in finding optimal solutions. 
Table 3 lists the average complexity of the best networks evolved 
by different methods for the BEST strategy of TTT. NEAT found 
the most compact networks that, on average, contained 3.35 
hidden neurons and 61.3 connections. ESP removed neurons that 
did not contribute to the solutions, and eventually, found simpler 
networks than the initialized ones, which, on average, contained 
7.25 hidden neurons and 130.5 connections. The networks 
evolved by EEC, on average, contained 90.3 efficient 
connections. SANE evolved fully-connected networks in our 
experiments, so the networks of SANE contained the same 
number neurons and connections as those of standard NE. 

Table 3. Average complexity of best networks found by 
different methods for the BEST strategy of TTT (20 runs 

each) 

 NE NEAT SANE ESP EEC 
Hidden 
neurons 10 3.35 10 7.25 10 

connections 180 61.3 180 130.5 90.3 

5.2 Gobang 
As we have described, Gobang is a more complex domain than 
TTT, more detail analysis was therefore drawn from Gobang. 

The experimental results of Gobang (table 4 and figure 3-5) show 
that ESP defended the champion of the fastest system for all three 
tasks. Interestingly, SANE found a small quantity of networks 
that were able to occasionally beat the BEST hand-coded strategy 
of Gobang, although SANE encountered more losses than ESP. 
The average learning speed of half-evaluated EEC was faster than 
that of SANE for the BAD and MIDDLE strategy of Gobang, 
while the best solutions and learning speed of half-evaluated EEC 
were worse than those of SANE for the hardest task. The behavior 
of NEAT for the BAD strategy of Gobang looked similar to that 
in figure 2. The fitness of NEAT slowly went up during 
generations and eventually exceeded standard NE after 150 
generations on average (figure 3). For the other two tasks, 
however, the performance of NEAT was even worse than 
standard NE. The evolutionary process of NEAT nearly stagnated 
after a few generations. Almost no hidden neurons were added 
during 200 generations when NEAT evolved networks to play 
against the BEST strategy of Gobang. As we have presented, our 
experiments of NEAT carried out a blended mutation to 
implement both complexification and simplification dynamics 
search. We also implemented complexification dynamics search 
through turning off simplification in NEAT for the BEST strategy 
of Gobang. However, the improvement was slight as shown in 
figure 5.  

Remarkablely, all three neurocoevolutionary algorithms 
outperformed the two neuroevolutionary algorithms for the three 
tasks, especially, for the hardest task, the BEST strategy of 
Gobang. It seems that the two neuroevolutionary algorithms 
inevitably encountered premature convergence for complex 
domain, although NEAT employed innovative mutation operators 
to maintain diversity. The learning speed of the two 
neuroevolutionary algorithms was far lagging behind those of the 
neurocoevolutionary algorithms. The three neurocoevolutionary 
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algorithms, moreover, were able to keep the growth of learning 
curve during the whole generations for the hardest problem. 

Table 4. Average Results of the network players play with 
three hand-coded players of Gobang (20 runs each) 

  NE NEAT SANE ESP EEC 
BA W 

T 
L 
F 

96.3 
0.3 
3.4 

482.1 

97.95 
0.1 

1.95 
489.95 

100 
0 
0 

500 

100 
0 
0 

500 

100 
0 
0 

500 
MI W 

T 
L 
F 

77.6 
0.05 

22.35 
388.3 

61.4 
0.1 

38.5 
307.2 

97.4 
0.05 
2.55 
487.1 

99.5 
0 

0.05 
499.75 

96.1 
0 

3.9 
480.5 

BE W 
T 
L 
F 

0 
9.4 
90.6 

65.33 

0  
2.42 
97.58 
45.51 

1.65 
60.5 
37.85 

210.25 

0 
69.3 
30.7 

218.04 

0 
56.05 
43.95 

181.73 
BA: BAD strategy, MI: MIDDLE strategy, BE: BEST strategy. 
W: win times, T: tie times, L: loss times, F: fitness 
 

 
Figure 3. Comparison of average learning speeds for the BAD 
strategy of Gobang. EEC1 is half-evaluated EEC, EEC2 is 
full-evaluated EEC (20 runs each). 
Evolutionary algorithms themselves are time consuming, thus, the 
time consumption of different algorithms for evolving networks is 
an important consideration. The evaluation of time consumption 
was carried out on a desktop PC with a 3.40 GHz Pentium(R) D 
CPU, 3 GB of RAM, and the Windows XP operating system. The 
average time consumption for Gobang from 3 runs each is given 
in table 5. The execution time of NEAT is very long, more than 
10 times longer than the others. Although the 
neurocoevolutionary algorithms evolve multi-populations 
simultaneously, the time consumption is merely a little longer 
than standard NE. 

The performance of original EEC that implements full-evaluation 
of individuals has also been exhibited in figure 2-5 (line EEC2). 
We can see that the performance of full-evaluated EEC was even 
better than SANE for all tasks of Gobang. Because EEC evolves 
two populations, the time consumption of full-evaluated EEC is at 
most twice as high as standard NE. 

 

 
Figure 4. Comparison of average learning speeds for the 
MIDDLE strategy of Gobang. EEC1 is half-evaluated EEC, 
EEC2 is full-evaluated EEC (20 runs each). 
 

 
Figure 5. Comparison of average learning speeds for the 
BEST strategy of Gobang. EEC1 is half-evaluated EEC, 
EEC2 is full-evaluated EEC. NEAT1 is blended dynamics 
search of NEAT and NEAT2 is complexification dynamics 
search of NEAT (20 runs each). 

 
Table 5. The comparison of average time consumption for 

Gobang from 3 runs each 

 NE NEAT SANE ESP EEC 
Avg. hours 

per run 0.59 9.58 0.63 0.78 0.70 

6. DISCUSSION AND FUTURE WORK 
Our study shows that neurocoevolutionary algorithms are highly 
robust compared to neuroevolutionary algorithms. In our 
experiments all the three neurocoevolutionary algorithms were able 
to keep their vigor for solving problems from simple domains such 
as TTT to similar but more complex domains such as Gobang. 
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NEAT has been demonstrated to be efficient in many different 
domains, such as Go, Pole Balancing, Robot Duel and so forth [7, 8, 
9]. In our study, however, NEAT encountered difficulties when it 
evolved game players against sophisticated hand-coded opponents 
of Gobang. NEAT evolves networks based on the principle of 
searching from a minimal complexity. New neurons and new 
connections are added only when beneficial. However, benefits 
were almost never found when NEAT started from no hidden 
neuron topology to play with the hardest strategy of Gobang. On 
average, only 0.14 and 0.25 hidden neurons were respectively added 
using blended dynamics search and complexification dynamics 
search during 200 generations from 20 runs. Learning cannot be 
performed efficiently without enough hidden neurons. This could 
explain the fatal failure when NEAT is forced into a very complex 
domain. An incremental evolution could be helpful to turn the 
tables. Through decomposing a very difficult task into several 
increasingly difficult sub-tasks, incremental evolution evolves 
networks to achieve the sub-tasks one by one during the 
evolutionary process.  

Our method, EEC, was developed based on a standard NE model.  
An additional connection-paths population is evolved 
simultaneously in order to cooperate with connection weights to 
build complete networks with efficient connections. The results 
have demonstrated that evolving connection weights along with 
connection paths can significantly enhance the performance of 
standard NE.  

A fully-connected network could generate noise. As we have 
known, a neuron will be activated when its input signal reaches a 
threshold value, where that signal is the sum of weighted output 
signals from upstream neighbor neurons. Redundant products that 
come from inefficient connection could result in incorrect activation 
of neurons. Standard NE restricts inefficient connections by 
evolving their connection weights toward 0. However, a holistic 
search served by standard NE will be inefficient when the search 
space is large. Neurocoevolutionary algorithms benefit from 
decomposing the holistic search space into sub-spaces.  

In neurocoevolutionary algorithms, there are two basic steps to 
perform efficient search: 1) decomposing the genotype space of a 
complete network and the partial solutions of the network are 
evolved in the sub-genotype spaces; and 2) recombining the sub-
genotypes to build complete networks. The purpose of 
recombination is to find cooperative sub-genotypes that achieve 
optimal solutions.  

Both ESP and SANE decompose the genotype space of networks 
into the sub-genotype space of neurons. Each sub-genotype only 
represents a weights vector connected with one hidden neuron. 
Conversely, EEC decomposes the genotype space of networks into 
two sub-spaces: one for weights and one for connections. No matter 
which one is employed, decomposition can simplify the search 
problem. Thus, neurocoevolutionary algorithms are able to 
implement search more efficiently by the decomposition and 
combination processes.  

Two main future works are proposed at present. First, EEC has 
demonstrated that evolving connection weights and evolving 
connection paths are both important for the search of optimal 
networks. To further demonstrate the importance of efficient 
network connections, an analysis of efficient connections will be 
carried out on other methods, such as NE, ESP and SANE. Second, 

one limitation of SANE and ESP is that they can only evolve three-
layer networks. EEC, however, has more flexible representation to 
evolve other types of networks, including multi-hidden layer 
networks. Our EEC method can be improved further to have flexible 
hidden neurons. The effective hidden neurons should be evolved to 
adapt to different problem domains.   

The empirical study in this paper compares two neuroevolutionary 
algorithms and three neurocoevolutionary algorithms for evolving 
two board-games players. Through decomposing the search space of 
networks, neurocoevolutionary algorithms find stronger game 
players. Our results suggest that neurocoevolutionary algorithms 
perform more efficient search than neuroevolutionary algorithms for 
large and complex search spaces. 
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