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ABSTRACT
The consensus tree problem arises in the domain of phylo-
genetics and seeks to find for a given collection of trees a
single tree best representing it. Usually, such a tree collec-
tion is obtained by biologists for a given taxa set either via
different phylogenetic inference methods or multiple applica-
tions of a non-deterministic procedure. There exist various
consensus methods which often have the drawback of being
very strict, limiting the resulting consensus tree in terms of
its resolution and/or precision. A reason for this typically
is the coarse granularity of the tree metric used. To find
fully resolved (binary) consensus trees of high quality, we
consider the fine-grained TreeRank similarity measure and
extend a previously presented evolutionary algorithm (EA)
to a memetic algorithm (MA) by including different variants
of local search using neighborhoods based on moves of single
taxa as well as subtrees. Furthermore, we propose a vari-
able neighborhood search (VNS) with an embedded variable
neighborhood descent (VND) based on the same neighbor-
hood structures. Finally sequential and intertwined combi-
nations of the EA and MA with the VNS/VND are investi-
gated. We give results on real and artificially generated data
indicating in particular the benefits of the hybrid methods.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Numerical Analysis]: Opti-
mization—Constrained optimization; J.3 [Life and Medi-
cal Sciences]: Biology and genetics

General Terms
Algorithms

Keywords
consensus tree problem, phylogenetics, memetic algorithm,
variable neighborhood search, hybrid methods
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1. INTRODUCTION
The consensus tree problem has been first described in [1]

alongside with a solution method. It frequently appears in
the domain of phylogenetics [13], though it has applications
in other clustering domains as well.

A phylogenetic tree is composed of nodes and branches
(arcs) and models the evolutionary relationship between a
set L of related objects called taxa. These taxa are the la-
beled leaf nodes of the tree whereas unlabeled inner nodes
represent probably extinct ancestors. In this work we will
only consider rooted unweighted binary trees, i.e. there ex-
ists a single distinguished root node being the common an-
cestor of all taxa, the relations represented by the tree are
not weighted by any means, and each inner node always has
exactly two direct descendants.

The phylogeny problem is to infer the intermediate ances-
tors and branches, thus to derive the evolutionary relation-
ships, from given species data like DNA or RNA sequences.
For this purpose a multitude of conceptually different infer-
ence methods exists, each having individual advantages and
drawbacks [15].

Unfortunately, it is likely that biologists end up with sev-
eral different trees for one and the same taxa set L due to
(i) having multiple data sets available, (ii) inferring with
different methods, or (iii) repeated runs of the same non-
deterministic method.

The question is then how to take advantage of these proba-
bly high-quality but different and partly contradictory trees
beside manually comparing and merging them. A possible
solution is to look for a single tree over L “best” represent-
ing the collection T . This non-trivial task is known as the
consensus tree problem (CTP).

On the one hand the meaning of “best” depends on the de-
sired information to retain in the consensus tree and on the
other hand the possible consensus tree is literally restricted
by the degree of strictness of the applied method as well as
the granularity of the tree metric used, see also [3]. Figure 1
shows a schematic representation of this circumstance. Gen-
erally, a strict method and a coarse-grained metric rather
lead to poorly resolved trees with few inner nodes having
high degrees, and a substantial portion of the information
contained in the input trees is lost. In contrast, we aim at
deriving fully resolved (thus, binary) high-quality consen-
sus trees inheriting as much information as possible. Our
approach is therefore based on maximizing a more specific
fine-grained measure, the so-called TreeRank score.

In Section 2 we report on previous as well as related work
and define the TreeRank measure. Meaningful tree neigh-
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Figure 1: Consensus tree depending on method and
metric.

borhood structures are presented in Section 3. They are ap-
plied in a variable neighborhood search (VNS) with an em-
bedded variable neighborhood descent (VND) as described
in Section 4. The neighborhoods are further utilized in Sec-
tion 5 to extend an existing evolutionary algorithm (EA) by
local search to a memetic algorithm (MA). Finally, in Sec-
tion 6 we consider sequential and intertwined combinations
of the EA (MA) and VNS (VND). Experimental results on
real and artificially generated CTP instances are given in
Section 7, followed by concluding remarks in Section 8.

2. PREVIOUS AND RELATED WORK
Several consensus tree methods have already been pro-

posed, see [3] for a good overview and comparison. Unfor-
tunately, most methods have the drawback of being rela-
tively strict, e.g. restricting the consensus tree to common
substructures, and that the used tree metric is often coarse-
grained, finally producing a quite poorly resolved or less
intuitive solution tree. Prominent examples are the strict
and majority consensus methods operating on clusters. A
cluster is a subset of the set of taxa which contains all the
descendants of its most recent common ancestor. The strict
consensus method only retains clusters common to all input
trees and the majority consensus method those appearing in
more than half of them. The latter method can be regarded
as a median method minimizing the number of non-common
clusters, i.e. minimizing with respect to the symmetric dis-
tance metric. Further to mention is that the classical meth-
ods do not make use of any sophisticated search procedures
and rely, if at all, on simple greedy approaches (e.g. the
greedy consensus tree method available in PHYLIP [9]).

A recently proposed tree similarity measure, the Tree-
Rank measure [23], originally introduced to handle database
queries for similar trees1, allows for more sophisticated pro-
cedures due to its fine granularity. This measure utilizes the
quadratic Up matrix U which states for each pair of taxa
(a, b) the number U [a, b] of necessary up-traversals to reach
from taxon a the least common ancestor of both taxa; see
Figure 2 for an example. It can be derived in O(|L|2) [23].
The authors also defined the Down matrix D in an analo-
gous way, but since U = DT it is redundant and the Up
matrix is also called UpDown matrix. Having this matrix
for two trees T1 and T2 and assuming equal taxa sets, one
can calculate the UpDown distance between them by

UpDownDist(T1, T2) =
X
u,v∈L

|UT1 [u, v]− UT2 [u, v]|.

1see http://www.treebase.org
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Figure 2: Exemplary tree and its Up matrix.

This distance is finally the basis for the TreeRank score:

TreeRank(T1, T2) =

 
1− UpDownDist(T1, T2)P

u,v∈L UT1 [u, v]

!
· 100% .

For the general case of different taxa sets in T1 and T2 see
[23]. The TreeRank score is thus a measure of the topological
relationships in T1 that are found to be the same or similar in
T2. It is bounded above by 100% but has no lower bound,
which can be shown by comparing perfectly balanced and
maximal unbalanced trees.

The first metaheuristic approaches applied to the consen-
sus tree problem using the TreeRank measure have been
described by Cotta [4]. Therein several evolutionary algo-
rithms are presented differing in the way of whether apply-
ing mutation or crossover and the adopted evolution model.
Tests on real-world instances indicate that solely applying
the well-known prune-delete-graft recombination operator
[16] in combination with a steady-state model performs best.
This recombination operator selects a subtree of the first
parent at random, removes its leaves in the second parent
and grafts the subtree therein at a random position. Con-
sidering subtrees as building blocks, they are well preserved,
inherited, and mixed by this operator. Although this oper-
ator was shown to be more destructive to one parent than
to the other [20], it is the de facto standard when dealing
with phylogenetic trees in evolutionary algorithms in gen-
eral. The variants utilizing only mutation by scrambling
subtrees or swapping taxa turned out to be inferior. It is
further important to include the given input tree collection
T in the initial population, otherwise the results are sig-
nificantly worse. As fitness function the average TreeRank
score of a candidate solution to the set of input trees is used:

TreeRank(T, T ) =

P
T ′∈T TreeRank(T, T ′)

|T |

A solution tree is encoded in a pre-order traversal always
stating the middle node followed by the nodes of the left
and the right subtrees in a recursive way, yielding for the
tree in Figure 2 (-1, -1, -1, A, B, C, D), whereas an inner node
is represented by -1. This EA also forms the basis for our
extension to a memetic algorithm and for the combination
with the VND/VNS, reported in Sections 5 and 6. In [4]
also greedy heuristics were proposed, but their performance
was not satisfying; thus, we do not consider them here.

While we are not aware of other metaheuristics to identify
consensus trees, there already exists a lot of such approaches
for phylogenetic inference: Several EAs similar to the afore-
mentioned are described in [6, 16]. In [7] an EA has been
extended to a MA utilizing a local search based on subtree
rotations. A more general survey of evolutionary computa-
tion in phylogenetics is given in [10]. Of further interest are
applied metaheuristics apart from EAs like a greedy random-
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Figure 3: Exemplary Step moves of taxon C (a) to
the leaf branch of F and (b) to an inner branch.

ized adaptive search procedure (GRASP) and a VNS with
embedded VND utilizing NNI, Step, and SPR neighborhood
structures [2]; see Section 3. A GRASP/VND hybrid using
a multiple SPR neighborhood (i.e. a composition of succes-
sive SPR moves) was introduced in [19]. In our work we
adopt some of these well working strategies originally pro-
posed for phylogenetic inference to also solve the consensus
tree problem in better ways.

3. NEIGHBORHOOD STRUCTURES
In this section the applied neighborhood structures Step,

Swap, Rotate, and SPRr are described. For the unrooted
case, a good overview of Step, Rotate, and the general SPR
is given in [2]. At first we consider the neighborhoods dealing
with single taxa.

A Step move consists of removing a taxon with its pre-
decessor node and reinserting them at some other branch
in the tree or as new root, see Figure 3 for an example.
In a tree containing n taxa, there are always n − 2 inner
branches (i.e., arcs not directly leading to a taxon) and
n leaf branches plus the position as new root. Hence af-
ter removing a single taxon with its leaf branch there are
((n− 2− 1) + (n− 1) + 1)− 1 = 2n− 4 possible new inser-
tion positions, yielding n(2n− 4) neighbors for a given tree
reachable via one Step move. A Step move constitutes the
smallest possible topology change of a tree. We search this
neighborhood as well as the others following a deterministic
first improvement strategy by utilizing the given pre-order
traversal of the tree. In more detail, we go through the
pre-order representation, consider each encountered taxon
for removal and perform for it a nested tree traversal for
enumerating all possible reinsertion points.

Our second neighborhood structure is defined by two re-
lated Step moves that exchange two taxa but keep the tree
structure otherwise unchanged; thus, a Swap move is per-
formed. Each pair of taxa can be swapped, resulting in
n(n − 1)/2 neighbors, whereof at most n(n − 1)/2 − 1 are
distinct because there exists at least one sibling pair. This
neighborhood variant has not been used before; an exam-
ple is given in Figure 4. When searching this neighborhood
the possible Swap moves are deterministically enumerated
similarly as the Step moves by two nested pre-order tree
traversals.

The next two neighborhoods more generally operate on
whole subtrees. The nearest neighbor interchange (NNI)
move for the unrooted case from [2] can be interpreted as
a rotation within the tree for the rooted case; thus, we call
it a Rotate move. There are four possible rotations dis-
tinguishable, two right rotations (see Figure 5) and two left
rotations in an analogous way. The two variants per direc-
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Figure 4: Exemplary Swap move of taxa C and F.
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Figure 5: Schematic right rotations.

tion result from the possibilities of connecting either the left
or the right inner subtree directly to the (sub-)tree’s root.
For every inner branch there are two rotations possible, thus
there are 2(n− 2) = 2n− 4 Rotate neighbors. Hence it is a
relatively small neighborhood. We search it by performing
a pre-order traversal to enumerate all inner branches, trying
for each one all valid rotations, and taking a best one in case
several rotations lead to an improvement.

The last neighborhood we use is a restricted form of the
subtree prune and re-graft (SPR) neighborhood, excluding
the movement of single taxa, thus denoted by SPRr. A
SPRr move selects a non-trivial subtree, prunes it from the
tree, and re-grafts it at some other branch. There exist
O(n2) neighbors; the actual number depends on the current
tree topology and is investigated for SPR in more detail in
[22]. Two exemplary moves are presented in Figure 6. The
SPRr neighborhood is searched similarly as Step, i.e. we tra-
verse the tree in pre-order to enumerate all non-trivial sub-
trees for pruning and perform for each a nested tree traversal
to determine all branches for re-grafting.

3.1 Improvements
In order not to waste time on calculating the UpDown

matrix always from scratch when evaluating a neighbor so-
lution, we derived incremental update schemes for all the
neighborhood structures. Only eventually affected parts of
the UpDown matrix are efficiently updated. This strategy
greatly improves the overall run-time. Unfortunately, it does
not seem to be possible to follow this idea further by also
calculating the UpDown distance and the TreeRank score it-
self in a significantly more efficient incremental way. Thus,
these calculations are always completely performed. A sec-
ond improvement we consider is to avoid unnecessary moves
that would result in the original tree again: swapping two
adjacent taxa or moving a taxon or subtree to the same rela-
tive position. In this way some calculations of the TreeRank
score can be saved.

4. VNS WITH EMBEDDED VND
A detailed introduction to Variable Neighborhood Descent

(VND) and Variable Neighborhood Search (VNS) is shown
in [12]. The idea of VND is to extend simple local search by
using several neighborhood structures—typically ordered ac-
cording to increasing size or evaluation cost—and switching
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Figure 6: Exemplary SPRr moves of subtree
(-1, B, C) (a) to the leaf branch of F and (b) to an
inner branch.

between them in a systematic way. If no improving solution
is found within one neighborhood, the next neighborhood
is considered; else the search is recentered at the new in-
cumbent and restarts with the first neighborhood structure.
We use the neighborhoods described in the previous section
and apply the already mentioned first-improvement strategy,
thus always immediately accepting the first solution yielding
a better TreeRank score than the current. Due to the size
and related evaluation effort of the neighborhoods and their
impact on a tree’s structure the following order is used for
the VND: Rotate, Swap, Step, and finally SPRr.

In contrast to VND, VNS focuses more on diversification
by applying shaking, i.e. random moves in larger neighbor-
hoods. For intensification, VNS includes a local search com-
ponent, in this case VND. Algorithm 1 shows the pseudo-
code of the VNS with embedded VND. If the VNS is applied
as a stand-alone algorithm, then we utilize an input tree
from T with the highest TreeRank score as initial solution.
For shaking, we perform a series of Step moves: A certain
percentage of the taxa is randomly selected and moved to
some other, also randomly chosen positions. We start with
5% of the taxa and gradually increase this portion by 5%
up to 100% and hence the number of different VNS neigh-
borhoods kmax is 20. Both VND and VNS terminate if an
iteration or time limit is reached. VND also stops when the
last neighborhood contains no better solution and thus, the
current solution is locally optimal w.r.t. all VND neighbor-
hood structures.

5. MEMETIC ALGORITHM
The basic idea of a memetic algorithm (MA) is—at least as

it is most commonly interpreted—to extend an evolutionary
algorithm by a local search component in a suitable way to
increase the solution quality or speed up the search; for a
more general introduction to MAs see [17].

For the CTP, we use the EA variant that has been found
to perform best in [4] as a basis. As already mentioned in
Section 2 it always applies prune-delete-graft (PDG) recom-
bination and no mutation. The EA selects parents via binary
tournaments with replacement and works in a steady-state
fashion, i.e. in each iteration one offspring is derived, and
it always replaces the worst solution in the population with
one exception: To avoid duplicates and enforce a minimum
diversity, new solutions having the same TreeRank score as
solutions in the population are immediately discarded. The
initial population consists of a copy of the input tree collec-
tion T and otherwise randomly created trees on L without
any bias. In addition to [4] we also tried to use recombina-
tion and mutation together, though according to preliminary

Algorithm 1: VNS with embedded VND (x)

Set neighborhood structures for VND: N1=Rotate,
N2=Swap, N3=Step and N4=SPRr;
k ← 0; // shaking strength

while VNS stopping condition is not met do
while k 6= kmax do

// Shaking:

x′ ← Apply random Step moves on
k · 5%|L| taxa of x selected at random;
// Local search by VND:

l← 1;
while l 6= 4 and VND stopping condition is not
met do

// Exploration of neighborhood l:
Search first improving neighbor x′′ ∈ Nl(x′);
// Eventually move to x′′ and
// change neighborhood within VND:

if better solution x′′ found then
x′ ← x′′;
l← 1;

else l← l + 1;

// Eventually move to x′ and
// change shaking strength:

if x′ is better than x then
x← x′; // set new incumbent

k ← 1; // reset shaking

else k ← k + 1; // increase shaking

// finished VNS iteration

k ← 1; // reset shaking

tests the performance was usually worse, hence solely recom-
bination was finally used, too. The EA terminates when a
given time or iteration limit is reached.

We embedded different variants of local search utilizing
the neighborhoods described in Section 3. SPRr was omit-
ted as it yielded poorer results in preliminary tests, presum-
ably because of the similarity to PDG recombination. Each
of the variants uses a single neighborhood structure and ap-
plies a random neighbor step function; i.e. a random move
is performed and the new solution is accepted if it is bet-
ter than the original one. Improved trees are re-encoded in
the chromosome in a Lamarckian manner. A local search
phase terminates after a certain number of consecutive non-
improving moves.

We further developed a simple progressive search (SPS)
roughly following the idea in [11]. In this original work, the
algorithm starts with the large SPR neighborhood and pro-
gressively reduces it by limiting the distance between the
removal and insertion positions of a subtree until the neigh-
borhood converges to NNI having a distance limit of one.
In contrast, we use several different neighborhoods without
this smooth transition though maintaining the idea to re-
duce the size of the applied neighborhood: In the first third
of the MA—either w.r.t. an iteration or time limit— we ap-
ply the Step local search, followed by Swap in the second
third, and finally Rotate in the last third, whereas the local
search variants are the ones described before.

Although a single application of one of the local search
variants is relatively fast, trying to improve every offspring
would dramatically increase the overall run-time without a
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Algorithm 2: Memetic Algorithm

Initialize population;
while stopping condition is not met do

Select parents xa and xb via binary tournaments;
xc ← Apply PDG recombination on xa and xb;
if new best solution xc found then

Apply local search on xc;

Insert xc in population when there is no other
solution with the same TreeRank score, replacing
the worst solution;

substantial quality gain in the final solution. Preliminary
tests further indicated that it is also not wise to apply local
search on a certain portion of randomly chosen offsprings.
Similarly as in [7], we perform it only on new incumbent
solutions, which is restrained but turned out to be most
effective. A pseudo-code of the MA is shown in Algorithm 2.

6. EA/VND/VNS HYBRIDS
Over the last years, hybrid metaheuristics have become

increasingly popular as they are often able to exploit the ad-
vantages of different simpler optimization techniques yield-
ing an improved overall performance [8, 18]. In fact, in our
case it is an obvious idea to combine the EA with the de-
scribed VND or VNS. In our first approach, we do this as
in the MA of the previous section: The VND is always only
applied to new best solutions as a strong local improvement.
This EA/VND hybrid will be denoted by HybB.

Another combination possibility is to run the EA and the
VNS in a pure sequential way: The EA’s finally best solution
is used as the starting point for the VNS. We term this
algorithmic setting as HybS.

A refinement of this approach is the intertwined execution
of the EA and the VNS, as it is shown in Algorithm 3: A
prespecified total execution time T is divided into 2τ slots
and both algorithms are alternately applied. The EA starts
and retains its population during its pauses. When the VNS
takes over, it always begins with the EA’s so far best solu-
tion and with its first neighborhood. Of course, each final
solution of the VNS at the end of its slots is also inserted
into the EA’s population, replacing the worst solution and
rejecting solutions having the same TreeRank scores as al-
ready existing ones. We denote such an intertwined setting
with τ EA/VNS phases by HybIτ .

One might think it is even better to use the MA instead of
the EA in the hybrid variants, but this is not true in general.
Preliminary tests have clearly shown a worse performance of
a sequential MA/VNS combination. This is probably due to
the MA already focusing too strongly on local optima and
thus seeding the VNS with a solution less suitable for further
improvement. In the following, we therefore only consider
in more detail an intertwined MA/VNS hybrid which we
denote by Hyb∗Iτ .

7. EXPERIMENTAL RESULTS
This section gives details of the algorithm settings, intro-

duces the test instances, and presents the computational re-
sults as well as a comparison between them. All approaches
have been implemented in C++ and were compiled with
GCC 4.1.2. The experiments were performed on a 2.2 GHz

Algorithm 3: Intertwined EA/VNS Hybrid (T, τ)

Initialize population of EA;
tslot = T/(2 · τ); // time limit per slot

iter ← 0;
while iter < τ do

Run the EA for duration tslot;
x← best solution in EA’s population;
Run the VNS on x for duration tslot;
x′ ← best solution found by VNS;
if x′ is better than x then

Insert x′ in population of EA;
iter ← iter + 1;

Dual-Core AMD Opteron 2214 PC with 4 GB RAM. The
best performing (pure) EA from [4] has been reimplemented
as proposed in this original work and described in Section 5.

7.1 Algorithms Settings
The population size of the EA and MA was set to 100. In

the MA local search is applied to all new incumbent solu-
tions until 100 consecutive non-improving moves have been
tried. Due to space limitations, we present here only results
for the MA with simple progressive search, which proved
to generally outperform the variants where only a single
neighborhood structure is considered. As mentioned ear-
lier, the initial solution for the standalone VNS is the tree
with highest TreeRank score of the input collection. HybB

is performing the VND on all new incumbents limiting run-
time per call to at most 5% of the overall time limit. In case
of HybS the EA and the VNS are given 50% of the com-
putation time each, thus it basically corresponds to HybI1.
The intertwined EA/VNS hybrid HybIτ was applied with
τ = 4 alterations, thus in the following denoted by HybI4.
For Hyb∗Iτ we basically combine the settings of the best per-
forming MA with SPS and of HybI4 and call it Hyb∗I4.

7.2 Test Instances
We test the algorithms on three types of instances:

trees resulting from three simple agglomerative clusterings
(single-link and complete-link [14] as well as average-link,
also known as unweighted pair group method with arith-
metic mean [21]), trees resulting from several runs of the
scatter search approach in [5], and new artificial trees. The
latter are created by generating one initial random tree and
deriving the actual input trees out of it by copying it and
applying a series of perturbations in the neighborhoods de-
scribed in Section 3: Random Step, Swap, Rotate, and SPRr
moves are equally likely performed. In order to be able to
control the similarity of the resulting input trees in a good
way, we defined minimum and maximum pairwise TreeRank
scores and performed the perturbations until a derived tree
achieves a pairwise score w.r.t. the initial tree within these
limits. If the actual score is less than the lower bound, the
previous move is undone and the process continues. Note
that the initial tree is finally discarded and not included in
the input tree collection. A schematic presentation of this
process is shown in Figure 7. An advantage of these arti-
ficially generated instances is that the known initial tree,
although not necessarily the best possible consensus tree,
lends itself as a reference solution.
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Figure 7: Artificial instances created by randomly
perturbing an initial tree.

The instances are differing in the amount of taxa (134 to
178), the number of input trees (3 to 10) and their average
similarity to each other (below 50% up to 90%).

7.3 Comparison of Algorithms
Our aim was to make a comparison of the different algo-

rithms as fair as possible. Hence per instance we ran the
pure EA for 500000 iterations and used the consumed CPU
time as limit for all others. Following this we did 30 runs per
algorithm setting and instance and state following TreeRank
scores in Tables 1–4: the best result (best), the mean value
(mean) with the corresponding standard deviation (sdv.) as
well as the median value (med.). Overall best obtained mean
values are printed bold. For the agglomerative clustering
and scatter search instances we also give the number of trees
and taxa in parentheses, e.g. “(3x134)” for 3 trees with 134
taxa each. In case of the artificial tree instances the name
itself holds this information and also the TreeRank score up-
per bound used during creation, e.g. “5x150 70” for 5 trees
with 150 taxa each and a maximal TreeRank score of 70%
w.r.t the initial tree. As lower limit the given upper bound
minus 10% was used, i.e. 60% in the previous example. For
these instances the TreeRank score of the initial input tree
is given in line “init tree”, too. We further list for each in-
stance the TreeRank score of the best tree of the input col-
lection T (“best input”) and the aforementioned time limit
(“CPU-time”) in seconds. In the following discussion, all
performance differences (i.e. differences in TreeRank score
mean values) pointed out have been statistically verified by
Wilcoxon rank sum tests and error levels are less than 5%.

For seven out of the 12 instances the MA yields on aver-
age significantly better solutions than the pure EA. In the
remaining five cases the observed differences are not signifi-
cant (although for four the MAs mean values are higher and
only for instance M808scatter the EA achieved a slightly
better mean). VNS is always significantly better than the
pure EA except for M808scatter, 5x175 80, and 5x175 90,
where the latter achieved higher scores. Compared to the
MA, the VNS exhibits clearly better results on the real-world
instances, but was less effective on the artificially generated
ones, for which it achieved a higher mean score in only a
single case (5x150 80). We believe the reason for this lies
in the initial solution of the VNS, which is the input tree
having the highest TreeRank score. While this best input

tree turned out to lie relatively close to high quality con-
sensus trees in case of our real-world instances, there are
generally larger differences in the artificial instances. As the
VNS is dominated by its strong local search of the embed-
ded VND, which consumes the major part of the CPU-time
on larger instances, its diversification abilities are less pro-
nounced than those of the population-based MA.

Now we concentrate on the hybrid approaches. The re-
sults of HybB, in which VND is used to locally optimize
new incumbent solutions within the EA, was disappointing,
as its final solutions are generally inferior to those of the
other hybrids and VNS performed in most of the real-world
instances better. The more systematic EA/VNS combina-
tions HybS, HybI4, and Hyb∗I4 are more successful. They
consistently achieve the overall best results; at least one of
them performed on all instances significantly better than all
other algorithms. The only exception is Onco10, where the
VNS yields equally good results. Although there are only
few statistically significant differences between the sequen-
tial and the intertwined hybrids, the former tends to yield
better results for the real-world instances whereas the latter
seems to be better suited for the artificial instances. Finally,
the intertwined MA/VNS hybrid Hyb∗I4 shows for many in-
stances a better performance—in fact sometimes even the
best—when compared to the same variant utilizing the pure
EA only (HybI4). Altogether the intertwined variants can
be clearly considered the most successful.

When comparing the scores of the best input trees with
those of the overall best solutions found, it is apparent that
our real instances have less room for improvement, mostly
below 2%, whereas the artificially generated ones allow for
about 5% or even more. Another interesting fact is the
relation between the TreeRank scores of the artificial in-
stances’ initial trees and the corresponding best solutions
found. As can be observed in Tables 3 and 4, the initial tree
is more likely the (nearly) optimal consensus tree (regarding
the TreeRank score) when the derived input trees are close
to the initial tree, hence when the radius of the inner circle
in Figure 7 is small. The results of the best solutions also
show that only the hybrid algorithms are consistently able
to find consensus trees being better than or equal to the ini-
tial trees, whereas the latter happens for instances 5x150 90
and 5x175 90.

8. CONCLUSIONS
In this work, we introduced four meaningful neighbor-

hood structures for the CTP, whereof Step and Rotate are
adopted from approaches for deriving phylogenetic trees,
SPRr is a restricted variant of SPR and Swap is a spe-
cific form of two Step moves and has not been described
before. A previously presented evolutionary algorithm us-
ing the fine-grained TreeRank similarity measure has been
extended to several memetic algorithm variants by embed-
ding a randomized local search utilizing these neighborhood
structures. Thereof the variant using the simple progres-
sive search, which changes the neighborhoods over time, per-
forms best. Furthermore, a variable neighborhood descent
procedure that also uses these neighborhood structures has
been developed and embedded in a variable neighborhood
search. The latter performs shaking by applying an increas-
ing number of random Step moves. The evaluation of neigh-
borhoods could be substantially sped up by implementing
a (partly) incremental scheme through updates of the Up-
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Table 1: Results on agglomerative clustering tree instances.

M877 (3x134) M971 (3x158) M808agglom (3x178)
best mean sdv. med. best mean sdv. med. best mean sdv. med.

EA 51.85 51.68 0.10 51.70 63.38 63.28 0.04 63.28 48.47 48.44 0.01 48.44
MA 51.90 51.73 0.11 51.75 63.36 63.28 0.05 63.28 48.51 48.46 0.02 48.46
VNS 51.97 51.88 0.05 51.88 63.34 63.32 0.01 63.32 48.53 48.50 0.01 48.49
HybB 51.94 51.82 0.09 51.84 63.41 63.34 0.04 63.35 48.51 48.49 0.01 48.48
HybS 51.97 51.89 0.04 51.89 63.41 63.36 0.03 63.36 48.52 48.50 0.02 48.50
HybI4 52.00 51.89 0.06 51.88 63.40 63.35 0.03 63.36 48.53 48.51 0.01 48.51
Hyb∗I4 51.99 51.88 0.07 51.89 63.41 63.33 0.05 63.34 48.53 48.52 0.01 48.52
best input 49.99 62.41 48.14
CPU-time [s] 228 283 480

Table 2: Results on scatter search tree instances.

Onco9 (9x148) Onco10 (10x148) M808scatter (10x178)
best mean sdv. med. best mean sdv. med. best mean sdv. med.

EA 91.21 90.98 0.10 90.97 91.01 90.98 0.02 90.97 91.05 90.98 0.05 90.98
MA 91.21 90.99 0.11 90.98 91.07 90.98 0.03 90.98 91.08 90.96 0.07 90.97
VNS 91.16 91.16 0 91.16 91.09 91.09 0 91.09 90.96 90.96 0 90.96
HybB 91.27 91.12 0.07 91.12 91.12 91.05 0.05 91.07 91.05 90.92 0.10 90.94
HybS 91.29 91.21 0.04 91.22 91.13 91.09 0.02 91.09 91.09 91.00 0.04 91.00
HybI4 91.26 91.20 0.04 91.22 91.13 91.09 0.02 91.09 91.10 90.99 0.06 91.00
Hyb∗I4 91.28 91.21 0.03 91.22 91.12 91.09 0.01 91.09 91.11 90.99 0.06 90.99
best input 89.96 90.87 89.85
CPU-time [s] 391 420 573

Down matrix. Next, we hybridized the EA and MA with
the VNS or the VND by running them either in sequential
or intertwined order exchanging improved solutions.

Performance has been evaluated with extensive tests on
agglomerative clustering, scatter search, and carefully gen-
erated artificial instances providing more room for improve-
ment. The MA utilizing SPS, the VNS, and the hybrid
approaches are usually able to outperform the EA. On our
real-world instances, the VNS turned out to be better than
the MA, but on the artificial instances the situation was vice-
versa. We explained this behavior with the VNS’ stronger
focus on intensification and weaker diversification abilities.

The hybrid approaches generally perform best, clearly ex-
ploiting the benefits of the individual algorithms they com-
bine. Especially the intertwined hybrids yield consistently
excellent and in most cases the overall best solutions.

Future work should include experiments on more prob-
lem instances with different properties. Promising seems to
be the investigation of intertwined hybrids with more so-
phisticated alteration schemes, in particular since we ob-
served that in some cases the EA or MA is not able to im-
prove the solution in later time-slots anymore. Currently,
we are investigating extended versions of the Swap, Step,
and SPRr neighborhoods where we exploit the given Up-
Down distance information to realize guided neighborhood
explorations biased towards changing “expensive” (i.e. dis-
similar) structures first. A further idea is to consider other
neighborhood orders for the VND or even a (self-)adaptive
strategy.
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