
An Empirical Comparison of Evolution
and Coevolution for Designing Artificial Neural Network

Game Players
Min Shi

Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway

minshi@idi.ntnu.no

ABSTRACT
In this paper, we compare two neuroevolutionary algorithms,
namely standard NeuroEvolution (NE) and NeuroEvolution of
Augmenting Topologies (NEAT), with three neurocoevolutionary
algorithms, namely Symbiotic Adaptive Neuro-Evolution
(SANE), Enforced Sub-Populations (ESP) and Evolving Efficient
Connections (EEC). EEC is a novel neurocoevolutionary
algorithm that we propose in this work, where the connection
weights and the connection paths of networks are evolved
separately. All these methods are applied to evolve players of two
different board games. The results of this study indicate that
neurocoevolutionary algorithms outperform neuroevolutionary
algorithms for both domains. Our new method, especially,
demonstrates that fully connected networks could generate noise
which results in inefficient learning. The performance of standard
NE model has been improved significantly through evolving
connection weights and efficient connection paths in parallel in
our method.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search

General Terms
Algorithms, Measurement, Performance, Design,
Experimentation.

Keywords
Neuroevolution, Neurocoevolution, NE, NEAT, ESP, SANE,
EEC, TTT, Gobang.

1. INTRODUCTION
As summarized by Yao [10], the design of artificial neural
networks (ANNs) using evolutionary techniques can be roughly
classified into three levels: evolving connection weights; evolving

architectures and evolving learning rules. In the past decade, more
and more approaches have focused on simultaneously evolving
connection weights and architectures of ANNs. Both standard
evolutionary techniques and coevolutionary techniques have been
introduced into ANNs design. The resultant techniques are so-
called neuroevolutionary or neurocoevolutionary algorithms.

Neuroevolutionary algorithms evolve ANNs using standard
evolutionary techniques. Conventionally, each individual in the
population represents a complete network. The fitness of each
individual is evaluated independently of other individuals.

Citing techniques of cooperative coevolution,
neurocoevolutionary algorithms evolve solutions by decomposing
complete networks. Each individual of a population represents a
partial network. A complete network is composed through
building cooperative relationships among individuals.

Symbiotic Adaptive Neuro-Evolution (SANE) [3], Enforced Sub-
Populations (ESP) [1] and NeuroEvolution of Augmenting
Topologies (NEAT) [9] are three popular methods for evolving
ANNs. NEAT is a neuroevolutionary algorithm in which every
individual presents a complete network, while SANE and ESP are
neurocoevolutionary algorithms where every individual represents
a neuron instead of a complete solution. In addition, a new
neurocoevolutionary algorithm, called Evolving Efficient
Connections (EEC), has been developed in this work. EEC
cooperatively evolves connection weights and connection paths
that are respectively represented in their own populations.

The objective of this paper is to empirically compare two
neuroevolutionary algorithms, namely standard NeuroEvolution
(NE) and NEAT, versus three neurocoevolutionary algorithms,
namely SANE, ESP and EEC, for evolving board game players.

A few similar comparisons were previously performed. Moriarty
and Miikkulainen [3] compared SANE with standard NE in the
Khepera robot simulator. In their analysis, SANE performed more
efficiently and maintained a higher level of diversity than
standard NE. In [9] Stanley and Mikkulainen compared NEAT
with published results of standard NE, SANE and ESP on the
double pole balancing with velocity problem. Their results
showed that NEAT performed as well as ESP while finding more
minimal solutions and using fewer evaluations.

The contributions of our work are twofold: 1) we propose a novel
neurocoevolutionary algorithm, EEC, based on standard NE
model, borrowing ideas from SANE and ESP; 2) an empirical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

379

study is facilitated to compare different methods under as fair as
possible conditions, in which each method evolves networks
within the same number of generations and in each generation the
same number of evaluations are performed. Two board games,
Tic-Tac-Toe (TTT) and Gobang, are chosen as our benchmark
tasks. The performance of these methods is measured according to
their players’ strength against hand-coded opponents, learning
speed, network complexity and time consumption of evolution.

The body of this paper is organized as follows. Section 2 and
Section 3 briefly introduce two neuroevolutionary algorithms and
three neurocoevolutionary algorithms. Our experimental setup is
presented in section 4. Section 5 illustrates the empirical
evaluations for comparing different methods. Our observations
and future work are given at the end.

2. NEUROEVOLUTION

2.1 Standard NE
Standard Neuro-Evolution (NE) evolves connection weights of
complete neural networks, where each individual in the
population represents a vector with all connection weights of a
network, and each gene of an individual specifies a weight value
between two neurons.

The fact that standard Evolutionary Algorithms (EAs) continually
select and breed the best individuals in one population, therefore,
losing diversity and eventually converging around a single “type”
of individual is a major limitation. In standard EAs, the
approaches of maintaining diversity are mainly to decrease
selection pressure or increase mutation rate. Therefore, similar
problems are also encountered in standard NE, especially when a
standard NE is applied to solve complex and dynamic problems
[3].

2.2 NEAT
NeuroEvolution of Augmenting Topologies (NEAT) [9] is a new
neuroevolutionary technique that evolves both the connection
weights and connection topologies of ANNs simultaneously.
However, since NEAT does not represent connection weights and
topologies in separate populations, an individual of the population
still represents a complete network.

A NEAT individual consists of a series of connection status
genes. Each gene represents the connection status of two neurons.
It contains five elements: 1) in-node neuron; 2) out-node neuron;
3) connection weight; 4) connection status; and 5) innovation
number. The length of an individual is flexible and expandable so
that evolution is able to both complexify and simplify network
topologies.

The first NEAT model was proposed by Stanley and Miikulainen
[9], where networks were evolved from no hidden layer structure
and complexified by using mutation operators. NEAT overcomes
diversity loss by using unstandard NE mutation operators. In
NEAT, the mutation operator plays two roles: (1) changing
connection weights; and (2) complexifying network topologies.
Changing weights via mutation is the same as in standard NE
algorithms, where a weight of a network is randomly selected to
change. Topological mutation complexifies network structure in
two ways, either inserting a new node between an existing
connection or creating a connection between two unconnected

nodes. The connection status could be therefore changed due to
mutation operation. Innovation numbers are used when
recombining networks with differing topologies.

James and Tucker added a new topological mutation operator into
this model [2]. A delete connection mutation operator was used to
remove an existing connection between two nodes. The blended
mutations have been shown to perform better than either
complexifying or simplifying networks alone [2]. The new
approach is therefore used in the NEAT experiments of this work.

3. NEUROCOEVOLUTION

3.1 SANE
Symbiotic Adaptive Neuro-Evolution (SANE) [3] evolves three-
layer networks, where the number of hidden nodes of the network
is predefined and fixed, but the network connection topology is
not. There are two populations evolved in SANE, a population of
neurons and a population of network blueprints.

Each individual in the neuron population represents the
connection paths and weights of a hidden neuron from the input
layer and to the output layer. Each gene of an individual contains
two parts: one part specifies the connection path (that is which
neuron to connect to) and the other specifies the weight of that
connection. All the hidden neurons have the same number of
connections, but could have different connection paths from the
input layer and to the output layer.

Networks are constructed by combining selected individuals from
the neuron population. The information of combination is saved in
the blueprint population. Each individual of the blueprint
population represents a combination of selected individuals from
the neuron population. At the beginning of blueprint evolution,
combinations are created randomly. Effective combinations can
be maintained and new combination forms can be explored by
evolving the blueprint population. A well-contributing neuron
does not always cooperate well with any other neurons. Therefore,
through maintaining a blueprint population, well-contributing
neurons are protected from being eliminated due to ineffective
cooperation with some other neurons.

SANE is an intra-population neurocoevolutionary algorithm, that
is all the cooperative neurons come from the same population.
Each individual of neuron population represents a partial solution
instead of a complete network. A complete network is formed by
a collection of cooperative neuron individuals. The fitness of a
neuron individual is not evaluated independently of other
individuals in the neuron populations, but is based on its
cooperation. After evaluating all the networks built by blueprints,
besides assigning the fitness to each blueprint, each neuron also
obtains a fitness value that equals the fitness sum of the best five
networks in which the neuron participates. Cooperation only
happens when we evaluate individuals, while two populations
perform recombination and mutation process independently.

3.2 ESP
Enforced Sub-Populations (ESP) [1] is also a neurocoevolutionary
algorithm, where complete networks are evolved by decomposing
them into sub-populations of neurons. Different from SANE, ESP
is an inter-population neurocoevolutionary algorithm, because all
the cooperative individuals come from different populations.

380

ESP evolves three-layer fully connected networks; it creates a
sub-population for each hidden neuron. Each individual of the
sub-population represents a weight vector of a hidden neuron that
is fully connected with input neurons and output neurons. A
complete network is constructed through randomly selecting an
individual from each sub-population. A number of networks are
created during each generation; each one is evaluated in turn.
Each individual of the sub-population obtains average fitness of
the networks that it participated in. Neurons are evolved in their
own sub-populations, but cooperatively adapt to the problem
domain.

At the beginning, the evolution of ESP runs mainly to search the
weight space of the network. However, the topology of the
network will change when stagnation happens (that is the best
fitness of networks have not improved after predefined
generations). A hidden neuron will be removed if the neuron does
not make enough contribution to the whole solution. Or a new
hidden neuron will be added if no neuron can be removed. A
delta-coding technique will be applied if no new neuron is added.
It selects the best network evolved so far and uses each neuron of
the network as a seed of each sub-population. New sub-
populations will be generated by perturbation operations of the
selected seeds. In this way, both optimal weights and network
topologies can be explored simultaneously.

ESP decomposes a network search space into several neuron sub-
spaces, which is especially helpful in complex problem domains.

3.3 EEC
Borrowing many ideas from both SANE and ESP, we have
developed a novel neurocoevolutionary algorithm, called
Evolving Efficient Connections (EEC). EEC separates the search
space of a network into two sub-spaces: connection weights space
and connection paths space. Thus, it contains two populations.

The population of connection weights evolves weights vectors for
fully connected networks as does standard NE. Each individual
represents connection weights of a network, in which each neuron
hypothetically connects with all neurons in the next layer. While
the population of connection paths evolves switches of these
connections; each individual represents a series of binary bits to
specify the status of the connections, where “0” indicates
disconnection between two nodes and “1” indicates connection
between two nodes. Figure 1 shows how the connection-weights,
individuals, and the connection-paths individuals are related.

Below we provide a brief description of the EEC algorithm.

1. Initialization. The number of hidden neurons of the networks
has to be specified at the beginning. Each chromosome of
connection weights encodes fully-connected weights vectors with
random real numbers. The chromosome of connection paths
encodes connection status with a random string of binary bits,
corresponding to the connection weights.

2. Evaluation. A complete network is formed through respectively
sampling an individual from both the connection-weights
population and the connection-paths population. To achieve the
best performance of our method, we suggest evaluating every
individual of both populations. The top n individuals are regarded
as elite based on their previous evaluation. An elite-rate percent
of the cooperative individuals are selected from the elite to

cooperate with the current evaluated individuals, while the rest
are selected randomly from the cooperative population. The
resulting network is evaluated on the task and assigned a fitness
score. Each individual is awarded an average of the cumulative
fitness of the networks in which it participated during one
generation.

3. Recombination. The same recombination process of ESP is
employed in our algorithm. All the individuals will be ranked
according to their fitness within each population. The top 1/4
individuals are breeding members. The lowest ranking half of the
individuals will be replaced by offspring of the breeding pairs.
One-point crossover and one-point mutation are employed.

4. Iteration. During the generation process, the stagnation-
handling strategy of ESP is also used in our method. A similar
delta-coding technique of ESP will be employed when the best
fitness of networks has not improved after a specified number of
generations. In our delta-coding process, the connection-weights
individual and the connection-paths individual from the current
best network are regarded as seeds of each population. We replace
all the individuals of each population with new individuals
generated by perturbations of the selected seed. The generation is
iterated until an optimal solution is found or the maximum
generation is reached.

1.2

-0.3

0

1

-0.3

Figure 1. In EEC, connection-weights individual represent
weights vectors of fully connected networks, complete
networks cut a partial connections specified by connection-
paths individuals.

Besides evolving weights, EEC evolves efficient connection
topologies of networks. Although we evolve a three-layer
feedforward network using EEC in our experiments, this
neurocoevolutionary algorithm is able to be applied to other types
of networks, such as recurrent networks, multi-hidden layer
networks and so on.

381

4. EXPERIMENTAL SETUP
All of our experiments carried out in this work were implemented
in Java1.

Two domains used to compare the neuroevolutionary algorithms
and neurocoevolutionary algorithms described above are Tic-Tac-
Toe (TTT) and Gobang. The reasons that these two games are
chosen as our test domains are twofold. First, games are widely
used for evaluating neuroevolutionary methods, especially board
games, and are easily implemented. Second, TTT can be regarded
as an abbreviated version of Gobang since the two games have
similar game rules but different board sizes. Although we have
divided each problem into several increasingly difficult levels, we
may be able to analyze how these methods keep their robustness
to solve higher level problems though expanding the problem
search space.

For the comparison purpose, networks were evolved to play with
hand-coded strategies in both games in our experiments.

4.1 Tic-Tac-Toe
TTT is a classic game that is commonly used to evaluate
neuroevolutionary algorithms [2, 6]. In TTT two players mark
their symbols on a 33× board in turn. The one who first obtains
three in a row horizontally, vertically, or diagonally wins. The
game ties if all grids are filled with symbols and no one wins. The
objective of two players is to win or tie the games, and block their
opponent’s winning moves as well.

James and Tucker [2] evolved networks with three NEAT
dynamics, simplification, complexification and blended, to play
with five hand-coded strategies of TTT, called BEST,
FORKABLE, CENTER, RANDOM and BAD. The same five
strategies were employed in our TTT experiments2.

4.2 Gobang
Gobang is also known as GoMoku, or 5-in-a-row, which was
originated in ancient China. This game has some similar game
rules to TTT, but plays on a bigger size board, normally 1414× .
Similar to TTT, the two players of Gobang take turns to mark
their symbols, black and white stones, on the board. The one who
achieves five in a row wins. Gobang is as easy to learn as TTT but
much more difficult to master even by humans, because the size
of the board is bigger than the goal number of symbols in a row.

To both reduce the time consumption for evolving networks and
simplify the structure of networks, we chose to do the
experiments of Gobang on a 77 × size board. Even though the
board size has been reduced quite a bit, however, it is still

1 SANE, ESP and NEAT (ANJI) experiments of our work were

implemented based on the relative software developed by
Neural Networks Research Group at the University of Texas,
see http://nn.cs.utexas.edu/.

2 The TTT with five hand-coded strategies is included in ANJI
package that is an implementation of NEAT developed by
James and Tucker, see http://anji.sourceforge.net/. The
behaviors of the five hand-coded TTT strategies were described
in [2].

difficult to force a win, especially when one plays with
sophisticated hand-coded computer strategies.

The hand-coded strategy of Gobang used in our experiments was
developed by Vladimir Shashin3. 106 patterns composed of four
symbols, “*”, “-”, “o” and “x”, with a length of five each (such as
"-*ooo", "-x*x-") were created in his program. These patterns
were used to make a decision of the best move for each next step
after scanning the board state. We divided the hand-coded
strategy into three increasingly difficult levels through disabling
partial patterns:

1) BEST strategy employed all the 106 patterns.

2) MIDDLE strategy disabled six patterns that include four same
symbols, such as “o*ooo” and “*xxxx”. It contained 100 patterns.

3) BAD strategy disabled 30 patterns that included four or three
same symbols. It employed 76 patterns.

4.3 Networks Representation and Evaluation
All the different neuroevolutionary and neurocoevolutionary
algorithms represent the problem domains and were evaluated in
the same way.

In both games, the board states are represented to the networks
through mapping each grid to both an input neuron and an output
neuron. An input neuron is: 1) 1 if play-1 marks its symbol in the
corresponding grid of the board, 2) -1 if the corresponding grid is
occupied by player-2, and 3) 0 denoting a blank grid that is one of
legal moves for both players. After performing the activation
computation, a move decision is made by the output neurons. The
one with the highest output value corresponding to a legal move is
chosen as the move decision of the network player.

To evaluate the performances of a network, 100 matches are
played between the network player and a predefined hand-coded
player. Each player takes turns going first. The network player is
awarded 5 points for a win, 2 points for a tie and 0 for a loss. The
fitness of the network, of course, is the cumulation of the points
from the 100 matches.

The fitness evaluation described above is used to evaluate
networks playing against all types of hand-coded players of TTT
and MIDDLE and BAD hand-coded players of Gobang. The
BEST hand-coded strategy of Gobang, however, is too strong. No
one network is able to evolve the ability to force a win or even a
tie using the above fitness evaluation. So a bonus is awarded
additionally to the network player in each play when the network
plays against the BEST hand-coded player of Gobang. Instead of
forcing a win or a tie first, the network player at least attempts to
play with its opponents as long as possible. The bonus is,
therefore, awarded with the number of filled board grids divided
by the total number of the board grids.

4.4 Parameter Setting
The system parameters used in our experiments were not set
arbitrarily. Besides using some related work [2, 4, 5] in the same

3 The Java game of Gobang developed by Vladimir Shashin can

be download at http://down1.tech.sina.com.cn/download/down
Content/2004-03-16/9313.shtml.

382

or similar problem domains, a number of experiments were
carried out at the beginning to search effective parameters as well.
A comprehensive evaluation for all the parameters of different
methods is impractical, because each method has at least a dozen
adjustable parameters. Our preliminary experiments mainly
focused on the population size, the number of hidden neurons,
elite rate, and mutation rate. Table 1 summarizes the parameters
chosen for both TTT and Gobang experiments.

Table 1. Parameter settings for TTT and Gobang experiments

Methods Parameters Value
All Number of generations 200

 Number of evaluation per generation 200
NE Population size 200

 Hidden neurons 10
 Mutation rate of population 0.2
 Breeding rate of population 0.25

NEAT Population size 200
 Initialized hidden neurons 0
 Weight mutation rate 0.75
 Survival rate 0.2
 Excess gene compatibility coefficient 1.0
 Disjoint gene compatibility coefficient 1.0

 Common weight compatibility
coefficient 0.4

 Speciation threshold 0.9
 Add connection mutation rate 0.2
 Add neuron mutation rate 0.2
 Delete connection mutation rate 0.02

SANE Population size of neurons 1000
 Population size of blueprints 200
 Number of connections for TTT 36
 Number of connections for Gobang 196
 Hidden neurons 10
 Breeding neurons 250
 Elite neurons 250
 Mutation rate 0.02
 Number of top network 100
 Number of top network breedings 20

ESP Sub-population size 100
 Number of trial networks 200
 Initialized hidden neurons 10
 Mutation rate 0.2
 Generation of stagnation 20
 Breeding rate 0.25

EEC Connection-weights population size 200
 Connection-paths population size 200
 Number of evaluated networks 200
 Hidden neurons 10
 Mutation rate 0.2
 Generation of stagnation 20
 Breeding rate 0.25
 Elite of connection weights 10

 Elite rate of connection weights
selection 0.2

 Elite of connection paths 10
 Elite rate of connection paths selection 0.2

It’s impossible to compare these different methods under
completely fair conditions, because each method has its own way
to represent networks and evolve the network structures. Thus, in
order to perform the comparisons as fairly as possible, we evolved
the solutions with the same number of generations and built the
same number of networks in each generation for all the methods.
The activation function of all experiments was sigmoid.

Recommended by some related work using NEAT, the initialized
hidden neuron was set to 0 in our experiments, because NEAT has
been demonstrated to be a powerful neuroevolutionary algorithm
that has the capacity of evolving solutions of minimal complexity
[2, 7, 9]. In their work, the adding-connection mutation rate and
adding-neuron mutation rate were quite small, generally, smaller
than 0.03. In our experiments of NEAT, however, both mutation
rates were set with a slightly large value (that is 0.2), because we
found that NEAT tended to evolve minimal topologies of
networks when very small mutation rates were used, but the final
solutions might not be as optimal as those evolved by other
methods. Therefore, a slightly high mutation rate was used in our
experiments of NEAT to allow the evolution of more robust
players through sacrificing the minimal complexity of networks in
some way.

As we have presented, EEC performs full-evaluation on all the
individuals. For the comparison purpose, however, only 200
evaluations were carried out in each generation. So a half-
evaluated ECC was performed in our experiment, in which only
every individual in the connection-weights population was
evaluated actively. The individuals of connection-paths
population were evaluated passively only if they were selected to
participate in the cooperation. Using the half-evaluation, thus,
some very good connection paths could be lost due to a failure to
participate in the cooperation.

NE, SANE, ESP and EEC worked with the same breeding rate
and started searching with the same number of hidden neurons.
Except in SANE, the same mutation rate, 0.2, was used in NE,
ESP and EEC experiments, because big mutation rates normally
result in worse performances in SANE. Despite having the
capacity of evolving connection paths, SANE was run to evolve
fully connected feedforward networks in our experiments.

5. Results
We carried out 20 runs for each type of evaluation. These
methods were compared based on the average results of our
experiments.

5.1 Tic-Tac-Toe
At first, we evaluated the performance of the different algorithms
to evolve network players for the TTT domain.

Table 2 lists the average results of wins, ties, losses and fitness for
the 20 best solutions from each type of performance. From these
results we can see that, after 200 generations the average final
results came out from NEAT, SANE, ESP and half-evaluated
EEC were quite close to each other and appreciably better than
standard NE for the FORKABLE strategy of TTT and the BEST
strategy of TTT. TTT is somewhat simple domain. The difference
was not statistically significant among these methods.

383

Table 2. Average Results of the network players play with five
hand-coded players of TTT (20 runs each)

 NE NEAT SANE ESP EEC
BA W

T
L
F

100
0
0

500

100
0
0

500

100
0
0

500

100
0
0

500

100
0
0

500
RA W

T
L
F

94.35
2

3.65
475.75

95.8
1.05
3.15
481.1

93.45
1.85
4.7

470.95

95.95
1.8

2.25
483.35

95.65
1.2

3.15
480.65

CE W
T
L
F

95.3
2.3
2.4

481.1

96.95
1.65
1.4

488.05

96.55
1.7

1.75
486.15

97.6
1.15
1.25
490.3

96.55
1.75
1.7

490.45
FO W

T
L
F

39.6
38.95
21.45
275.9

56.15
25.65
18.2

332.05

54.7
28.15
17.15
329.8

47.6
38.3
14.1
314.6

50.45
30.3
19.25

312.85
BE W

T
L
F

0
91.05
8.95

182.1

0
98.1
1.9

196.2

0
97.7
2.3

195.4

0
97.7
2.3

195.4

0
96.9
3.1

193.8
BA: BAD strategy, RA: RANDOM strategy, CE: CENTER strategy, FO:
FORKABLE strategy, BE: BEST strategy.
W: win times, T: tie times, L: loss times, F: fitness

Figure 2. Comparison of average learning speeds of different
methods for the BEST strategy of TTT. EEC1 is half-
evaluated EEC, EEC2 is full-evaluated EEC. (20 runs each)
To facilitate a more explicit comparison, figure 2 shows the
average learning curve for the BEST strategy of TTT from 20
runs. As a whole, ESP learned faster than all of the others. The
half-evaluated EEC (line EEC1) performed as well as SANE; the
two curves of SANE and half-evaluated EEC almost overlapped
each other. There was a big leap at the beginning of the learning
curve of standard NE, but soon the premature convergence was
encountered after around 60 generations. It’s not surprising that
the learning speed of NEAT was slower than all of other methods,
since NEAT started its search from null hidden neurons.
Noticeably, the final results of NEAT exceeded all other methods
in the end for the TTT domain.

A significant advantage of NEAT could be in evolving minimal
complexity of networks rather than in finding optimal solutions.
Table 3 lists the average complexity of the best networks evolved
by different methods for the BEST strategy of TTT. NEAT found
the most compact networks that, on average, contained 3.35
hidden neurons and 61.3 connections. ESP removed neurons that
did not contribute to the solutions, and eventually, found simpler
networks than the initialized ones, which, on average, contained
7.25 hidden neurons and 130.5 connections. The networks
evolved by EEC, on average, contained 90.3 efficient
connections. SANE evolved fully-connected networks in our
experiments, so the networks of SANE contained the same
number neurons and connections as those of standard NE.

Table 3. Average complexity of best networks found by
different methods for the BEST strategy of TTT (20 runs

each)

 NE NEAT SANE ESP EEC
Hidden
neurons 10 3.35 10 7.25 10

connections 180 61.3 180 130.5 90.3

5.2 Gobang
As we have described, Gobang is a more complex domain than
TTT, more detail analysis was therefore drawn from Gobang.

The experimental results of Gobang (table 4 and figure 3-5) show
that ESP defended the champion of the fastest system for all three
tasks. Interestingly, SANE found a small quantity of networks
that were able to occasionally beat the BEST hand-coded strategy
of Gobang, although SANE encountered more losses than ESP.
The average learning speed of half-evaluated EEC was faster than
that of SANE for the BAD and MIDDLE strategy of Gobang,
while the best solutions and learning speed of half-evaluated EEC
were worse than those of SANE for the hardest task. The behavior
of NEAT for the BAD strategy of Gobang looked similar to that
in figure 2. The fitness of NEAT slowly went up during
generations and eventually exceeded standard NE after 150
generations on average (figure 3). For the other two tasks,
however, the performance of NEAT was even worse than
standard NE. The evolutionary process of NEAT nearly stagnated
after a few generations. Almost no hidden neurons were added
during 200 generations when NEAT evolved networks to play
against the BEST strategy of Gobang. As we have presented, our
experiments of NEAT carried out a blended mutation to
implement both complexification and simplification dynamics
search. We also implemented complexification dynamics search
through turning off simplification in NEAT for the BEST strategy
of Gobang. However, the improvement was slight as shown in
figure 5.

Remarkablely, all three neurocoevolutionary algorithms
outperformed the two neuroevolutionary algorithms for the three
tasks, especially, for the hardest task, the BEST strategy of
Gobang. It seems that the two neuroevolutionary algorithms
inevitably encountered premature convergence for complex
domain, although NEAT employed innovative mutation operators
to maintain diversity. The learning speed of the two
neuroevolutionary algorithms was far lagging behind those of the
neurocoevolutionary algorithms. The three neurocoevolutionary

384

algorithms, moreover, were able to keep the growth of learning
curve during the whole generations for the hardest problem.

Table 4. Average Results of the network players play with
three hand-coded players of Gobang (20 runs each)

 NE NEAT SANE ESP EEC
BA W

T
L
F

96.3
0.3
3.4

482.1

97.95
0.1

1.95
489.95

100
0
0

500

100
0
0

500

100
0
0

500
MI W

T
L
F

77.6
0.05

22.35
388.3

61.4
0.1

38.5
307.2

97.4
0.05
2.55
487.1

99.5
0

0.05
499.75

96.1
0

3.9
480.5

BE W
T
L
F

0
9.4
90.6

65.33

0
2.42
97.58
45.51

1.65
60.5
37.85

210.25

0
69.3
30.7

218.04

0
56.05
43.95

181.73
BA: BAD strategy, MI: MIDDLE strategy, BE: BEST strategy.
W: win times, T: tie times, L: loss times, F: fitness

Figure 3. Comparison of average learning speeds for the BAD
strategy of Gobang. EEC1 is half-evaluated EEC, EEC2 is
full-evaluated EEC (20 runs each).
Evolutionary algorithms themselves are time consuming, thus, the
time consumption of different algorithms for evolving networks is
an important consideration. The evaluation of time consumption
was carried out on a desktop PC with a 3.40 GHz Pentium(R) D
CPU, 3 GB of RAM, and the Windows XP operating system. The
average time consumption for Gobang from 3 runs each is given
in table 5. The execution time of NEAT is very long, more than
10 times longer than the others. Although the
neurocoevolutionary algorithms evolve multi-populations
simultaneously, the time consumption is merely a little longer
than standard NE.

The performance of original EEC that implements full-evaluation
of individuals has also been exhibited in figure 2-5 (line EEC2).
We can see that the performance of full-evaluated EEC was even
better than SANE for all tasks of Gobang. Because EEC evolves
two populations, the time consumption of full-evaluated EEC is at
most twice as high as standard NE.

Figure 4. Comparison of average learning speeds for the
MIDDLE strategy of Gobang. EEC1 is half-evaluated EEC,
EEC2 is full-evaluated EEC (20 runs each).

Figure 5. Comparison of average learning speeds for the
BEST strategy of Gobang. EEC1 is half-evaluated EEC,
EEC2 is full-evaluated EEC. NEAT1 is blended dynamics
search of NEAT and NEAT2 is complexification dynamics
search of NEAT (20 runs each).

Table 5. The comparison of average time consumption for

Gobang from 3 runs each

 NE NEAT SANE ESP EEC
Avg. hours

per run 0.59 9.58 0.63 0.78 0.70

6. DISCUSSION AND FUTURE WORK
Our study shows that neurocoevolutionary algorithms are highly
robust compared to neuroevolutionary algorithms. In our
experiments all the three neurocoevolutionary algorithms were able
to keep their vigor for solving problems from simple domains such
as TTT to similar but more complex domains such as Gobang.

385

NEAT has been demonstrated to be efficient in many different
domains, such as Go, Pole Balancing, Robot Duel and so forth [7, 8,
9]. In our study, however, NEAT encountered difficulties when it
evolved game players against sophisticated hand-coded opponents
of Gobang. NEAT evolves networks based on the principle of
searching from a minimal complexity. New neurons and new
connections are added only when beneficial. However, benefits
were almost never found when NEAT started from no hidden
neuron topology to play with the hardest strategy of Gobang. On
average, only 0.14 and 0.25 hidden neurons were respectively added
using blended dynamics search and complexification dynamics
search during 200 generations from 20 runs. Learning cannot be
performed efficiently without enough hidden neurons. This could
explain the fatal failure when NEAT is forced into a very complex
domain. An incremental evolution could be helpful to turn the
tables. Through decomposing a very difficult task into several
increasingly difficult sub-tasks, incremental evolution evolves
networks to achieve the sub-tasks one by one during the
evolutionary process.

Our method, EEC, was developed based on a standard NE model.
An additional connection-paths population is evolved
simultaneously in order to cooperate with connection weights to
build complete networks with efficient connections. The results
have demonstrated that evolving connection weights along with
connection paths can significantly enhance the performance of
standard NE.

A fully-connected network could generate noise. As we have
known, a neuron will be activated when its input signal reaches a
threshold value, where that signal is the sum of weighted output
signals from upstream neighbor neurons. Redundant products that
come from inefficient connection could result in incorrect activation
of neurons. Standard NE restricts inefficient connections by
evolving their connection weights toward 0. However, a holistic
search served by standard NE will be inefficient when the search
space is large. Neurocoevolutionary algorithms benefit from
decomposing the holistic search space into sub-spaces.

In neurocoevolutionary algorithms, there are two basic steps to
perform efficient search: 1) decomposing the genotype space of a
complete network and the partial solutions of the network are
evolved in the sub-genotype spaces; and 2) recombining the sub-
genotypes to build complete networks. The purpose of
recombination is to find cooperative sub-genotypes that achieve
optimal solutions.

Both ESP and SANE decompose the genotype space of networks
into the sub-genotype space of neurons. Each sub-genotype only
represents a weights vector connected with one hidden neuron.
Conversely, EEC decomposes the genotype space of networks into
two sub-spaces: one for weights and one for connections. No matter
which one is employed, decomposition can simplify the search
problem. Thus, neurocoevolutionary algorithms are able to
implement search more efficiently by the decomposition and
combination processes.

Two main future works are proposed at present. First, EEC has
demonstrated that evolving connection weights and evolving
connection paths are both important for the search of optimal
networks. To further demonstrate the importance of efficient
network connections, an analysis of efficient connections will be
carried out on other methods, such as NE, ESP and SANE. Second,

one limitation of SANE and ESP is that they can only evolve three-
layer networks. EEC, however, has more flexible representation to
evolve other types of networks, including multi-hidden layer
networks. Our EEC method can be improved further to have flexible
hidden neurons. The effective hidden neurons should be evolved to
adapt to different problem domains.

The empirical study in this paper compares two neuroevolutionary
algorithms and three neurocoevolutionary algorithms for evolving
two board-games players. Through decomposing the search space of
networks, neurocoevolutionary algorithms find stronger game
players. Our results suggest that neurocoevolutionary algorithms
perform more efficient search than neuroevolutionary algorithms for
large and complex search spaces.

7. ACKNOWLEDGMENTS
The author would like to thank Keith Downing and all the members
of the SOS group for their support. The author also would like to
thank reviewers for their valuable comments.

8. REFERENCES
[1] Gomez, F. and Miikkulainen, R., Robust Non-Linear Control

through Neuroevolution, Technical Report AI-TR-03-303, The
University of Texas at Austin Department of Computer
Sciences August 2003.

[2] James, D. and Tucker, P., A Comparative Analysis of
Simplification and Complexification in the Evolution of Neural
Network Topologies, in GECCO 2004: Proceedings of the
Genetic and Evolutionary Computation Conference, Seattle,
Washington, USA, 2004.

[3] Moriarty, D. E. and Miikkulainen, R., Forming Neural
Networks through Efficient and Adaptive Coevolution,
Evolutionary Computation, vol. 5, pp. 373-399, 1997.

[4] Perez-Bergquist, A. S., Applying ESP and Region Specialists
to Neuro-Evolution for Go, Technical Report CSTR01-24 May
2001.

[5] Richards, N., Moriarty, D., McQuesten, P., and Miikkulainen,
R., Evolving Neural Networks to Play Go, Applied
Intelligence, vol. 8, pp. 85-96, 1998.

[6] Rosin, C. D. and Belew, R. K., Methods for Competitive Co-
evolution: Finding Opponents Worth Beating in Proceedings
of the Sixth International Conference on Genetic Algorithms,
San Francisco, CA, 1995.

[7] Stanley, K. O. and Miikkulainen, R., Competitive Coevolution
Through Evolutionary Complexification Journal of Artificial
Intelligence Research, vol. 21, pp. 63-100, 2004.

[8] Stanley, K. O. and Miikkulainen, R., Evolving a Roving Eye
for Go, in Proceedinngs of the Genetic and Evolutionary
Computation Conference, 2004.

[9] Stanley, K. O. and Miikkulainen, R., Evolving Neural
Networks through Augmenting Topologies, Evolutionary
Computation, vol. 10 (2), pp. 99-127, 2002.

[10] Yao, X., Evolving Artificial Neural Networks, Proceedings of
the IEEE, vol. 87, pp. 1423-1477, 1999.

386

